首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monocyte chemoattractant protein (MCP)-1 plays a critical role in innate immunity by directing the migration of monocytes into inflammatory sites. Recent data indicated a function for this chemokine in adaptive immunity as a regulator of T cell commitment to T helper cell type 2 (Th2) effector function. Studies in a Th1-dependent animal model, experimental autoimmune encephalomyelitis (EAE), showed that MCP-1 was highly expressed in the central nervous system (CNS) of affected rodents, and MCP-1 antibodies could block relapses of the disease. Mice deficient for the major MCP-1 receptor, CC chemokine receptor (CCR)2, did not develop EAE after active immunization but generated effector cells that could transfer the disease to naive wild-type recipients. We analyzed EAE in mice deficient for MCP-1 to define the relevant ligand for CCR2, which responds to murine MCP-1, MCP-2, MCP-3, and MCP-5. We found that C57BL/6 MCP-1-null mice were markedly resistant to EAE after active immunization, with drastically impaired recruitment of macrophages to the CNS, yet able to generate effector T cells that transferred severe disease to naive wild-type recipients. By contrast, adoptive transfer of primed T cells from wild-type mice into naive MCP-1-null recipients did not mediate clinical EAE. On the SJL background, disruption of the MCP-1 gene produced a milder EAE phenotype with diminished relapses that mimicked previous findings using anti-MCP-1 antibodies. There was no compensatory upregulation of MCP-2, MCP-3, or MCP-5 in MCP-1-null mice with EAE. These results indicated that MCP-1 is the major CCR2 ligand in mice with EAE, and provided an opportunity to define the role of MCP-1 in EAE. Compared with wild-type littermates, MCP-1-/- mice exhibited reduced expression of interferon gamma in draining lymph node and CNS and increased antigen-specific immunoglobulin G1 antibody production. Taken together, these data demonstrate that MCP-1 is crucial for Th1 immune responses in EAE induction and that macrophage recruitment to the inflamed CNS target organ is required for primed T cells to execute a Th1 effector program in EAE.  相似文献   

2.
Immunization of mice with myelin components results in experimental autoimmune encephalomyelitis (EAE), which is mediated by myelin-specific CD4+ T cells and anti-myelin antibodies. Tumor necrosis factor α (TNF-α) and lymphotoxin α (LT-α) are thought to be involved in the events leading to inflammatory demyelination in the central nervous system. To ascertain this hypothesis 129 × C57BL/6 mice with an inactivation of the tnf and lta genes (129 × C57BL/6−/−) and SJL/J mice derived from backcrosses of the above mentioned mutant mice (SJL−/−) were immunized with mouse spinal cord homogenate (MSCH) or proteolipid protein. Both 129 × C57BL/6−/− mice and SJL−/− mice developed EAE. In SJL−/− mice immunized with MSCH, a very severe form of EAE with weight loss, paralysis of all four limbs, and lethal outcome was observed. The histologic hallmark was an intense perivascular and parenchymal infiltration with predominantly CD4+ T cells and some CD8+ T cells associated with demyelination in both brain and spinal cord. These results indicate that TNF-α and LT-α are not essential for the development of EAE.  相似文献   

3.
Tumor necrosis factor (TNF)–dependent sites of action in the generation of autoimmune inflammation have been defined by targeted disruption of TNF in the C57BL/6 mouse strain. C57BL/6 mice are susceptible to an inflammatory, demyelinating form of experimental autoimmune encephalomyelitis (EAE) induced by the 35–55 peptide of myelin oligodendrocyte glycoprotein. Direct targeting of a strain in which EAE was inducible was necessary, as the location of the TNF gene renders segregation of the mutated allele from the original major histocompatibility complex by backcrossing virtually impossible. In this way a single gene effect was studied. We show here that TNF is obligatory for normal initiation of the neurological deficit, as demonstrated by a significant (6 d) delay in disease in its absence relative to wild-type (WT) mice. During this delay, comparable numbers of leukocytes were isolated from the perfused central nervous system (CNS) of WT and TNF−/− mice. However, in the TNF−/− mice, immunohistological analysis of CNS tissue indicated that leukocytes failed to form the typical mature perivascular cuffs observed in WT mice at this same time point. Severe EAE, including paralysis and widespread CNS perivascular inflammation, eventually developed without TNF. TNF−/− and WT mice recovered from the acute illness at the same time, such that the overall disease course in TNF−/− mice was only 60% of the course in control mice. Primary demyelination occurred in both WT and TNF−/− mice, although it was of variable magnitude. These results are consistent with the TNF dependence of processes controlling initial leukocyte movement within the CNS. Nevertheless, potent alternative mechanisms exist to mediate all other phases of EAE.  相似文献   

