首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previously we analysed overlapping homozygous deletions in lung and breast tumours/tumour lines and defined a small region of 120 kb (part of LCTSGR1) at 3p21.3 that contained putative lung and breast cancer tumour suppressor gene(s) (TSG). Eight genes including RASSF1 were isolated from the minimal region. However, extensive mutation analysis in lung tumours and tumour lines revealed only rare inactivating mutations. Recently, de novo methylation at a CpG island associated with isoform A of RASSF1 (RASSF1A) was reported in lung tumours and tumour lines. To investigate RASSF1A as a candidate TSG for various cancers, we investigated: (a) RASSF1A methylation status in a large series of primary tumour and tumour lines; (b) chromosome 3p allele loss in lung tumours and (c) RASSF1 mutation analysis in breast tumours. RASSF1A promoter region CpG island methylation was detected in 72% of SCLC, 34% of NSCLC, 9% of breast, 10% of ovarian and 0% of primary cervical tumours and in 72% SCLC, 36% NSCLC, 80% of breast and 40% of ovarian tumour lines. In view of the lower frequency of RASSF1 methylation in primary breast cancers we proceeded to RASSF1 mutation analysis in 40 breast cancers. No mutations were detected, but six single nucleotide polymorphisms were identified. Twenty of 26 SCLC tumours with 3p21.3 allelic loss had RASSF1A methylation, while only six out of 22 NSCLC with 3p21.3 allele loss had RASSF1A methylation (P=0.0012), one out of five ovarian and none out of six cervical tumours with 3p21.3 loss had RASSF1A methylation. These results suggest that (a) RASSF1A inactivation by two hits (methylation and loss) is a critical step in SCLC tumourigenesis and (b) RASSF1A inactivation is of lesser importance in NSCLC, breast, ovarian and cervical cancers in which other genes within LCTSGR1 are likely to be implicated.  相似文献   

2.
3.
Over-expression of de novo lipogenesis (DNL) genes is associated with the prognosis of various types of cancers. However, the effects of single nucleotide polymorphisms (SNPs) in these genes on recurrence and survival of non-small cell lung cancer (NSCLC) patients after surgery are still unknown. In this study, a total of 500 NSCLC patients who underwent surgery treatment were included. Eight SNPs in 3 genes (ACACA, FASN and ACLY) of the DNL pathway were examined using the Sequenom iPLEX genotyping system. Multivariate Coxproportional hazards regression and Kaplan-Meier curves were used to analyze the association of SNPs with patient survival and tumour recurrence. We found that two SNPs in the FASN gene were significantly associated with the recurrence of NSCLC. SNP rs4246444 had a significant association with lung cancer recurrence under additive model (hazard ratio [HR], 0.82; 95% confidence interval [95%CI], 0.67-1.00; p=0.05). Under the dominant model, rs4485435 exhibited a significant association with recurrence (HR, 0.75; 95%CI, 0.56-1.01; p=0.05). Additionally, SNP rs9912300 in ACLY gene was significantly associated with overall survival in lung cancer patients (HR, 1.41; 95%CI, 1.02-1.94, p=0.04) under the dominant model. Further cumulative effect analysis showed moderate dose-dependent effects of unfavorable SNPs on both survival and recurrence. Ourdata suggest that the SNPs in DNL genes may serve as independent prognostic markers for NSCLC patients after surgery.  相似文献   

4.
背景与目的50%-80%的非小细胞肺癌存在染色体短臂3p21.3上等位基因的丢失,提示可能存在多个潜在的抑瘤基因。本研究通过大规模筛选3p21.3区相关基因在肺癌中的表达,以期找到数个肺癌相关抑瘤基因。方法应用生物信息学方法,选择出11个位于该区与肿瘤密切相关的基因,RT-PCR检测16例非小细胞肺癌及配对组织标本中11个基因的表达,并进行相关统计分析。结果在11个基因中,5个基因[RASSF1A43.8%(7/16),GNAT137.5%(6/16),SEMA3B62.5%(10/16),SEMA3F50%(8/16),Blu56.3%(9/16)]在非小细胞肺癌组织中表达下调或缺失(P<0.05);其余6个基因ZNF35、NPRL2、LTF、AXUD1、BAP1和FUS1的表达,在非小细胞肺癌及配对组织标本的表达无统计学差异。结论肺癌组织中3p21.3区有多个基因参与了肺癌的发生发展。  相似文献   

