首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glutamate–nitric oxide–cGMP pathway is impaired in brain in vivo in animal models of chronic moderate hyperammonemia either with or without liver failure. The impairment occurs at the level of activation of soluble guanylate cyclase by nitric oxide (NO). It has been suggested that the impairment of this pathway may be responsible for some of the neurological alterations found in hyperammonemia and hepatic encephalopathy. Soluble guanylate cyclase is also present in lymphocytes. Activation of guanylate cyclase by NO is also altered in lymphocytes from hyperammonemic rats or from rats with portacaval anastomosis. We assessed whether soluble guanylate cyclase activation was also altered in human patients with liver disease. We studied activation of soluble guanylate cyclase in lymphocytes from 77 patients with liver disease and 17 controls. The basal content of cGMP in lymphocytes was decreased both in patients with liver cirrhosis and in patients with chronic hepatitis. In contrast, cGMP concentration was increased in plasma from patients with liver disease. Activation of guanylate cyclase by NO was also altered in liver disease and was higher in lymphocytes from patients with cirrhosis or hepatitis than that in lymphocytes from controls. Successful treatment with interferon of patients with hepatitis C reversed all the above alterations. Altered modulation of soluble guanylate cyclase by NO in liver disease may play a role in the neurological and hemodynamic alterations in these patients.  相似文献   

2.
BACKGROUND: Cyclic GMP (cGMP) concentration is increased in plasma of patients with liver cirrhosis. Three possible mechanisms may contribute: increased cGMP synthesis by soluble (activated by nitric oxide), or particulate (activated by atrial natriuretic peptide (ANP)) guanylate cyclase or increased release from cells. AIM: The aim of this work was to analyze the possible contributors to increased plasma cGMP and to assess whether changes in the parameters of the system vary with the degree of liver disease (Child Pugh score) or by the presence of ascites. METHODS: We measured cGMP in plasma and lymphocytes, soluble guanylate cyclase activation by nitric oxide in lymphocytes, nitrates and nitrites and ANPs (activator of particulate guanylate cyclase) in plasma. We analyzed the correlation between changes in different parameters to discern which parameters contribute to increased plasma cGMP. RESULTS: The plasma content of nitrates+nitrites, ANP and cGMP are increased. Activation of soluble guanylate cyclase by nitric oxide is increased in patients while basal cGMP in lymphocytes is decreased. CONCLUSIONS: Both increased ANP and increased activation of soluble guanylate cyclase by nitric oxide contribute to increased plasma cGMP in patients. The concentrations of ANP and cGMP in plasma increase with the degree of disease and are higher in patients with ascites.  相似文献   

3.
Cyclic GMP (cGMP) modulates important cerebral processes including some forms of learning and memory. cGMP pathways are strongly altered in hyperammonemia and hepatic encephalopathy (HE). Patients with liver cirrhosis show reduced intracellular cGMP in lymphocytes, increased cGMP in plasma and increased activation of soluble guanylate cyclase by nitric oxide (NO) in lymphocytes, which correlates with minimal HE assessed by psychometric tests. Activation of soluble guanylate cyclase by NO is also increased in cerebral cortex, but reduced in cerebellum, from patients who died with HE. This opposite alteration is reproduced in vivo in rats with chronic hyperammonemia or HE. A main pathway modulating cGMP levels in brain is the glutamate-NO-cGMP pathway. The function of this pathway is impaired both in cerebellum and cortex of rats with hyperammonemia or HE. Impairment of this pathway is responsible for reduced ability to learn some types of tasks. Restoring the pathway and cGMP levels in brain restores learning ability. This may be achieved by administering phosphodiesterase inhibitors (zaprinast, sildenafil), cGMP, anti-inflammatories (ibuprofen) or antagonists of GABAA receptors (bicuculline). These data support that increasing cGMP by safe pharmacological means may be a new therapeutic approach to improve cognitive function in patients with minimal or clinical HE.  相似文献   

