首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Analysis of blood of fasted rats revealed two endogenous sugar acids, 3,4-dihydroxybutanoic acid (2-deoxytetronic acid; 2-DTA) and 2,4,5-trihydroxypentanoic acid (3-deoxypentonic acid; 3-DPA), that might be related to food intake control. Injection of 2-DTA into the third cerebral ventricle reduced food intake for 24 hr in 72 hr deprived rats and depressed single neurons activity in the lateral hypothalamus (LHA). The same amounts of 3-DPA elicited feeding in a dose-related fashion, and increased LHA single neuron activity with 6 to 8 min latency. Intravenous injection of 3-DPA, but not 2-DTA, was effective. Liposome encapsulation of 2-DTA enhanced its potency after intraperitoneal injection, probably by allowing passage across the blood-brain barrier. Electrophoretic application of 2-DTA significantly and specifically suppressed, and 3-DPA facilitated activity of glucose-sensitive (GS) neurons in the LHA. Neither affected glucose insensitive LHA neurons. Both sugar acids affected glucoreceptor (GR) neuron activity oppositely in the ventromedial hypothalamic nucleus (VMH). Intracellular recordings verified that the effect of 2-DTA on the GS and GR neurons was the same as glucose. Hyperpolarization of GR neurons with a membrane conductance increase was brought about by 3-DPA. The levels of plasma glucose and insulin changed oppositely by 2-DTA and 3-DPA, respectively when these were applied into the third cerebral ventricle. Feeding behavior and LHA and VMH neuron activity changes after injection suggest 2-DTA may be an endogenous satiety substance and 3-DPA a hunger substance, with effects mediated by GS neurons in LHA and GR neurons in VMH. Effects of 3-hydroxybutyric acid were also verified and discussed.  相似文献   

2.
To examine the role and working site of growth hormone-releasing factor (GRF) in feeding behavior, we first tested the effect of the intracerebroventricular (i.c.v.) injection of GRF on food intake after 24 h of food deprivation. Cumulative food intake was measured 1, 3 and 6 h after injection. A lower dose of GRF stimulated food intake in a dose dependent manner (3 h; GRF 100 pmol 8.64 +/- 1.06 g vs saline 5.50 +/- 0.60 g, P less than 0.05), while a higher dose (1 nmol, 500 pmol) suppressed food intake (3 h; GRF 1 nmol 2.65 +/- 0.70 g vs saline 5.50 +/- 0.60 g, P less than 0.01). Second, the effect of i.c.v. injection of 100 pmol of GRF on peripheral metabolites was examined. The subsequent levels of plasma insulin, glucagon, glucose and non-esterified fatty acid showed no significant difference from those of saline administration. Third, the effect of microinjection of GRF (5 pmol) into several hypothalamic areas on food intake was examined. Injection into the ventromedial hypothalamic nucleus (VMN) stimulated food intake (3 h; GRF 5 pmol 10.32 +/- 1.04 g vs saline 6.92 +/- 0.32 g, P less than 0.05), but no significant effect was observed following injection either into the lateral hypothalamic area (LHA), paraventricular nucleus (PVN) or medial preoptic area (MPOA). Finally, we tested the stimulatory effect of GRF on food intake in bilateral VMN lesioned rats. I.c.v. injection in these animals had no more significant effect on food intake than did saline injection in VMN lesioned rats (3 h; GRF 100 pmol 6.27 +/- 0.87 g vs saline 5.34 +/- 0.44 g).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effects of injecting cholecystokinin (CCK) into the third ventricle or into selected hypothalamic sites on electrical firing rate of sympathetic nerves to interscapular brown fat (IBAT) has been investigated in anesthetized rats. The hypothesis for these experiments was that there was a reciprocal relationship between sympathetic activity and food intake. Since CCK reduces food intake we predicted that CCK would stimulate sympathetic activity to IBAT. Following the injection of CCK into the third ventricle there was an increase in firing rate of sympathetic nerves to IBAT. When the peptide was injected into either the ventromedial hypothalamic nucleus (VMH) or lateral hypothalamic area (LHA), there was likewise an increase in sympathetic firing rate. The injection of CCK into the paraventricular nucleus produced a small decrease in sympathetic firing rate. In contrast, no effect was seen following injection of CCK into the preoptic area or dorsomedial hypothalamic nucleus. Thus, the VMH or LHA appear to be the principal hypothalamic areas mediating the stimulation of sympathetic activity to IBAT which is observed following the third ventricular injection of CCK. These studies support the hypothesis of a reciprocal relationship between the effects of CCK on the thermogenic component of the sympathetic nervous system and food intake and identify the VMH and LHA as the primary sites for this effect.  相似文献   