4.
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) in which neuropathic pain is now recognized as a major symptom. To date, few studies have examined the underlying mechanisms of neuropathic pain in MS. Recently we showed that in a chronic-relapsing animal model of MS, experimental autoimmune encephalomyelitis (EAE), characteristic neuropathic behaviours develop. However, responses to persistent noxious stimuli in EAE remain unexplored. We, therefore set out to characterize the changes in pain sensitivity in our EAE model to subcutaneous injection of formalin. We show here that female C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG35–55) display a significant decrease in elicited pain behaviours in response to formalin injection. These effects were found to involve dysregulation of the glutamatergic system in EAE. We show here that these effects are mediated by decreased glutamate transporter expression associated with EAE. Our findings demonstrate that dysregulation of glutamate transporter function in EAE mice is an important mechanism underlying the abnormal pain sensitivity in response to persistent noxious stimulation of mice with EAE and also sheds light on a potential mechanism underlying neuropathic pain behaviours in this model.  相似文献   

5.
The reversible S-adenosyl-l-homocysteine hydrolase inhibitor DZ2002 [methyl 4-(adenin-9-yl)-2-hydroxybutanoate] suppresses antigen-induced-specific immune responses, particularly type 1 helper T cell (Th1)-type responses. Experimental autoimmune encephalomyelitis (EAE) is thought to be a Th1 cell-mediated inflammatory demyelinating autoimmune disease model of human multiple sclerosis (MS). In this study, we examined the effects of DZ2002 on active EAE induced by myelin oligodendrocyte glycoprotein (MOG) 35-55 in female C57BL/6 mice. Administration of DZ2002 (50 mg/kg/day i.p.) significantly reduced the incidence and severity of EAE, which was associated with the inhibition of MOG35-55-specific T cell proliferation and Th1-type cytokine production. In vitro studies also demonstrated that DZ2002 inhibited anti-CD3/28-induced naive T cell activation concomitant with the down-regulation of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D3, and the up-regulation or protection of the CDK inhibitor p27. These findings highlight the fact that DZ2002 likely prevents EAE by suppressing T cell activation and suggest its utility in the treatment of MS and other Th1-mediated inflammatory diseases.  相似文献   

6.
Primary proinflammatory cytokines, such as IL-1beta, play a crucial pathogenic role in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE), and may represent, therefore, a suitable therapeutic target. We have previously established the delivery of anti-inflammatory cytokine genes within the central nervous system (CNS), based on intracisternal (i.c.) injection of non-replicative HSV-1-derived vectors. Here we show the therapeutic efficacy of i.c. administration of an HSV-1-derived vector carrying the interleukin-1receptor antagonist (IL-1ra) gene, the physiological antagonist of the proinflammatory cytokine IL-1, in C57BL/6 mice affected by myelin oligodendrocyte glycoprotein-induced EAE. IL-1ra gene therapy is effective preventively, delaying EAE onset by almost 1 week (22.4+/-1.4 days post-immunization vs 15.9+/-2.1 days in control mice; P=0.0229 log-rank test), and decreasing disease severity. Amelioration of EAE course was associated with a reduced number of macrophages infiltrating the CNS and in a decreased level of proinflammatory cytokine mRNA in the CNS, suggesting an inhibitory activity of IL-1ra on effector cell recruitment, as antigen-specific peripheral T-cell activation and T-cell recruitment to the CNS is unaffected. Thus, local IL-1ra gene therapy may represent a therapeutic alternative for the inhibition of immune-mediated demyelination of the CNS.  相似文献   