4.
It has previously been shown that alcohol can suppress reproduction in humans, monkeys, and small rodents by inhibiting release of luteinizing hormone (LH). The principal action is via suppression of the release of LH-releasing hormone (LHRH) both in vivo and in vitro. The present experiments were designed to determine the mechanism by which alcohol inhibits LHRH release. Previous research has indicated that the release of LHRH is controlled by nitric oxide (NO). The proposed pathway is via norepinephrine-induced release of NO from NOergic neurons, which then activates LHRH release. In the present experiments, we further evaluated the details of this mechanism in male rats by incubating medial basal hypothalamic (MBH) explants in vitro and examining the release of NO, prostaglandin E2 (PGE2), conversion of arachidonic acid to prostanoids, and production of cGMP. The results have provided further support for our theory of LHRH control. Norepinephrine increased the release of NO as measured by conversion of [14C]arginine to [14C]citrulline, and this increase was blocked by the alpha 1 receptor blocker prazosin. Furthermore, the release of LHRH induced by nitroprusside (NP), a donor of NO, is related to the activation of soluble guanylate cyclase by NO since NP increased cGMP release from MBHs and cGMP also released LHRH. Ethanol had no effect on the production of NO by MBH explants or the increased release of NO induced by norepinephrine. Therefore, it does not act at that step in the pathway. Ethanol also failed to affect the increase in cGMP induced by NP. On the other hand, as might be expected from previous experiments indicating that LHRH release was brought about by PGE2, NP increased the conversion of [14C]arachidonic acid to its metabolites, particularly PGE2. Ethanol completely blocked the release of LHRH induced by NP and the increase in PGE2 induced by NP. Therefore, the results support the theory that norepinephrine acts to stimulate NO release from NOergic neurons. This NO diffuses to the LHRH terminals where it activates guanylate cyclase, leading to an increase in cGMP. At the same time, it also activates cyclooxygenase. The increase in cGMP increases intracellular free calcium, activating phospholipase A2 to provide arachidonic acid, the substrate for conversion by the activated cyclooxygenase to PGE2, which then activates the release of LHRH. Since alcohol inhibits the conversion of labeled arachidonic acid to PGE2, it must act either directly to inhibit cyclooxygenase or perhaps it may act by blocking the increase in intracellular free calcium induced by cGMP, which is crucial for activation of of both phospholipase A2 and cyclooxygenase.  相似文献   

5.
This study was undertaken to investigate the influence of exogenous NO on intracellular calcium levels of porcine aortic endothelial cell culture monolayers. Spontaneous NO liberating substances with different half-life periods (NOC-9 [10 micromol/L] approximately 1 min, SNAP [10 micromol/L] approximately 4 h), and an aqueous NO gas solution [130 nmol/L] were added onto the monolayers. All three solutions induced a rapid and similar calcium rise in the endothelial cells. NOC-9 as a rapidly NO releasing compound was selected to be investigated more thoroughly. The NOC-9 calcium rise is not dependent on the activation of the guanylate cyclase since preincubation with a specific guanylate cyclase inhibitor [ODQ, 10 micromol/L] did not alter the effect and a cGMP analogue [8-bromo-cGMP 10 micromol/L] did not significantly elevate calcium levels. The NOC-9 induced calcium rise could be completely blocked by removal of extracellular calcium and partly blocked by SKF 96365 [10 micromol/L], an unspecific inhibitor of the receptor operated calcium channels. Incubation with N-nitroarginine [100 micromol/L] slightly but significantly reduced basal calcium levels in the cell cultures. Therefore, we conclude that exogenous NO elevates [Ca(2+)](i) in cultured porcine aortic endothelial cells. This effect is not dependent on cGMP, and a calcium influx is involved. Moreover, constitutively formed endogenous NO seems to be necessary to maintain basal calcium levels.  相似文献   

