首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To determine the role of vascular cell adhesion molecule 1 (VCAM- 1)/very late activation antigen 4 (VLA-4) and intercellular adhesion molecule 1 (ICAM-1)/lymphocyte function-associated antigen 1 (LFA-1) interactions in causing antigen-induced eosinophil and T cell recruitment into the tissue, we studied the effect of the in vivo blocking of VCAM-1, ICAM-1, VLA-4, and LFA-1 by pretreatment with monoclonal antibodies (mAb) to these four adhesion molecules on the eosinophil and T cell infiltration of the trachea induced by antigen inhalation in mice. The in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, prevented antigen-induced eosinophil infiltration into the mouse trachea. On the contrary, the in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, increased blood eosinophil counts after antigen challenge, but did not affect blood eosinophil counts without antigen challenge in sensitized mice. Furthermore, the expression of VCAM-1 but not ICAM-1 was strongly induced on the endothelium of the trachea after antigen challenge. In addition, pretreatment with anti-IL-4 mAb decreased the antigen-induced VCAM-1 expression only by 27% and had no significant effect on antigen-induced eosinophil infiltration into the trachea. The in vivo blocking of VCAM- 1 and VLA-4 inhibited antigen-induced CD4+ and CD8+ T cell infiltration into the trachea more potently than that of ICAM-1 and LFA-1. In contrast, regardless of antigen challenge, the in vivo blocking of LFA- 1, but not of ICAM-1, increased blood lymphocyte counts more than that of VCAM-1 and VLA-4. These results indicate that VCAM-1/VLA-4 interaction plays a predominant role in controlling antigen-induced eosinophil and T cell recruitment into the tissue and that the induction of VCAM-1 expression on the endothelium at the site of allergic inflammation regulates this eosinophil and T cell recruitment.  相似文献   

2.
Many ligands of adhesion molecules mediate costimulation of T cell activation. The generality of this emerging concept is best determined by using model systems which exploit physiologically relevant ligands. We developed such an "antigen-specific" model system for stimulation of resting CD4+ human T cells using the following purified ligands: (a) major histocompatibility complex class II plus the superantigen Staphylococcus enterotoxin A, to engage the T cell receptor (TCR); (b) adhesion proteins vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and endothelial leukocyte adhesion molecule 1 (ELAM-1), to provide potential cell surface costimulatory signals; and (c) recombinant interleukin 1 beta (rIL-1 beta)/rIL-6 as costimulatory cytokines. In this biochemically defined system, we find that resting CD4+ T cells require costimulation in order to respond to TCR engagement. This costimulation can be provided by VCAM-1 or ICAM-1; however adhesion alone is not sufficient since ELAM-1 mediates adhesion but not costimulation. The cytokines IL-1 beta and IL-6 by themselves cannot mediate costimulation, but augment the adhesion ligand-mediated costimulation. Direct comparison with the model of TCR/CD3 engagement by CD3 monoclonal antibody demonstrated comparable costimulatory requirements in both systems, thereby authenticating the commonly used CD3 model. The costimulation mediated by the activation-dependent interaction of the VLA-4 and LFA-1 integrins with their respective ligands VCAM-1 and ICAM-1 leads to increased IL-2R alpha (CD25) expression and proliferation in both CD45RA+ CD4+ and CD45RO+ CD4+ T cells. The integrins also regulate the secretion of IL-2, IL-4, and granulocyte/macrophage colony-stimulating factor. In contrast the activation-independent adhesion of CD4+ T cell to ELAM-1 molecules does not lead to T cell stimulation as measured by proliferation, IL-2R alpha expression, or cytokine release. These findings imply that adhesion per se is not sufficient for costimulation, but rather that the costimulation conferred by the VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions reflects specialized accessory functions of these integrin pathways. The new finding that VLA-4/VCAM-1 mediates costimulation adds significance to observations that VCAM-1 is expressed on a unique set of potential antigen-presenting cells in vivo.  相似文献   

