首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE--To verify the phenotype to genotype correlations of mitochondrial DNA (mtDNA) related disorders in an atypical maternally inherited encephalomyopathy. METHODS--Neuroradiological, morphological, biochemical, and molecular genetic analyses were performed on the affected members of a pedigree harbouring the heteroplasmic A to G transition at nucleotide 3243 of the mitochondrial tRNALeu(UUR), which is usually associated with the syndrome of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). RESULTS--The proband was affected by a fullblown syndrome of myoclonic epilepsy with ragged red fibres (MERRF), severe brain atrophy, and basal ganglia calcifications, without the MRI T2 hyperintense focal lesions which are pathognomonic of MELAS. Oligosymptomatic relatives were variably affected by lipomas, goitre, brain atrophy, and basal ganglia calcifications. Muscle biopsies in the proband and his mother showed a MELAS-like pattern with cytochrome c oxidase hyperreactive ragged red fibres and strongly succinate dehydrogenase reactive vessels. Quantification of the A3243G mutation disclosed 78% and 70% of mutated mtDNA in the muscle of the severely affected proband and of his oligosymptomatic mother respectively. Nucleotide sequencing of the mitochondrial tRNALeu(UUR) and tRNALys in the proband's muscle failed to show any additional nucleotide change which could account for the clinical oddity of this pedigree by modulating the expression of the primary pathogenic mutation. CONCLUSION--So far, MERRF has been associated with mutations of the mitochondrial tRNALys, and MELAS with mutations of the mitochondrial tRNALeu(UUR). Now MERRF may also be considered among the clinical syndromes associated with the A to G transition at nt 3243 of the tRNALeu(UUR).  相似文献   

2.
3.
4.
A 40-year-old female suffering from recurrent migrainous strokes is reported. She did not show any muscle weakness or wasting. Ragged red and cytochrome c oxidase negative fibers were present in the muscle biopsy. Muscle mitochondrial DNA analysis showed a 5 kb deletion, without a point mutation at nucleotide pair 3243 in the mitochondrial tRNALeu(UUR) gene. Phosphorus nuclear magnetic resonance spectroscopy of brain and gastrocnemius muscle showed a defective energy metabolism in both organs. An increased inorganic phosphate to phosphocreatine ratio due to a decreased phosphocreatine content was found in the occipital lobes, while an abnormal work-energy cost transfer function and a low rate of phosphocreatine post-exercise recovery were found in the muscle.  相似文献   

5.
In a patient with mitochondrial myopathy, the defect of cytochrome c oxidase activity was restricted to some muscle fibers. To isolate cell lines with or without oxidase activity from a single muscle sample, primary cultured cells were transformed by replication origin-defective simian virus 40, and then cloned. The clones were examined by cytochemical staining for cytochrome c oxidase activity. Eight myogenic clones were completely devoid of activity, while the other myogenic and nonmyogenic clones were not. Deficiency of cytochrome c oxidase was stable in culture for at least a year after serial passaging. The amount of mitochondrial DNA in cytochrome c oxidase-deficient cells was the same as in control cells, and no deletion in the mitochondrial DNA was detected. Protein synthesis in mitochondria of the subunits of cytochrome c oxidase and subunit 6 of the ATP synthase complex was markedly decreased, whereas synthesis of the other subunits encoded by mitochondrial DNA was normal. These cloned cell lines provide an excellent system for clarifying the cause of mitochondrial myopathy and for investigating nuclear-mitochondrial genetic interaction.  相似文献   

6.
An important diagnostic muscle biopsy finding in patients with mitochondrial DNA disease is the presence of respiratory-chain deficient fibres. These fibres are detected as cytochrome c oxidase-deficient following a sequential cytochrome c oxidase-succinate dehydrogenase reaction, often in a mosaic pattern within a population of cytochrome c oxidase-normal fibres. Detailed analysis of muscle biopsies from patients with various mitochondrial DNA defects shows that a spectrum of deficiency exists, as there are a large number of fibres which do not correspond to being either completely cytochrome c oxidase-normal (brown staining) or cytochrome c oxidase-deficient (blue staining). We have used a combination of histochemical and immunocytochemical techniques to show that a population of cytochrome c oxidase-intermediate reacting fibres are a gradation between normal and deficient fibres. We show that cytochrome c oxidase-intermediate fibres also have different genetic characteristics in terms of amount of mutated and wild-type mtDNA, and as such, may represent an important transition between respiratory normal and deficient fibres. Assessing changes in intermediate fibres will be crucial to evaluating the responses to treatment and in particular to exercise training regimes in patients with mitochondrial DNA disease.  相似文献   