4.
The objective of the present study was to identify hypothalamic sites that might be implicated in the effects of neuropeptide Y (NPY) on both body temperature and food intake. For this purpose, the effects of direct microinjections of NPY in several doses (0.156–20 μg) into discrete hypothalamic nuclei on body temperature were examined in rats. To examine specificity of effects, food consumption of animals following injections was also measured. Results indicate that the influence of NPY on body temperature varies with the hypothalamic region where the peptide is administered. NPY had no effect on temperature after administration into the ventromedial (VMH) and the perifornical hypothalamus (PeF). However, a significant hypothermia was seen following administration into the preoptic (POA) and arcuate nucleus (Arc), and hyperthermia was seen after injection into the paraventricular nucleus (PVN). Finally, a biphasic effect was observed after injection into the lateral hypothalamus (LH): hyperthermia with relatively small doses and hypothermia with higher doses. Similar effects were obtained when administred into the third ventricle (3V) but in an inverted dose-related fashion: hypothermia at low and hyperthermia at higher doses. For feeding, NPY consistently increased food intake in all regions examined, with the strongest effect obtained after administration into the PeF. The present results clearly dissociate the effects of NPY on food intake and body temperature, and demonstrate that these effects are related to specific hypothalamic nuclei.  相似文献   

5.
Neuropeptide Y (NPY), which exists in very high concentrations in the brain, has been shown to elicit a powerful feeding response and a small drinking response in satiated rats. In order to delineate the brain sites sensitive to these effects, NPY was injected through chronic guide cannulas into seven different brain regions, and the food and water intake of satiated rats was measured one hr postinjection. Injection of NPY (78 pmoles) into hypothalamic areas, namely the paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), and lateral hypothalamus (LH), elicited a strong feeding response; in contrast, injections into extra-hypothalamic areas, namely the amygdala, thalamus, and periaqueductal gray, were completely ineffective. Administration of NPY into the PVN and VMH also elicited a small drinking response; however, all other areas, including the LH, were insensitive to this effect. The findings that NPY was effective in the hypothalamus, as opposed to sites anterior, posterior, lateral or dorsal to this structure, suggest a hypothalamic site(s) of action for this neuropeptide.  相似文献   

6.
Corticotropin releasing hormone (CRH) acts on the central nervous system to alter energy balance and influence both food intake and sympathetically-mediated thermogenesis. CRH is also reported to inhibit food intake in several models of hyperphagia including neuropeptide Y (NPY)-induced eating. The recently identified CRH-related peptide, urocortin (UCN), also binds with high affinity to CRH receptor subtypes and decreases food intake in food-deprived and non-deprived rats. The present experiment characterized further the feeding and metabolic effects of UCN by examining its impact after direct injections into the paraventricular nucleus (PVN) of the hypothalamus. In feeding tests (n=8), UCN (50-200 pmol) was injected into the PVN at the onset of the dark cycle and food intake was measured 1, 2 and 4 h postinjection. In separate rats (n=8), the metabolic effects of UCN were monitored using an open circuit calorimeter which measured oxygen consumption (V(O2)) and carbon dioxide production (V(CO2)). Respiratory quotient (RQ) was calculated as V(CO2)/V(O2). UCN suppressed feeding at all times studied and reliably decreased RQ within 30 min of infusion. Additional work examined the effect of UCN (50-100 pmol) pretreatment on the feeding and metabolic effects of NPY. NPY, injected at the start of the dark period, reliably increased 2 h food intake. This effect was blocked by PVN UCN administration. Similarly, UCN blocked the increase in RQ elicited by NPY alone. These results suggest that UCN-sensitive mechanisms within the PVN may modulate food intake and energy substrate utilization, possibly through an interaction with hypothalamic NPY.  相似文献   