6.
L-Arginine (L-Arg) is metabolized by nitric oxide synthase to the reactive intermediate nitric oxide. Since nitric oxide stimulates guanylyl cyclase and cGMP synthesis, L-Arg effects on cGMP accumulation in isolated pancreatic islets of the rat and RINm5F insulinoma cells were determined. Both L-Arg and glucose stimulation increased islet cGMP levels, and glucose potentiated the response to L-Arg alone. A competitive inhibitor of L-Arg metabolism to nitric oxide, NG-monomethyl-L-arginine, reduced glucose- and L-Arg-stimulated insulin release and glucose-induced increases in cGMP; however, basal insulin release was slightly increased. D-Arg and L-ornithine did not affect islet cGMP levels, although insulin release was stimulated. RINm5F cell cGMP levels and insulin release increased in response to L-Arg in a concentration- and time-related manner, whereas glucose and L-histidine were without effect. 8-Bromo-cGMP also slightly increased RINm5F cell insulin release. Sodium nitroprusside as a source of nitric oxide increased RINm5F cell cGMP production. Methylene blue and LY83583, inhibitors of soluble guanylyl cyclase activation, reduced RINm5F cell cGMP levels in the presence and absence of L-Arg; LY83583 also reduced glucose-stimulated cGMP levels in islets. Insulin release by glucose and L-Arg was also inhibited by methylene blue and LY83583 in islets. We conclude that glucose and L-Arg stimulate guanylyl cyclase activity and cGMP formation in beta-cells at least in part through metabolism to the reactive intermediate nitric oxide. However, neither nitric oxide nor cGMP synthesis is obligatory for insulin secretion.  相似文献   

7.
The nitric oxide (NO)-guanosine 3',5'-cyclic monophosphate (cGMP) signaling pathway plays an important role in the pulmonary vascular transition at birth. We studied pulmonary arteries and veins isolated from normal late-gestation fetal lambs and from fetal lambs with persistent pulmonary hypertension (PPHN) following prenatal ligation of the ductus arteriosus. We additionally used double immunolabeling and immunoblot analysis to determine relative vascular contents of endothelial nitric oxide synthase (NOS-III) and soluble guanylate cyclase (sGC). Cyclic GMP content and sGC activity were significantly lower in arteries from hypertensive lambs than controls. A rank order for contents of both soluble guanylate cyclase and NOS-III was observed by both immunolabeling and immunoblotting: Control vein = Hypertensive vein > Control artery > Hypertensive artery. Our data demonstrate that the relative expression of sGC correlates well with the relative expression of NOS-III, and indicate the potential importance of soluble guanylate cyclase in the regulation of the perinatal pulmonary circulation. These data may help us understand vascular mechanisms producing PPHN, as well as patterns of response to exogenous NO.  相似文献   

8.
The favorable anti-ischemic effect of nitrates is based on the unique distribution pattern of vascular relaxation that they evoke in different vascular sections. Nitrovasodilators reduce cardiac preload and wall tension, and thus myocardial oxygen consumption. They increase precollateral coronary perfusion pressure, thereby augmenting oxygen delivery to ischemic sections, especially to the subendocardial layers. These vasodilator actions are caused by the nitric oxide (NO)-induced activation of soluble guanylyl cyclase, which augments vascular cyclic guanosine monophosphate (cGMP) levels to suppress intracellular Ca2+ concentrations. After some metabolic steps NO is finally cleaved from all nitrovasodilators and is probably identical with, or very closely related to, endothelium-derived relaxing factor (EDRF). A dinitrosyl-iron complex may serve under biologic conditions to stabilize the NO- radical, which has an extremely short half-life. NO derived from nitrovasodilators is used therapeutically to substitute for a deficient endothelium-mediated vascular control and autacoid production.  相似文献   

