首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal adhesion kinase (FAK) is a key component of cell-substratum adhesions, known as focal adhesion complexes. Growing evidence indicates that FAK is important in maintenance of normal cell survival and that disruption of FAK signaling results in loss of substrate adhesion and anoikis (apoptosis) of anchorage-dependent cells, such as endothelial cells. Basal FAK activity in non-stimulated endothelial cells is important in maintaining cell adhesion to integrins via PI3 kinase/Akt signaling. FAK activity is dependent upon small GTPase signaling. FAK also appears to be important in cardiomyocyte hypertrophy and hypoxia/reoxygenation-induced cell death. This review summarizes the signaling pathways of FAK in prevention of apoptosis and the role of FAK in mediating adenosine and homocysteine-induced endothelial cell apoptosis and in cardiovascular diseases.  相似文献   

2.
3.
OBJECTIVE: Recent experimental evidence indicates an essential role of focal adhesion kinase (FAK) in mediating endothelial adhesion, contraction, and migration under physical stress and chemical stimulation. However, the functional impact of FAK on microvascular barrier property during inflammation has not been revealed. The aim of this study was to explore the potential contribution of FAK to neutrophil-dependent microvascular hyperpermeability. METHODS: The apparent permeability coefficient of albumin was measured in intact, isolated porcine coronary venules during stimulation by C5a-activated neutrophils. In parallel, the transendothelial flux of albumin was quantified in cultured venular endothelial cell monolayers exposed to C5a-activated neutrophils. Western blotting and immunocytochemistry were performed to assess FAK tyrosine phosphorylation and distribution in endothelial cells, respectively. To specify the signaling effect of FAK on neutrophil-elicited endothelial hyperpermeability, FAK-related nonkinase (FRNK) was expressed, purified, and directly transfected into the endothelium of venules, and the permeability response to neutrophils was measured during inhibition of FAK. RESULTS: C5a-activated neutrophils induced a time- and concentration-dependent increase in venular permeability. Transfection of venules with FRNK did not alter the basal barrier function but greatly attenuated neutrophil-induced hyperpermeability in a dose-related manner. A similar permeability response to neutrophils was observed in venular endothelial cell monolayers, which was diminished after FRNK transfection. In addition, Western blot analysis showed that activated neutrophils caused a concentration-dependent increase in FAK tyrosine phosphorylation with a time course correlating with that of venular hyperpermeability. Transfection of FRNK blocked neutrophil-evoked FAK tyrosine phosphorylation. Furthermore, immunofluorescence microscopy revealed a significant morphological change of FAK from a punctuated, dot-like pattern under normal conditions to an elongated, dash-like staining that aligned with the longitudinal axis of cells upon neutrophil stimulation. CONCLUSION: The results suggest that focal adhesion kinase significantly contributes to the endothelial hyperpermeability response to neutrophil activation. Phosphorylation of FAK may play an important signaling role in the regulation of microvascular barrier function during inflammation.  相似文献   

4.
Clinical evidence links neuroendocrine differentiation (NED) to prostate cancer progression. In the prostate carcinoma PC-3 cell model, the action of the gastrin releasing peptide (GRP) analog, bombesin (BN), on the activation of focal adhesion kinase (FAK) and invasiveness suggests that this kinase might favor metastasis. Given that components of the FAK signalling pathway are also up regulated in prostate cancer, the aim of the present investigation was to test if FAK function is required for BN-induced motility in PC-3 cells. In wound assays designed to investigate the fate of FAK in cells undergoing BN-induced motility, it was observed that BN treatment resulted in relocalization of FAK in focal contacts concomitantly with its tyrosine phosphorylation on residue 397 (FAK [pY(397)]) and with the formation of actin lamellipodia. Moreover, BN-induced cell motility was significantly reduced in the presence of FAK inhibitors (either anti-FAK [pY(397)] antibody or FRNK, the FAK-related non-kinase). Altogether, these observations point towards a critical role for FAK in the action of BN on PC-3 cell motility.  相似文献   

5.
In this review, we discuss the role of focal adhesion kinase (FAK), an intracellular tyrosine kinase, in endothelial cells in relation to neovascularization. Genetic and in vitro studies have identified critical factors, receptor systems, and their intracellular signaling components that regulate the neovasculogenic phenotypes of endothelial cells. Among these factors, FAK appears to regulate several aspects of endothelial cellular behavior, including migration, survival, cytoskeletal organization, as well as cell proliferation. Upon adhesion of endothelial cells to extracellular matrix (ECM) ligands, integrins cluster on the plane of plasma-membrane, while cytoplasmic domains of integrins interact with cytoskeletal proteins and signaling molecules including FAK. However, FAK not only serves as a critical component of integrin signaling, but is also a downstream element of the VEGF/VEGF-receptor and other ligand-receptor systems that regulate neovascularization. A complete understanding of FAK-mediated neovascularization, therefore, should address the molecular and cellular mechanisms that regulate the biology of FAK. Continued research on FAK may, therefore, yield novel therapies to improve treatment modalities for the pathological neovascularization associated with diseases.  相似文献   

