首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During skin penetration, infective hookworm larvae encounter hyaluronic acid as they migrate between epidermal keratinocytes and through the ground substance of the dermis. A hyaluronidase would facilitate passage through the epidermis and dermis during larval invasion. Zoonotic hookworm larvae of the genus Ancylostoma were shown to contain a hyaluronidase activity that migrated on modified sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) hyaluronic acid gels with an apparent Mr of 49,000. A second form with an Mr of 87,000 was also identified. The major etiologic agent of cutaneous larva migrans, A. braziliense, was shown to have the greatest enzyme activity, hydrolyzing up to 3.3 micrograms of hyaluronic acid per h per micrograms of total parasite protein at pH 6.0, whereas A. caninum and A. tubaeforme each had much less enzyme activity. The differences in enzyme activities between species correlated with differences in the intensities of the lytic zones at 49 and 87 kDa on SDS-PAGE hyaluronic acid gels. Hookworm hyaluronidase activity exhibited a broad pH optimum between 6.0 and 8.0 and did not hydrolyze chondroitin sulfate, two features that suggest that the hookworm enzyme is more like the invertebrate leech hyaluronidase than mammalian testicular or lysosomal hyaluronidase. Larvae of A. braziliense were shown to release hyaluronidase activity and degrade radiolabeled hyaluronic acid in vitro. Gold sodium thiomalate was identified as an enzyme inhibitor. The hyaluronidase is the second major virulence factor that we have identified from infective hookworm larvae.  相似文献   

2.
Infective larvae (L3) of nematodes secrete macromolecules that are critical to infection and establishment of the parasite in the host. The dog hookworm Ancylostoma caninum secretes an astacin-like metalloprotease, Ac-MTP-1, upon activation in vitro with host serum. Recombinant Ac-MTP-1 was expressed in the baculovirus/insect cell system as a secreted protein and was purified from culture medium by two separate methods, cation-exchange fast-performance liquid chromatography and gelatin-affinity chromatography. Recombinant MTP-1 was catalytically active and digested a range of native and denatured connective tissue substrates, including gelatin, collagen, laminin, and fibronectin. A dog was immunized with recombinant Ac-MTP-1 formulated with AS03 adjuvant, and the antiserum was used to immunolocalize the anatomic sites of expression within A. caninum L3 to secretory granules in the glandular esophagus and the channels that connect the esophagus to the L3 surface and to the cuticle. Antiserum inhibited the ability of recombinant MTP-1 to digest collagen by 85% and inhibited larval migration through tissue in vitro by 70 to 75%, in contrast to just 5 to 10% inhibition obtained with preimmunization serum. The metalloprotease inhibitors EDTA and 1,10-phenanthroline also reduced the penetration of L3 through skin in vitro by 43 to 61%. The data strongly suggest that Ac-MTP-1 is critical for the invasion process of hookworm larvae, and moreover, that antibodies against the enzyme can neutralize its function and inhibit migration.  相似文献   

3.
Hookworm infection is one of most important parasitic infection of humans, occurring in 740 million people. Here we report the protective vaccination of dogs with Ac-16, an immunodominant surface antigen from the hookworm Ancylostoma caninum. We show that immunization with Ac-16 formulated with AS03 elicited specific humoral and cellular immune responses and provided partial protection against hookworm infection and morbidity as evidenced by a significant reduction of hookworm egg counts (64% reduction; P = 0.0078) and worm-induced blood loss (P < 0.05). Moreover, specific anti-Ac-16 antibodies recognized the native protein on the surface of third-stage larvae and blocked their migration through tissue in vitro. Our data support the use of Ac-16 as a potential candidate for vaccination against hookworm infection.  相似文献   