9.
目的探讨植物雌激素α-玉米赤霉醇(α-ZAL)对大鼠胸主动脉环内皮依赖性舒张效应中一氧化氮合酶(NOS)-NO-环磷酸鸟苷(cGMP)系统的作用。方法采用体外血管环灌流的方法,先用10-6mol/L苯肾上腺素预收缩血管。观察10-10~10-5mol/L6个不同浓度α-ZAL对内皮完整和去除内皮的大鼠胸主动脉环的舒张作用。α-ZAL10-10~10-8mol/L为低浓度组,α-ZAL10-7~10-5mol/L为高浓度组,0.1%乙醇浓度为对照组。在高浓度组中分别预先加用10-5mol/L左旋硝基精氨酸甲酯(L-NAME组)和亚甲蓝(MB组)并观察其影响,测定动脉环中内皮型一氧化氮合酶(eNOS)和cGMP含量及灌流液中NO含量变化。结果L-NAME组和MB组均可减弱高浓度组中α-ZAL的内皮依赖性胸主动脉环舒张作用(P<0.05,P<0.01);与对照组比较,高浓度组胸主动脉环中eNOS、cGMP含量及灌流液中NO含量增高(P<0.05,P<0.01);与高浓度组比较,L-NAME组可降低灌流液中NO含量及胸主动脉环中cGMP含量(P<0.05,P<0.01);MB组可降低胸主动脉环中cGMP含量(P<0.01)。结论α-ZAL的内皮依赖性舒张作用与NOS-NO-cGMP系统的激活有关。  相似文献   

10.
A soluble enzyme obtained from rat forebrain catalyzes the NADPH-dependent formation of nitric oxide (NO) and citrulline from L-arginine. The NO formed stimulates the soluble guanylate cyclase and this stimulation is abolished by low concentrations of hemoglobin. The synthesis of NO and citrulline is dependent on the presence of physiological concentrations of free Ca2+ and is inhibited by NG-monomethyl-L-arginine, but not by its enantiomer NG-monomethyl-D-arginine or by L-canavanine. L-Homoarginine, L-arginyl-L-aspartate, or L-arginine methyl ester can replace L-arginine as substrates for the enzyme. These results indicate that NO is formed from L-arginine in the brain through an enzymic reaction similar to that in vascular endothelial cells, neutrophils, and macrophages, adding support to our hypothesis that the formation of NO from L-arginine is a widespread transduction mechanism for the stimulation of the soluble guanylate cyclase.  相似文献   

11.
Amlodipine is a potent vasodilator with a long half-life and delayed onset of action that is particularly concerning after an overdose. Vasodilation occurs through stimulation of nitric oxide release with increased cyclic guanosine monophosphate (cGMP) production. Methylene blue inhibits guanylate cyclase. This enzyme is responsible for the production of cGMP. Methylene blue also has the ability to scavenge nitric oxide, as well as inhibit nitric oxide synthase. We report the use of methylene blue for refractory shock in a patient with amlodipine toxicity.  相似文献   

12.
Inhibition of chemotaxis Ng-monomethyl-L-arginine: a role for cyclic GMP   总被引:8,自引:0,他引:8  
The metabolism of L-arginine to nitric oxide (NO) has been shown to be important for the effector functions of many cell types, including polymorphonuclear (PMN) leukocytes. Its effect appears to be mediated at least in part by NO stimulation of soluble guanylate cyclase. We evaluated the role of this pathway in two PMN effector functions: cell movement and microbial killing, using the competitive inhibitor of L- arginine conversion to NO, NG-monomethyl-L-arginine (NMA). We also evaluated the effect of additional L-arginine and dibutyryl cyclic guanosine monophosphate (cGMP) on any NMA-associated changes. Human peripheral blood neutrophils were used and the cells were incubated with and without NMA. Chemotaxis was evaluated using a 48-well micro- Boyden chamber. Microbial killing was evaluated using S aureus strains D2C and 502A. These studies demonstrated that chemotaxis to formyl- methionyl-leucyl-phenylalanine was markedly inhibited in NMA-treated cells. This inhibition could be overcome if L-arginine or dibutyryl cGMP were added with the NMA. In contrast, microbial killing of S aureus was unaffected by NMA. These observations support the hypothesis that the L-arginine metabolism to NO and its effect on the cGMP level may be important for the dynamic changes required for neutrophil chemotaxis.  相似文献   