6.
Previously we reported that the rapid activation of the Fak/Src multicomponent signaling complex mediates load-induced activation of growth and survival signaling pathways in adult rat heart. In this study, we report that 5% to 20% (10-minute) cyclic stretch (1 Hz) of neonatal rat ventricular myocytes (NRVMs) was paralleled by increases of Fak phosphorylation at Tyr-397 (from 1.5- to 2.8-fold), as detected by anti-Fak-pY397 phosphospecific antibody. Moreover, 15% cyclic stretch lasting from 10 to 120 minutes increased Fak phosphorylation at Tyr-397 by 2.5- to 3.5-fold. This activation was accompanied by a dramatic change in Fak localization in NRVMs from densely concentrated in the perinuclear regions in nonstretched cells to aggregates regularly distributed along the myofilaments in stretched cells. Furthermore, a 4-hour cyclic stretch enhanced the activity of an atrial natriuretic factor (ANF) promoter-luciferase reporter gene by 2.7-fold. Disrupting endogenous Fak/Src signaling either by expression of a dominant-negative Fak mutant with phenylalanine substituted for Tyr-397 or by treatment with a c-Src pharmacological inhibitor (PP-2) markedly attenuated stretch-induced Fak activation and clustering at myofilaments and inhibited stretch-induced ANF gene activation. On the other hand, overexpression of wild-type Fak potentiated the stretch-induced Fak phosphorylation but did not enhance either baseline or stretch-induced ANF promoter-luciferase reporter gene activity compared with the responses of nontransfected NRVMs. These findings identify Fak as an important element in the early responses induced by stretch in cardiac myocytes, indicating that it may coordinate the cellular signaling machinery that controls gene expression program associated with load-induced cardiac myocyte hypertrophy.  相似文献   

7.
Synthetic peptide with cell attachment activity of fibronectin.   总被引:38,自引:7,他引:31       下载免费PDF全文
Four synthetic peptides that together constitute the cell attachment domain of fibronectin [Pierschbacher, M.D., Ruoslahti, E., Sundelin, J., Lind, P. & Peterson, P. (1982) J. Biol. Chem. 257, 9593-9597] were constructed and tested for their ability to induce cell attachment and spreading. One of these peptides, consisting of the 30 amino acid residues nearest the COOH terminus of the domain, contained all of the cell attachment activity of the whole domain. Under suitable conditions the peptide was approximately as active as intact fibronectin on a molar basis. The activity could be demonstrated by binding the peptide to polystyrene directly, or via albumin, or by coupling it to agarose beads. This synthetic peptide will be useful in the elucidation of the molecular details of the attachment of cells to fibronectin and could allow manipulation of the adhesive properties of cell culture surfaces and prosthetic materials.  相似文献   

8.
Bisht B  Goel HL  Dey CS 《Diabetologia》2007,50(5):1058-1069
Aims/hypothesis On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. Materials and methods Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. Results A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague–Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3β, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. Conclusions/interpretation The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users. This contains details of the authors’ contributions to the study. Niper communication no. 389  相似文献   

9.
Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5--6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.  相似文献   

10.
Vascular endothelial cells lining the blood vessels form the interface between the bloodstream and the vessel wall and as such they are continuously subjected to shear and cyclic stress from the flowing blood in the lumen. Additional mechanical stimuli are also imposed on these cells in the form of substrate stiffness transmitted from the extracellular matrix components in the basement membrane, and additional mechanical loads imposed on the lung endothelium as the result of respiration or mechanical ventilation in clinical settings. Focal adhesions (FAs) are complex structures assembled at the abluminal endothelial plasma membrane which connect the extracellular filamentous meshwork to the intracellular cytoskeleton and hence constitute the ideal checkpoint capable of controlling or mediating transduction of bidirectional mechanical signals. In this review we focus on focal adhesion kinase (FAK), a component of FAs, which has been studied for a number of years with regards to its involvement in mechanotransduction. We analyzed the recent advances in the understanding of the role of FAK in the signaling cascade(s) initiated by various mechanical stimuli with particular emphasis on potential implications on endothelial cell functions.  相似文献   