7.
Twenty-three patients with mitochondrial myopathies and mitochondrial DNA deletions in muscle were studied by means of deletion mapping and sequencing, histochemistry and polarography. Histochemistry showed significantly less focal cytochrome oxidase deficiency relative to number of ragged red fibres when the deletion did not involve reading frames for cytochrome oxidase subunits. Polarography in such patients showed defects exclusively involving complex I, in contrast to the others with larger deletions who generally had more diffuse respiratory chain defects. Analysis of other published histochemical data showed similar findings to our own. It is concluded that translation of a proportion of deleted mitochondrial DNAs occurs in at least some patients with mitochondrial DNA deletions, implying that deleted and normal mitochondrial genomes share transfer RNAs within mitochondria in such cases.  相似文献   

8.
9.
Sporadic progressive external ophthalmoplegia and Kearns-Sayre syndrome are usually associated with single large-scale mitochondrial DNA deletions in muscle. In progressive external ophthalmoplegia with autosomal dominant inheritance, multiple mitochondrial DNA deletions have been reported. We studied several members of a Swedish family with autosomal dominant progressive external ophthalmoplegia and multiple mitochondrial DNA deletions by polymerase chain reaction analysis of singl emuscle fibers and by in sit hybridization, combined with enzyme histochemical analysis. Muscle fiber segments with deficiency of cytochrome c oxidase, which is partially encoded by mitochondrial DNA, had accumulated mitochondrial DNA with deletions and showed reduced levels of wild-type mitochondrial DNA. The deletions varied between individual muscle fibers. There was one predominant deletion in each cytochrome c oxidase-deficient muscle fiber segment. Sequencing of the deletion breakpoints showed that most but not all of the deletions were flanked by direct repeats. Young, clinically affected individuals of this family without limb muscle symptoms did not show mitochondral DNA deletions or cytochorme c oxidase-deficient muscle fibers. Our result indicate that a nuclear factor predisposes to the developement of somatic multiple mitochondrial DNA deletions. Mitochondrial DNA with multiple different deletions shows clonal expansion, which leads to mitochondrial myopathy with ragged-red fibers and muscle weakness.  相似文献   

10.
Maintenance and replication of mitochondrial DNA require the concerted action of several factors encoded by nuclear genome. The mitochondrial helicase Twinkle is a key player of replisome machinery. Heterozygous mutations in its coding gene, PEO1, are associated with progressive external ophthalmoplegia (PEO) characterised by ptosis and ophthalmoparesis, with cytochrome c oxidase (COX)-deficient fibres, ragged-red fibres (RRF) and multiple mtDNA deletions in muscle. Here we describe clinical, histological and molecular features of two patients presenting with mitochondrial myopathy associated with PEO. PEO1 sequencing disclosed two novel mutations in exons 1 and 4 of the gene, respectively. Although mutations in PEO1 exon 1 have already been described, this is the first report of mutation occurring in exon 4.  相似文献   

11.
We report two sisters (32 and 36 years old) with familial deaf-mutism, progressive external ophthalmoplegia, leukodystrophy and mitochondrial myopathy. T2-weighted brain MRI demonstrated diffuse symmetrical high intensity areas in the white matter. Their muscle biopsies showed ragged-red fibers and cytochrome c oxidase (CCO)-negative fibers. CCO activity in biopsied muscle decreased to about 20% of normal control. They had no deletions of the mitochondrial DNA and no point mutations in mitochondrial tRNA. Their brother was diagnosed as having Kugelberg-Welander disease, grand mal seizures and urinary dysfunction. Their parents and grandparents had consanguinity. Three relatives were found to have deaf-mutism without accompanying ophthalmoplegia. This rare combination of mitochondrial encephalomyopathy and familial deaf-mutism might be caused by a nuclear DNA mutation in these sisters.  相似文献   