7.
PLP139-51-induced experimental autoimmune encephalomyelitis (R-EAE) displays a relapsing-remitting paralytic course in female SJL mice. We investigated the role of apoptosis/activation-induced cell death (AICD) in the spontaneous recovery from acute disease. Clinical EAE was significantly enhanced in Fas (CD95/APO-1)-deficient SJL lpr/lpr mice, which displayed significantly increased mean peak clinical scores, reduced remission rates, and increased mortality when compared with their SJL +/lpr littermates. PLP139-151-specific proliferative responses were fairly equivalent in the 2 groups, but draining lymph node T cells from SJL lpr/lpr mice produced dramatically increased levels of IFN-gamma. Central nervous system (CNS) Fas and FasL mRNA levels in wild-type SJL (H-2(s)) mice peaked just before spontaneous disease remission and gradually declined as disease remitted. We applied the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay to detect apoptosis in situ in spinal cords of mice at various clinical stages of EAE. Most TUNEL(+) cells were found during active periods of inflammation: the acute, peak, and relapse time points. Significantly fewer apoptotic cells were observed at preclinical and remission time points. Collectively, these findings indicate that Fas-mediated apoptosis/AICD plays a major role in the spontaneous remission after the initial acute inflammatory episode and represents an important intrinsic mechanism in regulation of autoimmune responses.  相似文献   

8.
RAPID VIRAL INDUCTION OF MURINE LYMPHOMAS IN THE GRAFT-VERSUS-HOST REACTION   总被引:1,自引:1,他引:1  
When weanling (SJL/J x C57BL/1)F1 hybrid mice were given five weekly-injections of small doses of viable SJL/J spleen cells, so as to induce a graft-versus-host reaction (GVHR), reticulum cell sarcomas were induced in all of the host mice by the 40th day after the first cell injection. Such tumors, on transplantation, were accepted by syngeneic (SJL/J x C57BL/1)F1 and C57BL/1 hosts, but not by SJL/J or NZB mice. Cell-free extracts of SJL/J spleens injected into similar hybrids resulted in identical tumors in all hosts within the same period; the transplantation characteristics were also similar. Normal (SJL/J x C57BL/1)F1 hybrids as well as similar hybrids injected with SJL/J liver or syngeneic F1 spleen cells did not develop tumors. Cell-free preparations of eight tumors induced in F1's by viable SLJ/J spleen cells were injected into newborn (C57BL/1 x A)F1 and C57BL/1 mice: tumors were induced, with seven of eight tumor preparations, with a latent period of 33–49 days. Such tumors were lymphosarcomas, and, in the case of (C57BL/1 x A)F1 hosts, further transplantation revealed that they were antigenically C57BL/1 tumors. These experiments provide conclusive evidence for a viral etiology of GVHR-induced tumors. Furthermore, tumor induction in the GVHR does not appear to depend specifically on an immunological mechanism but is most probably due to release or activation of a sufficient quantity of oncogenic virus within a certain time period in a highly susceptible host. Comparison with radiation induction of viral leukemia in mice revealed similarities in regard to optimal host age and the spacing of administration of the tumor-inducing agent. SJL/J mice carry a type C virus which causes a high incidence of spontaneous Hodgkin-like tumors by 1 yr of age; C57BL/1 mice do not develop lymphomas spontaneously but carry a latent leukemogenic virus. Their hybrid also has a low incidence of spontaneous lymphomas. Based on the results of these and previous experiments, the viruses of these strains of mice appear to be highly synergistic in tumor induction in the GVHR. The SJL/J virus is a powerful oncogenic agent. The C57BL/1 virus may be a helper virus to the SJL/J, but is a more powerful determinant of the antigenic composition of the induced tumors. This suggests that the virus of C57BL/1 mice, when activated, is capable of controlling the C57BL/1 genome. Because of the ease and rapidity of viral tumor induction, the SJL/J and C57BL/1 strains of mice, with their F1 hybrid, should be useful for further study of the mechanisms controlling induction of such tumors.  相似文献   