11.
Signalling events downstream the B-cell receptor (BCR) are central for the survival and progression of chronic lymphocytic leukaemia (CLL) cells. Focal adhesion kinase (FAK), regulated through calpain, interacts with molecules of BCR signalling, cytoskeletal modelling and disease progression, such as Src/Lyn, cortactin and HS1. Hypothesizing that FAK might play a key role in CLL pathogenesis, we observed a down-modulation of FAK whole form, associated with FAK cleavage due to calpain activity upon BCR stimulation. Patients, whose cells were able to release Ca++ after BCR stimulation, had less amount of full-length FAK, which translated into a higher presence of cleaved/activated form of the protein phosphorylated at Y397, these features being mostly shown by immunoglobulin heavy chain (IGHV)-unmutated poor-prognosis patients. Moreover, we found that cortactin and HS1 proteins were overexpressed in those cells, suggesting a possible interplay with FAK. Treatment with the FAK inhibitor Defactinib was able to induce apoptosis in CLL cells. In conclusion, the malignant phenotype in unfavourable-prognosis patients seems to be encouraged by the overexpression of cortactin and HS1, that, together with FAK, may be involved in a druggable pathogenetic pathway in CLL.  相似文献   

12.
磷酸化黏着斑激酶在结肠癌中表达及意义   总被引:4,自引:1,他引:4  
目的:观察磷酸化黏着斑激酶(phosphorylatedfocaladhesionkinase,phospho-FAK)在结肠癌组织和对应癌旁组织中的表达,探讨其在结肠癌发病的可能机制.方法:采用Westernbloting方法检测20例新鲜结肠癌及相对应的癌旁组织FAK表达水平,并在调平每对组织FAK的含量后再进行FAKTyr397磷酸化蛋白的检测.结果:20例结肠癌组织FAK阳性表达率为95%,对应癌旁组织FAK阳性表达率为60%(c2=5.16,P<0.05);癌组织表达平均值为0.482±0.150,癌旁表达平均值为0.269±0.015(t=6.39,P<0.01).20例结肠癌组织18例有FAKTyr397磷酸化蛋白表达,表达率为90%,而对应癌旁组织仅有4例有FAKTyr397磷酸化蛋白表达,表达率为20%(c2=17.1,P<0.01);癌组织表达平均值为0.385±0.021,癌旁表达平均值为0.110±0.005(t=54.23,P<0.01).结论:FAK特别是FAKTyr397磷酸化蛋白的表达水平增加在结肠癌的发生、发展中可能起重要作用.  相似文献   

13.
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase localized at focal adhesions and is believed to mediate adhesion-stimulated effects. Although ablation of FAK impairs cell movement, it is not clear whether FAK might be involved in the guidance of cell migration, a role consistent with its putative regulatory function. We have transfected FAK-null fibroblasts with FAK gene under the control of the tetracycline repression system. Cells were cultured on flexible polyacrylamide substrates for the detection of traction forces and the application of mechanical stimulation. Compared with control cells expressing wild-type FAK, FAK-null cells showed a decrease in migration speed and directional persistence. In addition, whereas FAK-expressing cells responded to exerted forces by reorienting their movements and forming prominent focal adhesions, FAK-null cells failed to show such responses. Furthermore, FAK-null cells showed impaired responses to decreases in substrate flexibility, which causes control cells to generate weaker traction forces and migrate away from soft substrates. Cells expressing Y397F FAK, which cannot be phosphorylated at a key tyrosine site, showed similar defects in migration pattern and force-induced reorientation as did FAK-null cells. However, other aspects of F397-FAK cells, including the responses to substrate flexibility and the amplification of focal adhesions upon mechanical stimulation, were similar to that of control cells. Our results suggest that FAK plays an important role in the response of migrating cells to mechanical input. In addition, phosphorylation at Tyr-397 is required for some, but not all, of the functions of FAK in cell migration.  相似文献   

14.
The nonreceptor tyrosine kinase focal adhesion kinase (FAK) is a point of convergence for signals from extracellular matrix, soluble factors, and mechanical stimuli. Targeted disruption of the fak gene in mice leads to death at embryonic day 8.5 (E8.5). FAK-/- embryos have severely impaired blood vessel development. Gene expression and in vitro differentiation studies revealed that endothelial cell differentiation was comparable in FAK-/- and wild-type E8.5 embryos. We examined the role of FAK in blood vessel morphogenesis using an in vitro tubulogenesis assay and three different culture systems: FAK+/+ and FAK-/- embryoid bodies, FAK+/+ and FAK-/- endothelial cells, and human umbilical vein endothelial cells expressing antisense FAK, a dominant-negative fragment of FAK, or wild-type FAK. In all of these systems, endothelial cells deficient in FAK expression or function displayed a severely reduced ability to form tubules in Matrigel. These studies demonstrate clearly that the vascular defects in FAK-/- mice result from the inability of FAK-deficient endothelial cells to organize themselves into vascular networks, rather than from defects in tissue-specific differentiation.  相似文献   