7.
Using probes to manipulate hypothalamic neuronal histamine, we report here that changes in neuronal histamine modulate physiological feeding behavior in rats. Infusion of α-fluoromethylhistidine (FMH), a “suicide” inhibitor of histidine decar☐ylase (HDC), into the third cerebroventricular induced feeding in the early light phase when the histamine synthesis was most accelerated. FMH at an optimum 2.24 μmol dose elicited feeding in 100% of rats. Treatment of FMH specifically and selectively decreased concentration of histamine without affecting concentrations of catecholamines in the hypothalamus. Immediately before the dark phase, when the histamine synthesis was normally lower, FMH infusion did not affect feeding-related parameters such as meal size, meal duration or latency to eat. Conversely, thioperamide, which facilitates both synthesis and release of neuronal histamine by blocking presynaptic autoinhibitory H3 receptors, significantly decreased food intake after infusion of a 100-nmol dose into the third cerebroventricle. The effect of thioperamide was abolished with i.p. injection of 26 μmol/kg chlorpheniramine, an H1 antagonist. FMH at 224 nmol was microinfused bilaterally into the feeding-related nuclei in the hypothalamus. The ventromedial nucleus (VMH) and the paraventricular nucleus (PVN), but not the lateral hypothalamus, the dorsomedial hypothalamus or the preoptic anterior hypothalamus were identified as the active sites for the modulation. Neuronal histamine may convey suppressive signals of food intake through H1 receptors in the VMH and the PVN with diurnal fluctuation.  相似文献   

8.
STUCKEY, J. A. AND J. GIBBS. Lateral hypothalamic injection of bombesin decreases food intake in rats. BRAIN RES. BULL. 8(6)617–621, 1982.—The effect of lateral hypothalamic injections of bombesin on feeding behavior was examined. Rats equipped with stainless steel cannulas directed toward the lateral hypothalamus received bilateral injections of bombesin prior to access to a liquid test diet after a 3 hr food deprivation. Bombesin in doses of 5 ng, 50 ng and 100 ng produced significant reductions in the size of the first meal. Injection of 50 ng of the biologically weak analogue [D-Trp8] bombesin had no effect. Injection of 5 ng or 50 ng of bombesin had no effect on deprivation-induced water intake, and injection of 50 ng of bombesin had no effect on body temperature. The food and water intake data and direct quantitative behavioral measures indicated that lateral hypothalamic injections of bombesin specifically reduced food intake. The structure-activity relationship for this effect was similar to those for other actions of bombesin. A bombesin-like peptide in the lateral hypothalamus or its receptors may play a role in postprandial satiety.  相似文献   

9.
Histaminergic control of energy balance in rats   总被引:2,自引:0,他引:2  
Manipulating neuronal histamine in the hypothalamus, its effects on brain functions were assessed in nonobese normal rats and Zucker rats. Alpha-fluoromethylhistidine (FMH), an inhibitor of histamine synthesis, induced feeding dose-dependently after 2.24 mumol infusion at 1100 h, when hypothalamic histamine was normally high. This dose of FMH selectively decreased hypothalamic histamine, but not other neurotransmitters. Thioperamide, an antagonist of autoinhibitory H3-receptors, decreased food intake after infusion at 1940 h, when hypothalamic histamine was normally low. Bilateral microinfusion of 224 nmol FMH or 26 nmol chlorpheniramine, an H1-antagonist, into the ventromedial hypothalamus (VMH) and the paraventricular nucleus (PVN), elicited feeding. However, Zucker obese rats showed no significant responses to chlorpheniramine, thioperamide or histamine. Concentration of their hypothalamic histamine was excessively lower than that of the nonobese. Contents of hypothalamic histamine were lowered at 4 degrees C and raised at 31 degrees C. FMH attenuated increase in histamine, and then disrupted adaptive behavior. These findings indicate that neuronal histamine may convey the suppressive signal of food intake through H1-receptors in the VMH and/or the PVN, and play critical roles in homeostatic control of adaptive behavior.  相似文献   