9.
The development of therapies aimed to promote remyelination is a major issue in chronic inflammatory demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis (MS), where the permanent neurological impairment is due to the axonal loss resulting from recurrent episodes of immune-mediated demyelination. Here, we show that the intrathecal injection of a herpes simplex virus (HSV) type-1 replication-defective multigene vector, engineered with the human fibroblast growth factor (FGF)-II gene (TH:bFGF vector), was able to significantly revert in C57BL/6 mice the clinicopathological signs of chronic experimental autoimmune encephalomyelitis (EAE), the animal model of MS. The treatment with the TH:bFGF vector was initiated within 1 week after the clinical onset of EAE and was effective throughout the whole follow-up period (ie 60 days). The disease-ameliorating effect in FGF-II-treated mice was associated with: (1) CNS production of FGF-II from vector-infected cells which were exclusively located around the CSF space (ependymal, choroidal and leptomeningeal cells); (2) significant decrease (P < 0.01) of the number of myelinotoxic cells (T cells and macrophages) both in the CNS parenchyma and in the leptomeningeal space; and (3) significant increase (P < 0.01) of the number of oligodendrocyte precursors and of myelin-forming oligodendrocytes in areas of demyelination and axonal loss. Our results indicate that CNS gene therapy using HSV-1-derived vector coding for neurotrophic factors (ie FGF-II) is a safe and non-toxic approach that might represent a potential useful 'alternative' tool for the future treatment of immune-mediated demyelinating diseases.  相似文献   

10.
Using phage peptide library screening, we identified peptide-encoding phages that selectively home to the inflamed central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis (MS). A phage peptide display library encoding cyclic 9-amino-acid random peptides was first screened ex-vivo for binding to the CNS tissue of EAE mice, followed by in vivo screening in the diseased mice. Phage insert sequences that were present at a higher frequency in the CNS of EAE mice than in the normal (control) mice were identified by DNA sequencing. One of the phages selected in this manner, denoted as MS-1, was shown to selectively recognize CNS tissue in EAE mice. Individually cloned phages with this insert preferentially homed to EAE CNS after an intravenous injection. Similarly, systemically-administered fluorescence-labeled synthetic MS-1 peptide showed selective accumulation in the spinal cord of EAE mice. We suggest that peptide MS-1 might be useful for targeted drug delivery to CNS in EAE/MS.  相似文献   

11.
Multiple sclerosis (MS) is an inflammatory disease of the CNS that is characterized by BBB dysfunction and has a much higher incidence in females. Compared with other strains of mice, EAE in the SJL mouse strain models multiple features of MS, including an enhanced sensitivity of female mice to disease; however, the molecular mechanisms that underlie the sex- and strain-dependent differences in disease susceptibility have not been described. We identified sphingosine-1-phosphate receptor 2 (S1PR2) as a sex- and strain-specific, disease-modifying molecule that regulates BBB permeability by destabilizing adherens junctions. S1PR2 expression was increased in disease-susceptible regions of the CNS of both female SJL EAE mice and female patients with MS compared with their male counterparts. Pharmacological blockade or lack of S1PR2 signaling decreased EAE disease severity as the result of enhanced endothelial barrier function. Enhanced S1PR2 signaling in an in vitro BBB model altered adherens junction formation via activation of Rho/ROCK, CDC42, and caveolin endocytosis-dependent pathways, resulting in loss of apicobasal polarity and relocation of abluminal CXCL12 to vessel lumina. Furthermore, S1PR2-dependent BBB disruption and CXCL12 relocation were observed in vivo. These results identify a link between S1PR2 signaling and BBB polarity and implicate S1PR2 in sex-specific patterns of disease during CNS autoimmunity.  相似文献   