15.
In mammalian testes, such as rats, the mechanism(s) that regulate blood–testis barrier (BTB) restructuring at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis to facilitate the transit of preleptotene/leptotene spermatocytes is not known. This is due to the lack of information on the regulatory proteins at the BTB. Herein, focal adhesion kinase (FAK), a nonreceptor protein tyrosine kinase, is shown to structurally interact with occludin and ZO-1 to form a functional protein complex at the BTB. Its expression at the BTB in the seminiferous epithelium is stage specific, being lowest at stage VIII–IX tubules, analogous to the expression pattern of occludin. Using primary Sertoli cells cultured in vitro with an established tight junction (TJ) permeability barrier that mimics the BTB in vivo, the knockdown of FAK by RNAi led to a transient disruption of the TJ barrier. This was accompanied by a loss of association between occludin and ZO-1, likely the result of reduced occludin phosphorylation at Tyr and Ser residues, but not Thr, which in turn led to a redistribution of occludin at the Sertoli–Sertoli cell interface, moving from cell membrane into cell cytosol, thereby disrupting the BTB. These findings suggest that a similar mechanism is in place in the testis in vivo to regulate BTB restructuring to facilitate the transit of primary spermatocytes. Furthermore, FAK was shown to be a molecular target of cadmium because its knockdown would desensitize Sertoli cells to cadmium-induced TJ barrier disruption. In summary, FAK is a unique regulator of BTB dynamics in the testis.  相似文献   

16.
目的 探讨纤粘连蛋白介导的血管平滑肌细胞粘附和迁移与粘着斑激酶 (focaladhesionkinase ,FAK)的磷酸化的关系。方法 不同浓度的纤粘连蛋白 (fibronectin ,FN)刺激培养的血管平滑肌细胞 (smoothmusclecells,SMCs) ,观察细胞粘附反应 ,统计铺展比率。免疫沉淀和Wsternblot分别检测FAK及FAK磷酸化的表达量。利用改良的BoydenChamber测SMCs迁移。结果 FN有效地促进了SMC粘附 ,其铺展比率、迁移细胞数均显著高于对照 (P <0 0 5 ) ,且随FN浓度递增而增加。其中 2 0、40、6 0 μg ml组分别为 (75 6± 6 5 ) %、(80 9± 5 4) %和 (82 4± 7 9) % ,无组间差异 ,但均高于 5 μg ml的 (2 0 8± 3 2 ) %和 10 μg ml组的 (32 8± 4 7) % ,各组迁移细胞数也从 16 8± 3 6 HFP 2 0 0×增加到48 9± 6 1 HFP 2 0 0×。不同浓度FN作用后均有FAK的表达 ,FN10 μg ml即可致FAK磷酸化。表明FN介导SMCs粘附和迁移时伴有显著的FAK活化。结论 FN诱导平滑肌细胞粘附和迁移可能是通过FAK介导的 ,对其活性进行调控将有助于抑制血管损伤后内膜平滑肌细胞的迁移。  相似文献   

17.
We describe three situations in which a large fraction of circulating red blood cells attach tightly and specifically to fibronectin: (i) rabbits made anemic by repeated bleeding, (ii) patients with hemolytic anemia and functional asplenia and splenectomized normal humans, and (iii) splenectomized mice. Upon induction of anemia in rabbits, the proportion of circulating red blood cells capable of specifically attaching to fibronectin-coated plastic increased in parallel with the number of reticulocytes. Fibronectin-adherent red cells were barely detectable when the rabbit had recovered from the anemia. Attachment of reticulocytes to fibronectin was specific; cells did not attach to dishes coated with albumin, laminin, or collagen. None of these proteins promoted the attachment of normal erythrocytes. About 75% of the erythrocytes from splenectomized mice (but not control mice) also attached specifically to fibronectin 40 days after surgery. The effect of splenectomy was incomplete and transient; adherent cells were not detectable 8 weeks after splenectomy. As judged by labeling studies with [35S]methionine, newly emergent reticulocytes preferentially attached to fibronectin. We suggest that about half of the reticulocytes in erythropoietically unstressed mice lose their ability to attach to fibronectin, possibly due to loss of fibronectin-adhesive components, during passage through the spleen. The others lose their ability to interact with fibronectin before release, in the bone marrow, or in some extrasplenic site.  相似文献   