4.
Hookworms, bloodfeeding intestinal nematodes, are a leading cause of iron deficiency anemia in the developing world. These parasites have evolved potent mechanisms of interfering with mammalian hemostasis, presumably for the purpose of facilitating bloodfeeding. Adult Ancylostoma caninum worm extracts contain an activity that inhibits platelet aggregation and adhesion by blocking the function of two cell surface integrin receptors, Glycoprotein IIb/IIIa and GPIa/IIa. Using rpHPLC, the hookworm platelet inhibitor activities have been purified from protein extracts of A. caninum. Because the two inhibitory activities co-purified through multiple chromatographic steps, have similar molecular masses and share identical N-terminal as well as internal amino acid sequence homology, it is likely that they represent a single gene product. A cDNA corresponding to the purified hookworm platelet inhibitor (HPI) protein has been cloned from adult A. caninum RNA, and the translated amino acid sequence shows significant homology to Neutrophil Inhibitory Factor and Ancylostoma Secreted Proteins, suggesting that these related hookworm proteins represent a novel class of integrin receptor antagonists. Polyclonal antibodies raised against the recombinant HPI protein recognize corresponding native proteins in A. caninum extracts and excretory/secretory products, and immunohistochemistry data have identified the cephalic glands as the major source of the inhibitor within the adult hookworm. These data suggest that HPI is secreted by the adult stage of the parasite at the site of intestinal attachment. As such, it may represent a viable target for a vaccine-based strategy aimed at interfering with hookworm-induced gastrointestinal hemorrhage and iron deficiency anemia.  相似文献   

5.
Hookworm infection is a leading cause of gastrointestinal blood loss and iron deficiency anemia in developing countries. Ancylostoma hookworms secrete potent anticoagulants, which have been shown to target coagulation factors Xa and the factor VIIa/Tissue Factor complex, respectively. The goal of these experiments was to determine the mechanism of action of three recombinant hookworm anticoagulants using in vitro assays. Three hookworm coagulation inhibitors were expressed and purified, along with site directed mutants targeting each of the predicted P1 inhibitory reactive site amino acid residues. Using chromogenic assays, it has been confirmed that Ancylostoma caninum Anticoagulant Peptide 5 (AcAP5) inhibits coagulation factor Xa (fXa) by a canonical, substrate-like mechanism. In contrast, Ancylostoma ceylanicum Anticoagulant Peptide-1 (AceAP1) binds to and inhibits fXa by both active site and non-active site mediated interactions. Data from in vitro studies also demonstrates that AceAP1 inhibits the factor VIIa/Tissue complex (fVIIa/TF) and displays a distinct pattern of fXa binding. Together, these data suggest that the human hookworm A. ceylanicum has evolved a single anticoagulant that targets multiple components of the mammalian coagulation response, effectively mimicking the concerted action of the two related inhibitors from A. caninum. Despite the amino acid sequence similarity, AceAP1 appears to interact with coagulation proteases fXa and fVIIa by a novel mechanism, perhaps explaining its spectrum of inhibitory activity.  相似文献   

6.
Hookworm infection is a major cause of gastrointestinal blood loss and iron deficiency anemia in the developing world. Recently two major anticoagulant serine protease inhibitors have been identified and cloned from adult Ancylostoma caninum hookworms. One of these, A. caninum anticoagulant peptide 5 (AcAP5), is a potent and specific inhibitor of human coagulation factor Xa. A polyclonal IgG has been purified from rabbits immunized with recombinant AcAP5 using affinity chromatography. Using immunohistochemistry, the polyclonal alpha-rAcAP5 IgG localized to the cephalic or amphidial glands, confirming previous biochemical studies that had identified this secretory gland as the primary source of anticoagulant activity in the adult worm. This polyclonal IgG also neutralized the inhibitory activity of recombinant and native AcAP using a single stage chromogenic assay of coagulation factor Xa activity. In addition, the polyclonal IgG also neutralized the anticoagulant activity of native and recombinant AcAP5 as measured by the activated partial thromboplastin time clotting assay. Importantly, this neutralizing activity is species specific, as the polyclonal IgG failed to neutralize the anticoagulant activity of A. ceylanicum. Taken together, these data suggest that the hookworm anticoagulant AcAP5 represents a viable target for future immunization strategies aimed at inhibiting the ability of the adult hookworm to feed on blood in vivo.  相似文献   