13.
The effect of atrial natriuretic peptide (ANP), arginine vasopressin (AVP), and oxytocin (OT) on cAMP and cGMP accumulation was investigated in LLC-PK1 kidney epithelial cells. The addition of ANP, AVP, and OT to intact cells produced a time- and concentration-dependent increase in cGMP accumulation. ANP produced a 1.7-fold increase in cGMP at 10 pM and a maximal 28-fold increase in cGMP at 1 microM. ANP had no effect on basal or AVP-induced stimulation of cAMP accumulation. OT was 10-fold more potent than AVP at increasing cGMP levels, producing a 2.1-fold increase in cGMP at 0.1 nM, whereas AVP was 100-fold more potent at increasing cAMP levels. At a concentration of 1 microM, AVP and OT produced a maximal 12 to 14-fold increase in cGMP, while OT and AVP produced 50- and 90-fold increase in cAMP, respectively. The selective OT agonist [Thr4, Gly7]oxytocin was very effective at increasing cGMP, but not at increasing cAMP levels. The V2-vasopressin agonist [deamino-Pen1,Val4, D-Arg8]vasopressin did not increase cGMP levels, but produced a 20-fold increase in cAMP levels. The addition of ANP together with either AVP or OT produced an additive increase in cGMP content. Simultaneous addition of AVP and OT did not lead to a greater increase in cAMP or cGMP levels. These results suggest that the AVP- and OT-induced increase in cGMP is mediated by OT receptors, whereas the increase in cAMP is probably mediated by vasopressin receptors. ANP increased the activity of particulate guanylate cyclase by 6-fold, while AVP and OT has no effect on particulate guanylate cyclase activity. The relatively selective inhibitor of soluble guanylate cyclase, methylene blue, had no effect on the ANP-induced increase in cGMP content in intact cells, but produced a 50% inhibition of the increase in cGMP by AVP and OT. Methylene blue did not alter the stimulation of cAMP by AVP or OT. These results demonstrate that ANP, AVP, and OT increase cGMP in LLC-PK1 kidney epithelial cells. The increase in cGMP by ANP is mediated by particulate guanylate cyclase, whereas AVP and OT probably increase cGMP by interacting with OT receptors coupled to soluble guanylate cyclase.  相似文献   

14.
The vasculature endothelium cells and the nerve cells of several regions of the brain and the autonomous nerve system contain a nitric oxide (NO)-synthase, that forms NO from arginine. The NO-synthase is stimulated by bradykinin, histamine and acetylcholine and is especially active in the coronary and brain vessels. In the vasculature smooth muscle NO activates the guanylate cyclase: The increase in the concentration of cGMP induces a relaxation and in this way a vasodilatation. In the nerve cells NO is active as a neuromodulator. The activation of macrophages by gamma-interferon or by lipopolysaccharides induces the formation of a NO-synthase, that has other properties than the enzyme of the endothelium cells. The macrophages secrete NO and inhibit the metabolism of tumour cells, especially enzymes of the respiratory chain and of the citric acid cycle as well as the DNA-synthesis. Trinitroglycerin and amyl nitrite form with thiol-compounds S-nitroso-compounds, the decomposition of these forms NO.  相似文献   

15.
The regulation of neurotrophin (NT) secretion is critical for many aspects of NT-mediated neuronal plasticity. Neurons release NTs by activity-regulated secretion pathways, initiated either by neurotransmitters and/or by existing NTs by a positive-feedback mechanism. This process depends on calcium release from intracellular stores. Little is known, however, about potential pathways that down-regulate NT secretion. Here we demonstrate that nitric oxide (NO) induces a rapid down-regulation of brain-derived neurotrophic factor (BDNF) secretion in cultured hippocampal neurons. Similar effects occur by activating a downstream target of intracellular NO, the soluble guanylyl cyclase, or by increasing the levels of its product, cGMP. Furthermore, down-regulation of BDNF secretion is mediated by cGMP-activated protein kinase G, which prevents calcium release from inositol 1,4,5-trisphosphate-sensitive stores. Our data indicate that the NO/cGMP/protein kinase G pathway represents a signaling mechanism by which neurons can rapidly down-regulate BDNF secretion and suggest that, in hippocampal neurons, NT secretion is finely tuned by both stimulatory and inhibitory signals.  相似文献   