3.
Hematopoietic stem cell interaction with elements of the underlying stroma is essential for sustained normal hematopoiesis. Here we have determined that adhesion receptors in the integrin family play a role in promoting adhesion of human hematopoietic stem cells to cultured human marrow stromal cells. Enriched CD34hi progenitor cells expressed VLA-4, VLA-5, and at least one or more beta 2 integrins. Homogeneous marrow stromal cell monolayers capable of supporting proliferation of cocultivated CD34hi cells expressed VCAM-1 and fibronectin (ligands for VLA-4 and VLA-5) as well as ICAM-1 (ligand for LFA-1 and Mac-1). Adhesion-blocking experiments indicated that VLA-4/VCAM-1, VLA-5/fibronectin, and beta 2-integrin/ICAM-1 pathways all are important for CD34hi cell attachment to stromal cells. Consistent with this suggestion, IL-1 stimulation of stromal cells caused both increased VCAM-1 and ICAM-1 expression and increased attachment by CD34hi bone marrow cells. In addition, CD34hi cells utilized VLA-4 to adhere to purified VCAM-1 and employed VLA-5 (and to a lesser extent VLA-4) to adhere to purified fibronectin. Together these results suggest that CD34hi stem cells may utilize multiple integrin-mediated adhesion pathways to localize within specialized microenvironmental niches created by marrow stromal cells.  相似文献   

4.
Inflammatory disorders such as autoimmune diseases and graft rejection are mediated by activated leukocytes, particularly T lymphocytes, which penetrate the inflamed tissue and perpetuate or amplify the immune reaction. In an unstimulated state, leukocytes do not readily adhere to the vascular endothelium. However, inflammatory signals induce the expression of proteins on the endothelial cell surface that promote the adhesion and extravasation of activated immune cells from the circulation into the underlying tissues. Key among these molecules are P- and E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cells, and their respective counter receptors, P-selectin glycoprotein ligand-1 (PSGL-1), leukocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4), on the leukocytes. In vitro blockade of these molecules inhibits the adhesion of leukocytes. In many cases there is attenuation of leukocyte activation as well. Adhesion blockade in animal models prevents or ameliorates graft rejection and disease severity in autoimmune models. Clinical studies with humanised monoclonal antibodies which interfere with LFA-1/ICAM-1 or VLA-4/VCAM-1 interactions have shown significant efficacy and good safety profiles in autoimmune disease, including psoriasis, multiple sclerosis and inflammatory bowel disease. Thus, adhesion blockade is emerging as a useful therapeutic strategy in several inflammatory settings.  相似文献   

5.
Lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 (LFA-1/ICAM-1)-and very late antigen 4/vascular cell adhesion molecule 1 (VLA-4/VCAM-1)-mediated adhesion of T lymphocytes to endothelial cells (EC) can be regulated by increased expression of ICAM-1 and VCAM-1 upon cytokine treatment of EC, or by activation of the integrin molecules LFA-1 and VLA-4 on T cells. Here, we provide evidence that preferential usage of LFA-1 over VLA-4 is yet another mechanism to control T cell adhesion. We observed that binding of activated T lymphocytes, as opposed to resting T cells, to EC is essentially mediated through LFA-1 and not through VLA-4. VLA-4- mediated adhesion of T cells to EC is only found when LFA-1 is not expressed or not functional, as observed for several T cell leukemia cell lines. These results suggest that LFA-1-mediated adhesion dominates and may downregulate VLA-4-mediated adhesion through an unidentified mechanism.  相似文献   