10.
Opioid-induced feeding: Localization of sensitive brain sites   总被引:6,自引:0,他引:6  
These experiments were designed to identify brain sites at which opioids might act to influence ingestive behavior and to determine which opioid receptor types are involved. After food deprivation, rats were given microinjections of naloxone into several brain regions and food intake was measured. Injections into or near the paraventricular (PVN) or ventromedial (VMH) hypothalamic nuclei or the globus pallidus (GP) reduced food intake; injections into the striatum or lateral hypothalamus (LH) were ineffective. A second study examined the ingestive effects of roughly equimolar doses (1.43-1.75 nmol) of dynorphin A (DYN), beta-endorphin (beta-END), and D-Ala2,D-Leu5-enkephalin (DADLE) when injected into 4 different brain regions. Only DYN significantly increased food intake, and this effect was seen only with injections into the PVN and VMH. Beta-END stimulated water intake when injected into the PVN, VMH and GP but not the LH. Further studies indicated that with PVN injections, DYN was effective at a dose as low as 0.47 nmol, and that a higher dose of DADLE (4.39 nmol) did stimulate food intake. These studies support an important role for dynorphin and the kappa opioid receptor in the regulation of feeding and suggest that the opioid regulation of food and water intake can be differentiated both by sites of action and by effective agonists.  相似文献   

11.
Calcitonin gene-related peptide (CGRP) is released from the gastrointestinal tract following ingestion and causes satiety in mammals. Its effects on appetite in non-mammalian vertebrates are unreported. In Experiment 1, fasted chicks reduced food and water intake after central injection of CGRP. These effects were not associated with increased plasma corticosterone concentration. In Experiment 2, we showed that the effect on water intake was independent of food intake. In Experiment 3, central CGRP caused increased c-Fos immunoreactivity in the arcuate (ARC) nucleus, paraventricular nucleus (PVN), periventricular (PHN) and ventromedial (VMH) hypothalamic nuclei. The results of Experiment 4 demonstrate that intraperitoneal injection of CGRP also causes reduced food and water intake. c-Fos immunoreactivity was increased in the ARC, PHN, PVN and VMH in Experiment 5 after intraperitoneal injection of CGRP. Lastly in Experiment 6, we showed that central CGRP changes the type of pecks from feeding to exploratory, and reduces the number of escape attempts. The effect of CGRP appears to be primary on appetite in chicks. In conclusion, the mechanisms of CGRP induced satiety have some similarities and differences between avian and rodent models. The results presented here provide new insight into the evolution of vertebrate satiety regulatory mechanisms.  相似文献   

12.
GABA-related feeding control in genetically obese rats   总被引:1,自引:0,他引:1  
S Tsujii  G A Bray 《Brain research》1991,540(1-2):48-54
Feeding in response to glucoprivation induced by 2-deoxy-D-glucose (2-DG) is impaired in genetically obese (Zucker) rats. Muscimol, a GABAA-agonist (0.5 nmol/0.5 microliter in each area) increased food intake in lean rats over 3 h but in fatty rats only at 30 min after infusion into the VMH. Injection of muscimol into the DMH and PVN increased feeding of both phenotypes. Picrotoxin, a non-competitive GABAA-antagonist (0.1 nmol/0.5 microliter) increased food intake after infusion into the LH of both phenotypes and decreased food intake over a 3 h period when infused into the VMH. DMH and PVN of fatty rats. In the lean littermates, picrotoxin was only effective in reducing food intake at 30 min after infusion into the VMH and PVN but not the DMH. The present results suggest that the fatty Zucker rat has a disturbance in the GABA-related regulatory mechanism of feeding behavior in the ventromedial hypothalamus, which may be responsible for the impaired response to glucoprivation found in these rats.  相似文献   

13.
Catecholaminergic systems, specifically in the region of the lateral perifornical hypothalamus (PFH), have been linked to the inhibition of feeding behavior. The present studies examined the effects of d-amphetamine (AMPH), which is believed to act through the release of endogenous catecholamines (CAs), on spontaneous feeding and appetite regulation in rats. Injection of AMPH directly into the PFH caused a marked suppression of food intake; changes in computer-monitored meal patterns were characterized by an increase in the latency to meal onset and a consequent reduction in meal size and duration. This suggests that hypothalamic AMPH administration may influence primarily the initiation, rather than the termination, of feeding. In other experiments, chronic infusion of AMPH directly into the PFH was shown to suppress 24 hr food intake and body weight gain, indicating the effectiveness of lateral hypothalamic CA stimulation in overriding normal long-term patterns of feeding. The effect of hypothalamic CA stimulation on macronutrient selection was also investigated in groups of rats injected either centrally or peripherally with AMPH, or centrally with the CA agonists, dopamine and epinephrine. Each of these manipulations caused a strong inhibition of protein intake with no effect on carbohydrate, and only a mild suppression of fat ingestion after peripheral AMPH. These selective effects of AMPH on feeding patterns and diet choice, provide support for a role of CA innervation to the lateral hypothalamus in the modulation of natural feeding behavior and macronutrient selection.  相似文献   