18.
Focal adhesion kinase (FAK), a broadly expressed non-receptor tyrosine kinase which transduces signals from integrins, growth and hormonal factors, is a key player in many fundamental biological processes and functions, including cell adhesion, migration, proliferation and survival. The involvement of FAK in this range of functions supports its role in important aspects of organismal development and disease, such as central nervous system and cardiovascular development, cancer, cardiac hypertrophy and tissue fibrosis. Many functions of FAK are correlated with its tyrosine kinase activity, which is temporally and spatially controlled by complex intra-molecular autoinhibitory conformation and inter-molecular interactions with protein and lipid partners. The inactivation of FAK in mice results in embryonic lethality attributed to the lack of proper development and function of the heart. Accordingly, embryonic FAK myocyte-specific knockout mice display lethal cardiac defects such as thin ventricle wall and ventricular septum defects. Emerging data also support a role for FAK in the reactive hypertrophy and failure of adult hearts. Moreover, the mechanisms that regulate FAK in differentiated cardiac myocytes to biomechanical stress and soluble factors are beginning to be revealed and are discussed here together with data that connect FAK to its downstream effectors. This article is part of a Special Issue entitled "Local Signaling in Myocytes".  相似文献   

19.
OBJECTIVES--It has previously been shown that the very late antigen-4/vascular cell adhesion molecule-1 (VLA-4/VCAM-1) pathway functions as a receptor/ligand interaction system mediating the recruitment of activated lymphocytes to inflamed synovium of patients with rheumatoid arthritis. This study was performed to determine whether VLA-4 also affects lymphocyte adhesion to inflamed synovium through interaction with the alternatively spliced CS1 domain of fibronectin. METHODS--The effect of the synthetic peptide CS1 on lymphocyte binding to human synovial and peripheral lymph node high endothelial venules (HEVs) was measured in an in vitro frozen section assay. RESULTS--In the presence of the CS1 peptide or antibody to fibronectin, significant inhibition of binding was observed (54 and 51% respectively). Blocking with antibody to VCAM-1 yielded inhibition of binding to 46% of the control value. Maximum inhibition of binding was obtained with a combination of antibody to VCAM-1 and CS1 (65%) and with antibody to VLA-4 alpha (68%). Blocking the classical fibronectin receptor with antibody to VLA-5 alpha gave a slightly lower inhibition at 42%. In normal peripheral lymph nodes, the synthetic peptide CS1 and antibodies to fibronectin and VLA-5 also partially inhibited T cell binding to HEVs (45, 47, and 52% respectively). CONCLUSION--These results show that fibronectin mediates lymphocyte-HEV interactions not only through its classical VLA-5 receptor, but also through its CS1 adhesion motif in inflamed synovium and peripheral lymph nodes.  相似文献   

20.
Clinical application of potent anthracycline anticancer drugs, especially doxorubicin (DOX), is limited by a toxic cardiac side effect that is not fully understood and preventive strategies are yet to be established. Studies in genetically modified mice have demonstrated that focal adhesion kinase (FAK) plays a key role in regulating adaptive responses of the adult myocardium to pathological stimuli through activation of intracellular signaling cascades that facilitate cardiomyocyte growth and survival. The objective of this study was to determine if targeted myocardial FAK activation could protect the heart from DOX-induced de-compensation and to characterize the underlying mechanisms. To this end, mice with myocyte-restricted FAK knock-out (MFKO) or myocyte-specific expression of an active FAK variant (termed SuperFAK) were subjected to DOX treatment. FAK depletion enhanced susceptibility to DOX-induced myocyte apoptosis and cardiac dysfunction, while elevated FAK activity provided remarkable cardioprotection. Our mec6hanistic studies reveal a heretofore unappreciated role for the protective cyclin-dependent kinase inhibitor p21 in the repression of the pro-apoptotic BH3-only protein Bim and the maintenance of mitochondrial integrity and myocyte survival. DOX treatment induced proteasomal degradation of p21, which exacerbated mitochondrial dysfunction and cardiomyocyte apoptosis. FAK was both necessary and sufficient for maintaining p21 levels following DOX treatment and depletion of p21 compromised FAK-dependent protection from DOX. These findings identify p21 as a key determinant of DOX resistance downstream of FAK in cardiomyocytes and indicate that cardiac-restricted enhancement of the FAK/p21 signaling axis might be an effective strategy to preserve myocardial function in patients receiving anthracycline chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号