6.
为了了解淋巴细胞功能相关抗原1(lymphocyte function—associated antigen1,LFA-1)和极迟反应抗原4(very lateantigen 4,VLA-4)在高增殖潜能内皮祖细胞(high proliferative potential endothelial progenitor cells,HPP—EPCs)归巢过程中与血管内皮的黏附和跨内皮迁移中的作用,利用流式细胞术检测HPP—EPC中整合蛋白B1和B2的表达以及小鼠骨髓内皮细胞相应的受体的表达。利用体外黏附和迁移实验研究经过功能级别的中和抗体阻断VLA-4和LFA-1后HPP—EPC黏附和迁移细胞数目的变化。结果表明,HPP—EPC表达整合蛋白B1和B2,活化后小鼠骨髓内皮细胞表达细胞间黏附分子1(intercellular adhesion molecule1,ICAM-1)和血管细胞黏附分子1(vascular cell adhesion molecule1,VCAM-1);加CDlla抗体组黏附细胞或CD49d抗体组黏附和迁移细胞均较同型对照抗体组少,而且加CDlla和CD49d两种抗体联用组黏附和迁移细胞明显减少,其细胞数较任何单一抗体组少。结论:LFA-1和VLA-4在HPP—EPC与血管内皮的黏附和跨内皮迁移中发挥了重要的作用。  相似文献   

7.
Presentation of antigen in the form of immune complexes to B lymphocytes by follicular dendritic cells (FDC) is considered to be a central step in the generation of memory B cells. During this process, which takes place in the microenvironment of the germinal center, B cells and FDC are in close physical contact. In the present study, we have explored the molecular basis of FDC-B cell interaction by using FDC and B cells derived from human tonsils. We found that FDC express high levels of the adhesion receptors intercellular adhesion molecule 1 (ICAM-1 [CD54]) and vascular cell adhesion molecule 1 (VCAM-1), while the B lymphocytes express lymphocyte function-associated antigen 1 (LFA-1 [CD11a/18]), very late antigen 4 (VLA-4 [CD49d], and CD44. Furthermore, we established that both the LFA-1/ICAM-1 and VLA-4/VCAM-1 adhesion pathways are involved in FDC-B lymphocyte binding, and therefore, these pathways might be essential in affinity selection of B cells and in the formation of B memory cells.  相似文献   

8.
9.
BACKGROUND: Low-density lipoproteins (LDL) can induce the adhesion of monocytes to endothelial cells. Monocytes of patients with familial hypercholesterolemia (FH) are exposed to high concentrations of LDL, and it has been reported that adhesiveness of these cells in hypercholesterolemic patients is enhanced. We investigated whether LFA-1 or VLA-4 mediated adhesion is altered in FH patients and whether HMG-CoA reductase inhibitors influence this adhesion. PATIENTS AND METHODS: LFA-1 and VLA-4 mediated adhesion to ICAM-1 and VCAM-1 coated beads was investigated using freshly isolated monocytes and T-lymphocytes from patients with homozygous FH, heterozygous FH (before and after cholesterol lowering treatment), and from controls. In addition, the expression of beta1- and beta2-integrins on these cells was determined. RESULTS: Both LFA-1 and VLA-4 mediated adhesion and integrin expression of monocytes and CD3+ cells from patients with homozygous FH and heterozygous FH was similar to that of monocytes from a control population. Treatment with HMG-CoA reductase inhibitors did not affect the adherence to ICAM-1 or VCAM-1, and did not influence the expression of integrins. CONCLUSIONS: In contrast to studies by others, we demonstrated in the present study that the actual LFA-1 and VLA-4 mediated adhesion of T-lymphocytes and monocytes is not altered in patients with FH.  相似文献   