7.
Ac-TMP-2, an immunodominant hookworm antigen encoding a tissue inhibitor of metalloproteinase (TIMP) was cloned by immunoscreening an Ancylostoma caninum larval cDNA library with sera pooled from dogs immunized with irradiated A. caninum third stage larvae (ir-L3). The open reading frame of Ac-tmp-2 cDNA encoded a 244 amino acids (predicted molecular weight of 27.7 kDa), which shared a common N-terminus with other vertebrate and invertebrate TIMPs, including Ac-TMP-1, the most abundant adult hookworm secreted protein. However Ac-TMP-2 also contains an unusual multicopy (ten) repeat of the amino acid sequence, KTVEENDE. By immunoblotting, Ac-TMP-2 was detected only in adult hookworms and their excretory secretory products although the corresponding mRNA was also detected in L3. Immunolocalization with specific antiserum showed that native Ac-TMP-2 was located in adult worm's esophagus and cephalic glands. Recombinant Ac-TMP-2 expressed in bacteria was highly immunogenic and recognized by ir-L3 immunized dog immune sera. The recombinant Ac-TMP-2 protein inhibited the human matrix metalloproteinases, MMP-2, MMP-7 and MMP-13. As an immunodominant protein having a possible role in the parasite-host relationship of canine hookworm infection, recombinant Ac-TMP-2 represents a plausible target for vaccine development.  相似文献   

8.
9.
Hookworms infect nearly a billion people. The Ancylostoma caninum hookworm of canids is a model for studying human infections and information from its genome coupled with functional genomics and proteomics can accelerate progress towards hookworm control. As a step towards a full-scale A. caninum genome project, we generated 104,000 genome survey sequences (GSSs) and determined the genome size of the canine hookworm. GSSs assembled into 57.6 Mb of unique sequence from a genome that we estimate by flow cytometry of isolated nuclei to be 347 +/- 1.2 Mb, substantially larger than other Rhabditina species. Gene finding identified 5538 genes in the GSS assembly, for a total of 9113 non-redundant A. caninum genes when EST sequences are also considered. Functional classifications of many of the 70% of genes with homology to genes in other species are provided based on gene ontology and KEGG associations and secreted and membrane-bound proteins are also identified.  相似文献   

10.
It was investigated whether there is a linear correlation between the number of applied infective larvae of Ancylostoma caninum and the number of larvae excreted by bitches with the milk. The investigations were carried out with nine bitches that were infected percutaneously each with 5,000, 10,000 or 20,000 third stage larvae of Ancylostoma caninum at the day of conception. A clear linear correlation between the number of applied infective larvae of Ancylostoma caninum and the number of larvae excreted with the milk could be demonstrated only for the first week of lactation. Regarding the total investigated period of 28 days only a tendency towards such a correlation between infective dosage and excretion of larvae with the milk could be found.  相似文献   

11.
Invading infective third-stage larvae (L3) of parasitic nematodes execute a series of programmed developmental events in response to a host-specific signal encountered during infection. One of these early events is the release of excretory/secretory products. Using an in vitro feeding assay that mimics these early events of infection, a protein released by in vitro activated larvae of the hookworm Ancylostoma caninum was identified. This protein, Ac-ASP-2, was partially sequenced, and the cDNA encoding it isolated by PCR and screening of an A. caninum L3 cDNA library. The Ac-asp-2 cDNA encodes a protein of 219 amino acids that is related to a previously identified protein, Ac-ASP-1, from hookworms. Both molecules are members of an evolutionarily diverse family of molecules that include the venom allergens of the Hymenoptera, and the testes specific proteins/sperm-coating glycoproteins of mammals. Homologues are present in nearly all nematodes tested, as demonstrated by PCR-hybridization and database searching. The Ac-asp-2 mRNA is synthesized in all life history stages, but the gene product is released only by L3 activated to feed in vitro. The wide distribution of the Ac-asp-2 in nematodes and its release in response to host specific signals suggests that Ac-ASP-2 serves an important function in nematode physiology and development, and possibly in the infective process of parasitic species.  相似文献   