14.
Systemic administration of gold thioglucose (GTG) causes a hypothalamic lesion that extends from the ventral part of the ventromedial hypothalamus (VMH) to the dorsal part of the arcuate nucleus (ARC), resulting in hyperphagia and obesity in mice. In the present study, we used in situ hybridisation histochemistry to explore the effects of GTG on the central corticotrophin‐releasing hormone (CRH) system, which regulates feeding and energy homeostasis. Type 2 CRH receptor (CRHR‐2) mRNA expression decreased by 40% at 8 weeks in the VMH and by 40–60% at 2 and 8 weeks in the ARC after GTG injection. By contrast, CRHR‐2 mRNA expression in the hypothalamic paraventricular nucleus (PVN) and lateral septum was unchanged. Urocortin (Ucn) 3 mRNA expression in the perifornical area and medial amygdala decreased, whereas CRH mRNA expression in the PVN increased at 2 and 8 weeks after GTG injection. Ucn 1 mRNA expression in the Edingher–Westphal nucleus and Ucn 2 mRNA expression in the PVN were unchanged. Because Ucn 3 is an anorexigenic and a possible endogenous ligand for VMH CRHR‐2, our results suggest that decreased Ucn 3 expression and decreased VMH CRHR‐2 expression contribute, in part, to GTG‐induced hyperphagia and obesity. To determine whether VMH CRHR‐2 mediates the anorexigenic effects of Ucn 3, Ucn 3 was administered i.c.v. and food intake was measured 8 weeks after GTG treatment. Ucn 3 decreased cumulative food intake on days 4–7 after surgery compared to i.c.v. administration of vehicle in control mice. By contrast, the anorexigenic effects of i.c.v. Ucn 3 were abolished in GTG‐treated mice. Taken together, our results indicate that the Ucn 3 pathway, which innervates the VMH, is involved in appetite regulation via CRHR‐2. It remains to be determined whether CRHR‐2 in the ARC has additional roles in appetite regulation by Ucn 3.  相似文献   

15.
Certain cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1) act centrally to affect eating behavior and thermoregulation and may be involved in the physiological mechanisms leading to anorexia, adipsia and loss in body weight. The newly discovered macrophage inflammatory protein-1 (MIP-1) infused into the anterior hypothalamic, preoptic area (AH/POA) evokes an intense hyperthermia. The present experiments were designed to determine whether MIP-1 affects the feeding mechanism in the ventromedial hypothalamus (VMH) independently of the thermoregulatory mechanism in the AH/POA. For the microinjection of MIP-1, guide cannulae were implanted stereotaxically in the rat just above the VMH or AH/POA. Following postoperative recovery, each unrestrained rat was adapted to procedures whereby body temperature and intakes of food and water available ad lib were monitored at predetermined intervals. When an efficacious dose of 5.6 picograms (pg) MIP-1 was microinjected in a volume of 0.5 microliters into the VMH, the intake of food in the rat was reduced significantly in the short term and throughout the following 22 h. Within intervals of 30 min and 4.0 h following MIP-1, the amount of food consumed was 4.0 and 10 g, respectively, below that eaten by control rats given the saline solvent vehicle injected at the same site in the VMH. Over the entire test period, the intake of water was similarly significantly below that of the control rats. Whereas MIP-1 injected into the AH/POA evoked fever accompanied by a transient decline in feeding, the body temperature of the rats was unaffected by the cytokine injected in the VMH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Central administration of neuropeptide Y (NPY) induces food intake in freely feeding animals and this effect is mediated by hypothalamic sites. Little is known, however, about the effect of NPY on food intake and site of action in food-deprived animals. To examine this further, 24-h fasted rats received injections of saline or NPY into the lateral cerebral ventricle (10 micrograms/10 microliters; n = 8) or into the lateral (LH) or ventromedial hypothalamus (VMH) (1 microgram/0.5 microliters; n = 44). In addition, intracerebroventricular (i.c.v.) injections of NPY were carried out with or without i.c.v. naloxone (25 micrograms), a specific opioid receptor antagonist. During the first 40 min food intake was not different with or without NPY. After 60 and 120 min, food intake was 5.9 +/- 0.4 g and 8.3 +/- 0.6 g with i.c.v. saline which was significantly augmented by i.c.v. NPY to 8.7 +/- 0.9 g and 14.4 +/- 1.5 g, respectively (P less than 0.05). This increase in food consumption was due to a prolongation of feeding time. The opioid receptor antagonist naloxone significantly augmented latency to feed, both in the absence and presence of NPY (8.0 vs 1.7 min or 14.7 vs 2.8 min, respectively) and abolished the NPY-induced increase in food intake. Following intrahypothalamic injection of NPY, an increase in food intake (greater than 20%) was observed in 50% of the histologically identified LH and VMH sites, but only in 15% of the injection sites outside the LH/VMH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Neuropeptide Y antibody attenuates 2-deoxy-