10.
Circulating lymphocytes normally migrate through extravascular spaces in relatively low numbers as important members of the immunosurveillance process. That is until signals are received by endothelial cells that there is an underlying infection or inflammatory condition. These vascular surface cells in turn overexpress and present ligands to circulating lymphocyte adhesion molecules. Upon encountering this higher density of ligands, lymphocytes, which had been leisurely rolling along the vascular surface, now become more firmly attached, change shape, and migrate through tight junctions to the sites of infection or inflammation. If the initiating events are not resolved and the condition becomes chronic, there can be a sustained extravasation of lymphocytes that can exacerbate the inflammatory condition, which in turn will continue to recruit more inflammatory cells resulting in unwanted tissue destruction. It is for the attenuation of this cycle of sustained inflammatory cell recruitment that very late activating antigen-4 (VLA-4) antagonists are being developed. Most lymphocytes, except neutrophils, express VLA-4 on their surface and they interact with endothelial vascular cell adhesion molecule-1 (VCAM-1). It is this interaction that VLA-4 antagonists are intended to disrupt, thus, putting an end to the cycle of chronic inflammation, which is the hallmark of many diseases. This review will provide an update of VLA-4 antagonists that have appeared since early 2001 and will discuss some of the issues, both positive and negative, that may be encountered in their development.  相似文献   

11.
The potential roles of adhesion molecules in the expansion of T cell-mediated immune responses in the periphery were examined using DNA immunogen constructs as model antigens. We coimmunized cDNA expression cassettes encoding the adhesion molecules intracellular adhesion molecule-1 (ICAM-1), lymphocyte function associated-3 (LFA-3), and vascular cell adhesion molecule-1 (VCAM-1) along with DNA immunogens, and we analyzed the resulting antigen-specific immune responses. We observed that antigen-specific T-cell responses can be enhanced by the coexpression of DNA immunogen and adhesion molecules ICAM-1 and LFA-3. Coexpression of ICAM-1 or LFA-3 molecules along with DNA immunogens resulted in a significant enhancement of T-helper cell proliferative responses. In addition, coimmunization with pCICAM-1 (and more moderately with pCLFA-3) resulted in a dramatic enhancement of CD8-restricted cytotoxic T-lymphocyte responses. Although VCAM-1 and ICAM-1 are similar in size, VCAM-1 coimmunization did not have any measurable effect on cell-mediated responses. These results suggest that ICAM-1 and LFA-3 provide direct T-cell costimulation. These observations are further supported by the finding that coinjection with ICAM-1 dramatically enhanced the level of interferon-gamma (IFN-gamma) and beta-chemokines macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and regulated on activation normal T-cell expression and secreted (RANTES) produced by stimulated T cells. Through comparative studies, we observed that ICAM-1/LFA-1 T-cell costimulatory pathways are independent of CD86/CD28 pathways and that they may synergistically expand T-cell responses in vivo.  相似文献   

12.
Leukocytes extravasate from the blood in response to physiologic or pathologic demands by means of complementary ligand interactions between leukocytes and endothelial cells. The multistep model of leukocyte extravasation involves an initial transient interaction ("rolling" adhesion), followed by secondary (firm) adhesion. We recently showed that binding of CD44 on activated T lymphocytes to endothelial hyaluronan (HA) mediates a primary adhesive interaction under shear stress, permitting extravasation at sites of inflammation. The mechanism for subsequent firm adhesion has not been elucidated. Here we demonstrate that the integrin VLA-4 is used in secondary adhesion after CD44-mediated primary adhesion of human and mouse T cells in vitro, and by mouse T cells in an in vivo model. We show that clonal cell lines and polyclonally activated normal T cells roll under physiologic shear forces on hyaluronate and require VCAM-1, but not ICAM-1, as ligand for subsequent firm adhesion. This firm adhesion is also VLA-4 dependent, as shown by antibody inhibition. Moreover, in vivo short-term homing experiments in a model dependent on CD44 and HA demonstrate that superantigen-activated T cells require VLA-4, but not LFA-1, for entry into an inflamed peritoneal site. Thus, extravasation of activated T cells initiated by CD44 binding to HA depends upon VLA-4-mediated firm adhesion, which may explain the frequent association of these adhesion receptors with diverse chronic inflammatory processes.  相似文献   