12.
13.
A modified digestion system using radiolabeled IgM rheumatoid factors (RF) and unlabeled IgG was used to examine IgM RF digestion by human polymorphonuclear leukocyte (PMN) elastase. Upon molecular sieve chromatography, the radioactive fragments coelute with fragments produced by elastase digestion of an IgM protein having no RF activity. The fragments represent an Fab2-like fragment, an Fab-like fragment, and small peptides. Utilizing this same system, digests were performed at both acid and neutral pH to compare the proteolytic action of purified elastase on IgM RF (Ove) to the action of the total granule extract (TGE) from human PMN. At pH 4.5, purified elastase exhibits low-level protease activity, producing a slightly degraded IgM fragment with a molecular weight of about 800,000 daltons. In contrast, TGE at pH 4.5 completely degrades IgM RF to small peptides. At pH 7.5, the fragments produced by TGE digestion of IgM (Ove) coelute with fragments produced by elastase digestion under the same conditions. Thus elastase appears to be the major granule protease active in IgM RF degradation at the pH characterizing the inflammatory site.  相似文献   

14.
15.
Squamous cell carcinomas (SCC) were experimentally produced in hairless mouse skin, and cysteine protease and its inhibitor were simultaneously purified from extracts of 1 g of tissue of SCC and normal skin. Activity of cysteine proteinases, Mr greater than 50,000 and Mr 28,000, increased in SCC compared to those in normal skin. SCC also showed elevation of cysteine proteinase inhibitor activity and Mr 13,000 and Mr 82,000 inhibitors were purified. Mr 13,000 inhibitor was found to have biochemical properties which were the same as those of the inhibitor present in normal skin. Mr 82,000 inhibitor was not detectable in normal skin and it differed from a serum inhibitor with a similar Mr in terms of activity and stability at acidic pH. The findings suggest that the increased activity of both cysteine proteases and endogenous inhibitors may be involved in the regulatory mechanisms of malignant cell metabolism and tissue remodeling associated with SCC development.  相似文献   

16.
Summary The lateral skin areas of nine hookworm-free puppies were exposed to infective larvae of Ancylostoma braziliense, Ancylostoma ceylanicum and Ancylostoma caninum.Serial sections, stained with Harris' haematoxylin and eosin, showed that many similarities exist in the migration patterns of the hookworm species used. However, striking differences were observed between Ancylostoma braziliense on the one hand and Ancylostoma ceylanicum and Ancylostoma caninum on the other hand with regard to the speed with which the penetration occurred.Larvae of Ancylostoma braziliense may travel directly from the epidermis into the dermis — apart from migration via hair follicle systems — a path of migration we did not observe in infections with the other species used. Larvae of Ancylostoma braziliense seem to pass the skin more rapidly than those of Ancylostoma ceylanicum and Ancylostoma caninum.Many larvae of Ancylostoma ceylanicum managed to penetrate the skin 2–6 h after the onset of the exposure.  相似文献   

17.
Ancylostoma ceylanicum infection in golden hamsters (Mesocricetus auratus) caused marked biochemical and histopathological derangements. Jejunum, the primary site of infection, showed pronounced alterations compared with liver. Though the biochemical composition of jejunum was not significantly altered, activities of a few lysosomal enzymes were enhanced during hookworm infection. Marked damage to mitochondrial and microsomal membranes was reflected in changes in the activities of the marker enzymes from jejunal tissue. Lipid content, especially phospholipids and neutral lipids of hepatic tissue, exhibited marked elevation. Levels of hexokinase, phosphofructokinase, and lactate dehydrogenase were enhanced in jejunal as well as hepatic tissues, indicating activation of the glycolytic machinery during hookworm infection. A decrease in the levels of mucosal disaccharidases indicated damage to intestinal brush border membranes. However, alkaline phosphatase activity was increased in intestinal mucosa during the infection. Light microscopic examination of jejunal tissue revealed peeling off of the upper epithelial layer, activation of the goblet cells, and thickening of muscularis mucosa. However, hepatic tissue did not show gross alterations, except for slight necrosis in the centrilobular region.  相似文献   