2-Deoxy-

-glucose (2-DG) has been shown to induce increased feeding responses in animals. Recent studies suggest the possible involvement of neuropeptide Y (NPY) in 2-DG-induced feeding. The present study examined the effect of immunoneutralization of endogenous NPY on 2-DG-induced feeding. NPY antibody injected into the paraventricular nucleus of the rats significantly attenuated 2-DG-induced feeding, suggesting that hypothalamic NPY may mediate, at least partly, the effect of 2-DG on food intake.  相似文献   

18.
Butorphanol (BT), a mixed kappa- and mu-opioid receptor agonist, induces vigorous food intake in rats. Peripheral injection of BT seems to increase food intake more effectively than intracerebroventricular administration. To further elucidate the nature of BT's influence on consummatory behavior, we examined which feeding-related brain areas exhibit increased c-Fos immunoreactivity (IR) following subcutaneous injection of 4 mg/kg body weight BT, a dose known to induce a maximal orexigenic response. We also evaluated whether direct administration of BT into the forebrain regions activated by peripheral BT injection affects food intake. Peripheral BT administration induced c-Fos-IR in the hypothalamic paraventricular nucleus (PVN), central nucleus of the amygdala (CeA), and nucleus of the solitary tract (NTS). However, 0.1-30 microg BT infused into the CeA, failed to increase food intake 1, 2, and 4 h after injection. Only the highest dose of BT (30 microg) injected into the PVN increased feeding. These results suggest that the PVN, CeA, and NTS mediate the effects of peripherally-injected BT. The PVN or CeA are probably not the main target sites of immediate BT action.  相似文献   

19.
The aim of the present in vivo microdialysis study was to investigate the relation between feeding and changes in glucose concentrations in the rat ventromedial hypothalamus (VMH). Absolute ambient glucose concentrations in VMH were 1.43 mm in non-deprived rats as compared to 0.94 mm after 24-h food deprivation. To examine whether feeding influences hypothalamic glucose, changes of glucose concentration over time were determined relative to a baseline. Experiments were conducted in relation to both, nutritional state (food-deprived rats vs. non-deprived rats) and feeding conditions throughout the experiment (freely feeding rats vs. rats without access to food). The results of this microdialysis study show clearly that glucose concentration in the VMH of rats increases significantly in relation to food intake. The data demonstrate that a 24-h food deprivation before the experiment further augments this increase (up to 350% from baseline) as compared to non-deprived conditions (up to 60% from baseline). However, the magnitude of food related increase in VMH glucose does not correlate with the individual amount of food eaten. In conclusion, the present study shows for the first time that VMH glucose concentrations increase with food intake in the early dark phase, indicating that such changes do not only occur after pharmacological treatment, but also under physiological feeding conditions. The results further indicate that the feeding related increase in VMH glucose depends on the nutritional state of the organism.  相似文献   

20.
Injection of glutamate (100 mM to 1 M, in 0.25 μl saline) into the hypothalamic suprachiasmatic nucleus (SCN) dose-dependently increased interscapular brown adipose tissue (IBAT) and core temperatures in the urethane-anaesthetized rat. This effect was more pronounced in rats tested during the light-off period than in animals tested during the light-on period. Prior injection of the local anaesthetic, procaine (5% in 0.5 μl saline), into the ipsilateral ventromedial hypothalamic nucleus (VMH) attenuated the increases in IBAT and core temperatures induced by intra-SCN glutamate. The VMH has previously been implicated in the central regulation of BAT thermogenesis; the present results suggest the pathway arising in the SCN exerts an excitatory influence on VMH neurons involved in the control of BAT function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号