13.
Asthma is a disease of airway inflammation and hyperreactivity that is associated with a lymphocytic infiltrate in the bronchial submucosa. The interactions between infiltrating T lymphocytes with cellular and extracellular matrix components of the airway and the consequences of these interactions have not been defined. We demonstrate the constitutive expression of CD44 on human airway smooth muscle (ASM) cells in culture as well as in human bronchial tissue transplanted into severe combined immunodeficient mice. In contrast, basal levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression are minimal but are induced on ASM by inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha). Activated, but not resting T cells, adhere to cultured ASM; stimulation of the ASM with TNF-alpha enhanced this adhesion. Adhesion was partially blocked by monoclonal antibodies (mAb) specific for lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4) on T cells and ICAM-1 and VCAM-1 on ASM cells. The observed integrin-independent adhesion was mediated by CD44/hyaluronate interactions as it was inhibited by anti-CD44 mAb 5F12 and by hyaluronidase. Furthermore, the adhesion of activated T lymphocytes induced DNA synthesis in growth-arrested ASM cells. Thus, the interaction between T cells and ASM may provide insight into the mechanisms that induce bronchial inflammation and possibly ASM cell hyperplasia seen in asthma.  相似文献   

14.
ObjectivesThis study examines the ability of HDL from hemodialysis (HD) and continuous ambulatory peritoneal dialysis (CAPD) patients to suppress the expression of adhesion molecules in endothelial cells (ICAM-1, VCAM-1) and in monocytes (LFA-1, VLA-4) and to inhibit the uptake of oxidized LDL by macrophages.Design and methodsGene expression and the uptake of oxidized LDL were determined in 12 HD patients, 12 CAPD patients and 14 healthy volunteers.ResultsHDL from renal patients were less effective than control lipoproteins in reducing VCAM-1 expression. HDL from CAPD patients inhibited LFA-1 expression to the highest extent. The ability of HDL from renal patients to reduce oxidized LDL uptake was lower compared to control group.ConclusionsDecreased ability of HDL to suppress expression of VCAM-1 in endothelial cells and the uptake of oxidized LDL by macrophages can be one of the risk factors for atherosclerosis development in patients with renal failure.  相似文献   

15.
In human and experimental models of arthritis, blood monocytes migrate into the inflamed synovium and joint space. The mechanisms required for monocyte migration across the vascular endothelium in joints is poorly defined. Radiolabeled rat blood monocytes were used to measure monocyte migration to the inflamed joints of rats with adjuvant arthritis, and the role of monocyte adhesion molecules was analyzed. Monocyte accumulation in the inflamed joints was maximal 14-21 d after immunization with adjuvant, when arthritis had fully developed. Blocking mAbs to lymphocyte function-associated antigen 1 (LFA-1), Mac- 1, and very late activation antigen 4 (VLA-4) were used to evaluate the role of these integrins in the migration. Migration to the joints was not inhibited by treatment of the animals with mAb to LFA-1, Mac-1, or VLA-4 alone, and was partially (50%) inhibited in only the most arthritic joint, the talar joint, by the combination of mAb to LFA-1 plus Mac-1. In contrast, this combination inhibited migration to dermal inflammation induced by C5ades Arg, endotoxin, tumor necrosis factor alpha, and polyinosine-cytosine by 60-70%. When mAbs to LFA-1 and VLA-4 were combined, migration to all the inflamed joints was strongly inhibited (80-98%, depending on the joint). Treatment with the combination of the three mAbs to LFA-1, Mac-1, and VLA-4 completely eliminated monocyte migration to all joints and dermal inflammation. The results show that 51Cr blood monocytes can be used to quantify monocyte migration to arthritic joints in the rat. LFA-1 alone or VLA-4 alone is sufficient to mediate most of this migration, and either LFA-1 or VLA-4 is required for monocyte migration to joint inflammation. These results indicate that both the VLA-4 and LFA-1 integrins should be therapeutic targets for suppression of monocyte infiltration of joints in arthritis.  相似文献   