18.
We report the cloning and expression of Ac-GST-1, a novel glutathione S-transferase from the adult hookworm Ancylostoma caninum, and its possible role in parasite blood feeding and as a vaccine target. The predicted Ac-GST-1 open reading frame contains 207 amino acids (mass, 24 kDa) and exhibited up to 65% amino acid identity with other nematode GSTs. mRNA encoding Ac-GST-1 was detected in adults, eggs, and larval stages, but the protein was detected only in adult hookworm somatic extracts and excretory/secretory products. Using antiserum to the recombinant protein, Ac-GST-1 was immunolocalized to the parasite hypodermis and muscle tissue and weakly to the intestine. Recombinant Ac-GST-1 was enzymatically active, as determined by conjugation of glutathione to a model substrate, and exhibited a novel high-affinity binding site for hematin. The possible role of Ac-GST-1 in parasite heme detoxification during hemoglobin digestion or heme uptake prompted interest in evaluating it as a potential vaccine antigen. Vaccination of dogs with Ac-GST-1 resulted in a 39.4% reduction in the mean worm burden and 32.3% reduction in egg counts compared to control dogs following larval challenge, although the reductions were not statistically significant. However, hamsters vaccinated with Ac-GST-1 exhibited statistically significant worm reduction (53.7%) following challenge with heterologous Necator americanus larvae. These studies suggest that Ac-GST-1 is a possible drug and vaccine target for hookworm infection.  相似文献   

19.
The Syrian Golden hamster (Mesocricetus auratus) has been used to model infections with the hookworm Ancylostoma ceylanicum. New molecular immunological reagents to measure cellular immune responses in hamsters were developed and used to determine the impact of A. ceylanicum hookworm infection on host cytokine responses and lymphoproliferation. Initial larval infection with 100 third-stage A. ceylanicum larvae resulted in predominant Th1 responses (upregulation of proinflammatory cytokines) that lasted for the duration of larval migration and continued up to 14 days postinfection (prepatency). Subsequently, development of larvae into egg-laying adult hookworms (patency) coincided with a switch to Th2 predominant responses (interleukin-4 [IL-4]) as well as a marked increase in IL-10 production. This switch also concurred with reduced host lymphoproliferative responses to hookworm antigens. The findings demonstrate a similarity in immune responses between hamsters and humans infected with hookworms, suggesting that hamsters will be a useful animal model species for examining host immunity to human hookworm infections.  相似文献   

20.
Human hookworms (Ancylostoma duodenale, Necator americanus) are a major cause of malnutrition and anemia, particularly in children, and high worm burdens can lead to stunted growth and mental retardation. Mass drug administration (MDA) with benzimidazole (BZ) anthelmintics has the potential to greatly reduce morbidity and infection prevalence. However, such treatment strategies may apply significant selection pressure on resistance alleles. In several Strongylid parasites of livestock, resistance to BZ drugs is associated with single nucleotide polymorphisms (SNPs) in the beta-tubulin isotype-1 gene at codons 167 and 200. As an initial investigation into the possible development of BZ resistance in hookworms, we have cloned and sequenced the beta-tubulin isotype-1 genes of the canine hookworm Ancylostoma caninum and the two human hookworm species A. duodenale and N. americanus. The genomic sequences are highly conserved as evidenced by a similar structure of exons and introns; the 10 exons are of the same length in all three species and code for the same amino acids. The genomic sequences were then used to develop a real-time PCR assay for detecting polymorphisms in codons 167 and 200 in all three species. Hookworm specimens previously obtained from Pemba Island school children who had demonstrated a reduced response to treatment with mebendazole were then examined using the real-time PCR assay. None of the samples revealed significant levels of polymorphisms at these loci. If BZ resistance is present in the hookworm populations examined, the results do not support the hypothesis that changes in codons 167 and 200 of beta-tubulin isotype-1 are responsible for any resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号