12.
'Myofibrillar myopathy' defines a myopathic condition with focal myofibrillar destruction and accumulation of degraded myofibrillar elements. Despite the fact that a number of mutations in different genes as well as cytotoxic agents lead to the disease, abnormal accumulation of desmin is a typical, common feature. Pathological changes of mitochondrial morphology and function have been observed in animal models with intermediate filament pathology. Therefore, in the present study we tested for mitochondrial pathology in skeletal muscle of five patients with the pathohistological diagnosis of myofibrillar myopathy. Screening for large-scale mtDNA deletions and the frequent MERRF (myoclonic epilepsy; ragged red fibres) and MELAS (mitochondrial encephalomyopathy; lactic acidosis; stroke) point mutations was negative in all patients. Histologically, all muscle biopsies showed nonspecific abnormalities of the oxidative/mitochondrial enzyme stainings (histochemistry for reduced nicotinamide adenine dinucleotide, succinic dehydrogenase, cytochrome c oxidase), only one of them had ragged red fibres and a significant number of cytochrome c oxidase-negative fibres. Upon biochemical investigation, four of our patients showed pathologically low respiratory chain complex I activities. Only one of our patients had a pathologically low complex IV activity, while the measurements of the others were within low normal range. The single patient with pathological values for both complex I and IV was the one with the clear histological hallmarks (ragged red and cytochrome c oxidase-negative fibres) of mitochondrial pathology. She also was the only patient with clinical signs hinting at a mitochondrial disorder. Together with data from observations in desmin- and plectin-deficient mice, our results support the view that desmin intermediate filament pathology in these cases is closely linked to mitochondrial dysfunction in skeletal muscle.  相似文献   

13.
Frequencies of typical myohistological changes such as ragged red fibers (RRF) and cytochrome c oxidase (COX)‐deficient fibers have been suggested to be dependent on underlying mitochondrial DNA (mtDNA) defect. However, there are no systematic studies comparing frequencies of myohistological changes and underlying genotypes. The histopathological changes were analysed in 29 patients with genetically confirmed mitochondrial myopathies. Genotypes included multiple mtDNA deletions due to POLG1 mutations (n = 11), single mtDNA deletion (n = 10) and mtDNA point mutation m.3243A>G (n = 8). Histochemical reactions, including Gomori‐trichome, COX/SDH (succinate dehydrogenase) and SDH as well as immunohistological reaction with COX‐antibody against subunit I (COI) were carried out in muscle biopsy sections of all patients. The COX‐deficient fibers were observed most frequently in all three patient groups. The frequencies of myopathological changes were not significantly different in the different genotypes in all three histochemical stains. However, there was a tendency to lower means and variations in patients with point mutation. Only COI‐negative fibers were histochemically negative for COX activity in all patient groups. Frequency of COI‐negative fibers was significantly lower in patients with mtDNA point mutation than in patients with deletions. This suggests that impact of point mutation on protein synthesis is less than that of deletions.  相似文献   

14.
In the skeletal muscle of a patient with bilateral ptosis suggestive of progressive external ophthalmoplegia (PEO), but without ragged red fibres, electron microscopy revealed a moderate proliferation of mitochondria in nearly all fibres. A focal absence of cytochrome c oxidase and of mitochondrial ATPase was demonstrated histochemically in 3.2% and 1.4% respectively of the fibres. In 0.9% of the fibres both enzymes were deficient. In addition, mitochondrial ATPase, the ATP-synthesizing enzyme latent in controls, showed activation already before addition of an uncoupler. This indicates loosely coupled oxidative phosphorylation. The findings point to a complex derangement of mitochondrial function. Immunocytochemistry of cytochrome c oxidase favours the assumption that the defect is based on a highly diminished content of immunoreactive enzyme protein.  相似文献   

15.
The instability of the mitochondrial genome in individuals harboring pathogenic mutations in the catalytic subunit of mitochondrial DNA (mtDNA) polymerase gamma (POLG) is well recognized, but the underlying molecular mechanisms remain to be elucidated. In 5 pediatric patients with severe myoclonic epilepsy and valproic acid-induced liver failure, we identified 1 novel and 4 previously described pathogenic mutations in the linker region of this enzyme. Although muscle biopsies in these patients showed unremarkable histologic features, postmortem liver tissue available from 1 individual exhibited large cytochrome c oxidase-negative areas. These cytochrome c oxidase-negative areas contained 4-fold less mtDNA than cytochrome c oxidase-positive areas. Decreased copy numbers of mtDNA were observed not only in the liver, skeletal muscle, and brain but also in blood samples from all patients. There were also patient-specific patterns of multiple mtDNA deletions in different tissues, and in 2 patients, there were clonally expanded mtDNA point mutations. The low amount of deleted mtDNA molecules makes it unlikely that the deletions contribute significantly to the general biochemical defect. The clonal expansion of a few individual-specific deletions and point mutations indicates an accelerated segregation of early mtDNA mutations that likely are a consequence of low mtDNA copy numbers. Moreover, these results suggest a potential diagnostic approach for identifying mtDNA depletion in patients.  相似文献   