16.
According to our present understanding organic nitrates like glycerine trinitrate mediate their pharmacological effect by an intracellular stimulation of the enzyme guanylate cyclase (E.C. 4.6.1.2.) [1, 10]. The exact molecular mechanism underlying the process of enzyme activation is still a matter of controversial discussion. But there is general agreement in literature about the fact that organic nitrate compounds are able to activate the enzyme guanylate cyclase only in the presence or by the interaction of the amino acid cysteine [3, 5]. The stimulatory activity of nitric oxide-containing compounds may be due, at least in part, to the formation of active, unstable intermediate S-nitrosothiols, i.e. S-nitrosocysteine in case of the organic nitrates [7]. According to Craven and DeRubertis [2], the active intermediates of guanylate cyclase stimulation are represented by nitric oxide-heme complexes. There is, however, substantial evidence that the organic nitrates have to be cleaved before they become biologically active. During the transformation which takes place in the presence of cysteine or by means of enzymatic catalysis, nitric oxide radicals are reductively split off the molecule from which (via the intermediate formation of salpetric acid) the nitric oxide is liberated as the essential stimulatory agent. In this study we examined the transformation of glycerine trinitrate and other organic nitrates under the influence of different thiols and a purified soluble rat liver guanylate cyclase preparation. At the same time the stimulation of guanylate cyclase in the presence of the thiols mentioned was quantitatively estimated. Only in case of cysteine did we find a strict correlation between the liberation of nitric oxide from different organic nitrates and the degree of enzyme activation. Several other thiols were also able to liberate nitric oxide, but surprisingly enough, there was no equivalent stimulation of guanylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Electrical field stimulation (EFS) of phenylephrine-contracted bovine mesenteric arteries pretreated with guanethidine elicited a relaxation that amounted to roughly 40%. This relaxation was sensitive to tetrodotoxin pretreatment, suggesting a neurogenic origin. The EFS-induced relaxation was correlated to an increase in cGMP level, from 14.2 +/- 2.5 pmol/g wet wt in nonstimulated arteries to 31.6 +/- 3.4 pmol/g wet wt after 1 minute of EFS. cAMP values were not affected by EFS. Methylene blue (5 microM) and the compound LY 83583 (10 microM), inhibitors of soluble guanylate cyclase, inhibited the EFS-induced relaxation by 60% and 50%, respectively. Zaprinast (1 microM), a selective inhibitor of cGMP degradation, significantly (p = 0.005) potentiated the EFS-induced relaxation. The relaxation induced by EFS in bovine mesenteric arteries exhibits characteristics similar to the relaxations evoked by organic nitroesters and endothelium-dependent vasodilators, both of which are suggested to be mediated by cGMP and probably with nitric oxide as the common activator of the cGMP system. The possible involvement of nitric oxide as a mediator of EFS-induced relaxations was investigated with the use of known modulators of endogenous nitric oxide production. Preincubation of the arteries with 1 mM arginine or 1 mM N-alpha-benzoyl-L-arginine, both reported to potentiate endogenous nitric oxide production, or 5 mM L-canavanine, 0.25 mM NG-monomethyl-L-arginine, or 0.1 mM NG-nitro-L-arginine, alleged inhibitors of endogenous nitric oxide production, were without effect on the relaxation induced by EFS. However, pyrogallol, a generator of superoxide anions, was a potent inhibitor of relaxations induced by EFS in bovine mesenteric arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Heart Failure Reviews - The nitric oxide (NO)–guanylate cyclase (GC)–cyclic guanosine monophosphate (cGMP) pathway plays an important role in cardiovascular, pulmonary and renal...  相似文献   