12.
13.
The development of autoimmune disease is accompanied by the acquired recognition of new self-determinants, a process commonly referred to as determinant spreading. In this study, we addressed the question of whether determinant spreading is pathogenic for progression of chronic- relapsing experimental autoimmune encephalomyelitis (EAE), a disease with many similarities to multiple sclerosis (MS). Our approach involved a systematic epitope mapping of responses to myelin proteolipid protein (PLP) as well as assaying responses to known encephalitogenic determinants of myelin basic protein (MBP 87-89) and myelin oligodendrocyte glycoprotein (MOG 92-106) at various times after induction of EAE in (SWR X SJL)F1 mice immunized with PLP 139-151. We found that the order in which new determinants are recognized during the course of disease follows a predictable sequential pattern. At monthly intervals after immunization with p139-151, responses to PLP 249-273, MBP 87-99, and PLP 137-198 were sequentially accumulated in al mice examined. Three lines of evidence showed that determinant spreading is pathogenic for disease progression: (a) spreading determinants mediate passive transfer of acute EAE in naive (SWR X SJL)F1 recipients; (b) an invariant relationship exists between the development of relapse/progression and the spreading of recognition to new immunodominant encephalitogenic determinants; and (c) after EAE onset, the induction of peptide-specific tolerance to spreading but not to nonspreading encephalitogenic determinants prevents subsequent progression of EAE. Thus, the predictability of acquired self- determinant recognition provides a basis for sequential determinant- specific therapeutic intervention after onset of the autoimmune disease process.  相似文献   

14.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While the primary symptoms of MS are losses of sensory and motor functions, it is now recognized that chronic pain is also a major concern affecting between 50% and 80% of MS patients. To date, however, few studies have examined the underlying mechanisms of chronic pain in MS or in the animal model, experimental autoimmune encephalomyelitis (EAE), which shares many features of MS pathology. We, therefore, set out to characterize the changes in pain sensitivity that arises in a chronic-relapsing model of EAE. We show here that female C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG35–55) develop a robust allodynia to both cold and tactile stimuli. Allodynia emerges early in the disease process, often before any signs of neurological deficit and is independent of the overall symptom severity in these mice. “Classical” cellular substrates for neuropathic pain and allodynia such as altered expression of sensory neuropeptides in the dorsal horn of the spinal do not appear to underlie these changes in sensory function. There is, however, a significant influx of CD3+ T cells and increased astrocyte and microglia/macrophage reactivity in the superficial dorsal horn of mice with MOG35–55 EAE. This suggests that inflammation and reactive gliosis may be key mediators of allodynia in MOG35–55 EAE similar to peripheral nerve and spinal cord injury models. Taken together, our results show that the MOG35–55 EAE model is a useful tool to study neuropathic pain in MS.  相似文献   

15.
A single G protein–coupled receptor (GPCR) can activate multiple signaling cascades based on the binding of different ligands. The biological relevance of this feature in immune regulation has not been evaluated. The chemokine-binding GPCR CXCR3 is preferentially expressed on CD4+ T cells, and canonically binds 3 structurally related chemokines: CXCL9, CXCL10, and CXCL11. Here we have shown that CXCL10/CXCR3 interactions drive effector Th1 polarization via STAT1, STAT4, and STAT5 phosphorylation, while CXCL11/CXCR3 binding induces an immunotolerizing state that is characterized by IL-10hi (Tr1) and IL-4hi (Th2) cells, mediated via p70 kinase/mTOR in STAT3- and STAT6-dependent pathways. CXCL11 binds CXCR3 with a higher affinity than CXCL10, suggesting that CXCL11 has the potential to restrain inflammatory autoimmunity. We generated a CXCL11-Ig fusion molecule and evaluated its use in the EAE model of inflammatory autoimmune disease. Administration of CXCL11-Ig during the first episode of relapsing EAE in SJL/J mice not only led to rapid remission, but also prevented subsequent relapse. Using GFP-expressing effector CD4+ T cells, we observed that successful therapy was associated with reduced accumulation of these cells at the autoimmune site. Finally, we showed that very low doses of CXCL11 rapidly suppress signs of EAE in C57BL/6 mice lacking functional CXCL11.  相似文献   