16.
T细胞LFA-1/ICAM-1协同刺激信号的研究进展   总被引:3,自引:0,他引:3  
LFA—1/ICAM—1信号是T细胞参与免疫反应的重要协同刺激信号。T细胞表面LFA-1对ICAM-1的亲和力及亲合力在TCR/CD3交联MHC/抗原肽后迅速上调,并参与T细胞免疫突触的形成。随后产生的LFA-1/ICAM-1信号通过上调PI-3K、鞘磷脂酶和JNK等激酶活性协同第一信号活化T细胞,从而诱导T细胞分泌1型细胞因子,促进T细胞增殖和增加细胞毒等效应。  相似文献   

17.
急性髓系白血病细胞侵袭能力与粘附分子表达产在系探讨   总被引:7,自引:1,他引:7  
探讨白血病的细胞浸润及转移与粘附分子表达的关系。胜免疫组织化学APAAP、免疫印迹方法研究50例急性髓系白血病骨髓和外周血白血病细胞粘附分子VLA4(CD49d)、LFA1(CDD11a)的表表达。结果发现AML浸润组CD49d、CD11a表达较非浸润组显著增高。  相似文献   

18.
19.
BACKGROUND: Alterations in expression of adhesion molecules are important in the trafficking of hematopoietic progenitors and probably in the mobilization process. Relatively little and conflicting data are currently available on the differences in expression between good and poor mobilizing patients. STUDY DESIGN AND METHODS: In this study, the expression of eight adhesion molecules on the collected CD34+ cells from 36 patients undergoing mobilization was determined. RESULTS: Good mobilizing patients, defined as those who collected their target in one apheresis procedure, had significantly fewer cells that expressed CD11a (LFA-1) and CD54 (ICAM-1) and borderline fewer that expressed CD11c, CD49d (VLA-4), and CD49d (VLA-5). No differences were detected in CD11b (Mac-1), CD15s (sLe(x)), or CD62L (L-selectin). Linear regression analysis identified number of prior chemotherapy courses and expression of CD11a (LFA-1) as independent predictive factors for mobilization efficiency. Good and poor mobilizing patients had approximately the same number of total CD34+ cells collected and little difference in times to engraftment. CONCLUSIONS: CD11a (LFA-1) expression inversely correlates with mobilization efficiency. Elucidation of the mechanism(s) underlying these observations will require further study.  相似文献   

20.
The chemokine SDF-1 plays a central role in the repopulation of the bone marrow (BM) by circulating CD34(+) progenitors, but the mechanisms of its action remain obscure. To extravasate to target tissue, a blood-borne cell must arrest firmly on vascular endothelium. Murine hematopoietic progenitors were recently shown in vivo to roll along BM microvessels that display selectins and integrins. We now show that SDF-1 is constitutively expressed by human BM endothelium. In vitro, human CD34(+) cells establish efficient rolling on P-selectin, E-selectin, and the CD44 ligand hyaluronic acid under physiological shear flow. ICAM-1 alone did not tether CD34(+) cells under flow, but, in the presence of surface-bound SDF-1, CD34(+) progenitors rolling on endothelial selectin rapidly developed firm adhesion to the endothelial surface, mediated by an interaction between ICAM-1 and its integrin ligand, which coimmobilized with SDF-1. Human CD34(+) cells accumulated efficiently on TNF-activated human umbilical cord endothelial cells in the absence of SDF-1, but they required immobilized SDF-1 to develop firm integrin-mediated adhesion and spreading. In the absence of selectins, SDF-1 also promoted VLA-4-mediated, Gi protein-dependent tethering and firm adhesion to VCAM-1 under shear flow. To our knowledge, this is the first demonstration that SDF-1 expressed on vascular endothelium is crucial for translating rolling adhesion of CD34(+) progenitors into firm adhesion by increasing the adhesiveness of the integrins VLA-4 and LFA-1 to their respective endothelial ligands, VCAM-1 and ICAM-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号