16.
Mitochondrial abnormalities, in particular the accumulation of mitochondrial DNA mutations, have been proposed as a potential cause of normal ageing. One group of patients with mtDNA disorders have a nuclear DNA defect which accelerates the chronological accumulation of mitochondrial DNA mutations. These patients provide an ideal means of investigating whether accelerated mitochondrial DNA defects can cause accelerated ageing pathology. The choroid plexus demonstrates a robust accumulation of pathological changes, in the form of Biondi bodies, with normal ageing. We have therefore examined the choroid plexus of a case with multiple mitochondrial DNA deletions for evidence of accelerated ageing and compared it with two cases with point mutation mitochondrial DNA disorders and several age-matched and elderly controls with and without clinical and neuropathological evidence of neurodegenerative disease. We also demonstrate that the choroid plexus of the mitochondrial DNA cases contain cells with levels of mitochondrial DNA mutation sufficient to cause a biochemical deficiency in the oxidative phosphorylation pathway. As previously reported, both cases with point mutation mitochondrial DNA disorders exhibit a characteristic oncocytic type transformation of the choroidal epithelial cells. However, in the case with multiple mitochondrial DNA deletions we demonstrate pathological changes in choroid plexus that are strongly suggestive of accelerated ageing. We believe that this finding supports the theory that the accumulation of mitochondrial DNA mutations can lead to pathological changes typical of ageing cells.  相似文献   

17.
18.
Mitochondrial DNA (mtDNA) mutations accumulate in the skeletal muscle of patients with mtDNA disease, and also as part of healthy ageing. Simulations of human muscle fibres suggest that, over many decades, the continuous destruction and copying of mtDNA (relaxed replication) can lead to dramatic changes in the percentage level of mutant mtDNA in non-dividing cells through random genetic drift. This process should apply to both pathogenic and neutral mutations. To test this hypothesis we sequenced the entire mitochondrial genome for 20 muscle fibres from a healthy elderly 85-year-old individual, chosen because of the low frequency of cytochrome c oxidase negative fibres. Phenotypically neutral single base substitutions were detected in 15% of the healthy fibres, supporting the hypothesis that positive selection is not essential for the clonal expansion of mtDNA point mutations during human life. Treatments that enhance mtDNA replication, such as vigorous excercise, could amplify this process, with potentially detrimental long-term consequences.  相似文献   

19.
Mitochondrial DNA (mtDNA) mutations associated with rhabdomyolysis are rare but have been described in sporadic cases with mutations in the cytochrome b and cytochrome c oxidase (COX) genes and in 3 cases with tRNALeu mutation. We report a novel heteroplasmic G6708A nonsense mutation in the mtDNA COI gene encoding COX subunit I in a 30-year-old woman with muscle weakness, pain, fatigue, and one episode of rhabdomyolysis. Histochemical examination of muscle biopsy specimens revealed reduced COX activity in the majority of the muscle fibers (approximately 90%) and frequent ragged red fibers. Biochemical analysis showed a marked and isolated COX deficiency. Analysis of DNA extracted from single fibers revealed higher levels of the mutation in COX-deficient fibers (> 95%) compared with COX-positive fibers (1%-80%). The mutation was not detected in a skin biopsy, cultured myoblasts, or blood leukocytes. Nor was it identified in blood leukocytes from the asymptomatic mother, indicating a de novo mutation that arose after germ layer differentiation. Western blot analysis and immunohistochemical staining revealed that reduced levels of COX subunit I were accompanied by reduced levels of other mtDNA encoded subunits, as well as nuclear DNA encoded subunit IV, supporting the concept that COX subunit I is essential for the assembly of complex IV in the respiratory chain.  相似文献   

20.
Genetic, biochemical and morphological investigations were conducted on skeletal muscle mitochondria from 6 cases of ocular myopathy: 4 cases with Kearns-Sayre syndrome (KSS) and 2 with chronic progressive external ophthalmoplegia. All of these 6 cases showed mitochondrial DNA (mtDNA) deletions in addition to normal sized DNA in the quadriceps muscle. The deletions ranging from 3 to 8 kbp were also mapped between nucleotides 5500 and 16000 by Southern blot. The deleted genes encoded for some subunits of complexes I, IV, V and 5-10 tRNAS. The boundaries of the deletions have been sequenced in three patients. Five patients had mitochondrial respiratory chain deficiency in complex I as shown by the low oxygen consumption in isolated mitochondria using three NAD(+)-linked substrates. Mitochondria with an abnormal ultrastructure were also observed in 2 cases. A good relationship between the cytochrome c oxidase deficiency and the amount of deleted mtDNA was shown in our present investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号