19.
Cholinergic stimulation of vascular endothelin activates NO synthase (NOS), leading to generation of NO from arginine. This NO diffuses to the overlying vascular smooth muscle and causes vasodilatation. NOS has also been found in the central and peripheral nervous systems and it is clear now that NO plays an important role as a neurotransmitter. Here we investigate the role of NO in controlling contraction of uterine smooth muscle. Our previous work showed that NO activates the cyclooxygenase enzyme in the hypothalamus, leading to production of prostaglandin E2 (PGE2). We began by determining whether NO was involved in production of arachidonic acid metabolites in the uterus. Uteri were removed from female rats that had been treated with estrogen (17 beta-estradiol). Control animals were similarly injected with diluent. Tissues were incubated in vitro in the presence of [14C]arachidonic acid for 60 min. Synthesis of PGs and thromboxane B2 (TXB2) was markedly stimulated by sodium nitroprusside (NP), the releaser of NO. The effect was greatest on TXB2; there were no significant differences in increases of different PGs. The response to NP was completely prevented by Hb, a scavenger of NO. The inhibitor of NOS, NG-monomethyl-L-arginine (NMMA), significantly decreased synthesis of PGE2 but not the other prostanoids (6-keto-PGF1 alpha and PGF2 alpha). Addition of Hb to scavenge the spontaneously released NO inhibited synthesis of 6-keto-PGF1 alpha, PGE2, and PGF2 alpha, but not TXB2. There was a much lesser effect on products of lipoxygenase, such that only 5-hydroxy-5,8,11,14-eicosatetraenoic acid (5-HETE) synthesis was increased by NP, an effect that was blocked by Hb; there was no effect of NMMA or Hb on basal production of 5-HETE. Thus, NO stimulates release of the various prostanoids and 5-HETE; blockade of NOS blocked only PGE2 release, whereas Hb to scavenge the NO released also blocked synthesis of 6-keto-PFG1 alpha, PGE2, and PGF2 alpha, indicating that basal NO release is involved in synthesis of all these PGs, especially PGE2. Presumably, NMMA did not block NOS completely, whereas Hb completely removed released NO. This may explain the different responses of the various prostanoids to NMMA and Hb. To determine the role of these prostanoids and NO in control of spontaneous in vitro uterine contractility in the estrogen-treated uterus, the effect of blocking NOS with NMMA and of scavenging NO produced by Hb on the time course of spontaneous uterine contractility was studied. Surprisingly, blockade of NOS or removal of NO by Hb prevented the spontaneous decline in uterine motility that occurs over 40 min of incubation. We interpret this to mean that NO was released in the preparation and activated guanylate cyclase in the smooth muscle, resulting in production of cGMP, which reduces motility and induces relaxation. When the motility had declined to minimal levels, the effect of increased NO provided by NP was evaluated; apparently by stimulating the release of prostanoids, a rapid increase in motility that persisted for 10 min was produced. This effect was completely blocked by Hb. The action of NO was also blocked by indomethacin, indicating that it was acting via release of PGs. Apparently, when motility is low, activation of PG synthesis by NO to activate the cyclooxygenase enzyme causes a rapid induction of contraction, whereas, when motility is declining, NO acts primarily via guanylate cyclase to activate cGMP release; the action of the prostanoids released at this time is in some manner blocked.  相似文献   

20.
To investigate the dynamics of guanosine 3',5'-cyclic monophosphate (cGMP) in single living cells, we constructed genetically encoded, fluorescent cGMP indicators by bracketing cGMP-dependent protein kinase (cGPK), minus residues 1-77, between cyan and yellow mutants of green fluorescent protein. cGMP decreased fluorescence resonance energy transfer (FRET) and increased the ratio of cyan to yellow emissions by up to 1.5-fold with apparent dissociation constants of approximately 2 microM and >100:1 selectivity for cGMP over cAMP. To eliminate constitutive kinase activity, Thr(516) of cGPK was mutated to Ala. Emission ratio imaging of the indicators transfected into rat fetal lung fibroblast (RFL)-6 showed cGMP transients resulting from activation of soluble and particulate guanylyl cyclase, respectively, by nitric oxide (NO) and C-type natriuretic peptide (CNP). Whereas all naive cells tested responded to CNP, only 68% responded to NO. Both sets of signals showed large and variable (0.5-4 min) latencies. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) did not elevate cGMP on its own but consistently amplified responses to NO or CNP, suggesting that basal activity of guanylate cyclase is very low and emphasizing the importance of PDEs in cGMP recycling. A fraction of RFL cells showed slowly propagating tides of cGMP spreading across the cell in response to delocalized application of NO. Biolistically transfected Purkinje neurons showed cGMP responses to parallel fiber activity and NO donors, confirming that single-cell increases in cGMP occur under conditions appropriate to cause synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号