16.
Objectives: Theiler's murine encephalomyelitis virus (TMEV) infection of mice is a widely used animal model for demyelinating disorders, such as multiple sclerosis (MS). The aim of the present study was to identify topographical differences of TMEV spread and demyelination in the brain of experimentally infected susceptible SJL/J mice and resistant C57BL/6 mice. Methods: Demyelination was confirmed by Luxol fast blue and cresyl violet staining and axonal damage by neurofilament-specific and β-amyloid precursor protein-specific immunohistochemistry. Viral dissemination within the central nervous system (CNS) was quantified by immunohistochemistry and in situ hybridization. Further, the phenotype of infected cells was determined by confocal laser scanning microscopy. Results: An early transient infection of periventricular cells followed by demyelination and axonopathies around the fourth ventricle in SJL/J mice was noticed. Periventricular and brain stem demyelination was associated with a predominant infection of microglia/macrophages and oligodendrocytes. Conclusions: Summarized, the demonstration of ependymal infection and subjacent spread into the brain parenchyma as well as regional virus clearance despite ongoing demyelination and axonal damage in other CNS compartments allows new insights into TME pathogenesis. This novel aspect of TMEV CNS interaction will enhance the understanding of region-specific susceptibilities to injury and regenerative capacities of the brain in this MS model.  相似文献   

17.
The lymphotoxin (LT)/tumor necrosis factor (TNF) family has been implicated in the neurologic inflammatory diseases multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). To determine the role of individual family members in EAE, C57BL/6 mice, LT-α–deficient (LT-α−/− mice), or LT-β–deficient (LT-β−/− mice), and their wild-type (WT) littermates were immunized with rat myelin oligodendrocyte glycoprotein (MOG) peptide 35-55. C57BL/6 and WT mice developed chronic, sustained paralytic disease with average maximum clinical scores of 3.5 and disease indices (a measure of day of onset and sustained disease scores) ranging from 367 to 663 with central nervous system (CNS) inflammation and demyelination. LT-α−/− mice were primed so that their splenic lymphocytes proliferated in response to MOG 35-55 and the mice produced anti-MOG antibody. However, LT-α−/− mice were quite resistant to EAE with low average clinical scores (<1), an average disease index of 61, and the negligible CNS inflammation and demyelination. WT T cells transferred EAE to LT-α−/− recipients. LT-β−/− mice were susceptible to EAE, though less than WT, with an average maximum clinical score of 1.9 and disease index of 312. These data implicate T cell production of LT-α in MOG EAE and support a major role for LT-α3, a minor role for the LT-α/β complex, and by inference, no role for TNF-α.  相似文献   

18.
19.
20.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T lymphocyte-mediated disease of the central nervous system (CNS) characterized by mononuclear cell infiltration, demyelination, and paralysis. We previously demonstrated a role for chemokines in acute and relapsing EAE pathogenesis. Presently, we investigated the role of CC chemokine receptor 2 (CCR2) in acute EAE. CCR2(-/-) mice did not develop clinical EAE or CNS histopathology, and showed a significant reduction in T cell- and CNS-infiltrating CD45(high)F4/80(+) monocyte subpopulations. Peripheral lymphocytes from CCR2(-/-) mice produced comparable levels of interferon-gamma (IFN-gamma) and interleukin (IL)-2 in response to antigen-specific restimulation when compared with control mice. Adoptively transferred myelin oligodendrocyte glycoprotein 35-55-specific T cells lacking expression of CCR2 were able to induce EAE, whereas CCR2(-/-) recipients of wild-type T cells failed to develop disease. These results suggest that CCR2 expression on host-derived mononuclear cells is critical for disease induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号