5.
Lung cancer is one of the leading causes of death in the world. The underlying cause for lung cancer has been attributed to various factors that include alteration and mutation in the tumor suppressor genes. Restoration of normal function of the tumor suppressor gene is a potential therapeutic strategy. Recent studies have identified a group of candidate tumor suppressor genes on human chromosome 3p21.3 that are frequently deleted in human lung and breast cancers. Among the various genes identified in the 3p21.3 region, we tested the antitumor activity of the FUS1 gene in two human non-small-cell lung cancer (NSCLC) xenografts in vivo. Intratumoral administration of FUS1 gene complexed to DOTAP:cholesterol (DOTAP:Chol) liposome into subcutaneous H1299 and A549 lung tumor xenograft resulted in significant (P = .02) inhibition of tumor growth. Furthermore, intravenous injections of DOTAP:Chol-FUS1 complex into mice bearing experimental A549 lung metastasis demonstrated significant (P = .001) decrease in the number of metastatic tumor nodules. Finally, lung tumor-bearing animals when treated with DOTAP:Chol-FUS1 complex demonstrate prolonged survival (median survival time: 80 days, P = .01) compared to control animals. This result demonstrates the potent tumor suppressive activity of the FUS1 gene and is a promising therapeutic agent for treatment of primary and disseminated human lung cancer.  相似文献   

6.
Chromosomal deletions are a common feature of epithelial tumours and when further defined by homozygous deletions, are often the location of tumour suppressor genes. Deletions within the short arm of chromosome 3 occur very frequently in human carcinomas: a minimal region of loss at 3p21.3 (the Luca) region has been defined by overlapping homozygous deletions in lung and breast cancer cell lines. Using a rapid strategy for Cre-loxP chromosome engineering, a deletion of approximately 370 kb was created in the mouse germline corresponding to the deleted region at 3p21.3. The deletion when homozygous is embryonic lethal. Heterozygotes develop normally despite being haplo-insufficient for twelve genes including the candidate tumour suppressor gene Rassf1. Because damage to 3p21.3 often occurs very early in the sequence of genetic changes that lead to malignancy, particularly in lung and breast cancer, further genetic damage to these mice will provide the opportunity to model multi-step tumorigenesis of these tumours.  相似文献   

7.
In this study, we observed loss of heterozygosity (LOH) in human chromosomal fragment 6q25.1 in sporadic lung cancer patients. LOH was observed in 65% of the 26 lung tumors examined and was narrowed down to a 2.2-Mb region. Single-nucleotide polymorphism (SNP) analysis of genes located within this region identified a candidate gene, termed p34. This gene, also designated as ZC3H12D, C6orf95, FLJ46041, or dJ281H8.1, carries an A/G nonsynonymous SNP at codon 106, which alters the amino acid from lysine to arginine. Nearly 73% of heterozygous lung cancer tissues with LOH and the A/G SNP also exhibited loss of the A allele. In vitro clonogenic and in vivo nude mouse studies showed that overexpression of the A allele exerts tumor suppressor function compared with the G allele. p34 is located within a recently mapped human lung cancer susceptibility locus, and association of the p34 A/G SNP was tested among these families. No significant association between the less frequent G allele and lung cancer susceptibility was found. Our results suggest that p34 may be a novel tumor suppressor gene involved in sporadic lung cancer but it seems not to be the candidate familial lung cancer susceptibility gene linked to chromosomal region 6q23-25.  相似文献   

8.
Deng WG  Wu G  Ueda K  Xu K  Roth JA  Ji L 《Cancer gene therapy》2008,15(1):29-39
FUS1 is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. We previously showed that restoration of FUS1 function in 3p21.3-deficient human non-small-cell lung cancer (NSCLC) cells significantly inhibited tumor cell growth in vitro and in vivo. In this study, we evaluated the combined effects of the tumor suppressor FUS1 and the chemotherapeutic drug cisplatin on tumor cell growth and apoptosis induction in NSCLC cells, and explored the molecular mechanism of their mutual action. Exogenous expression of FUS1 by nanoparticle-mediated gene transfer sensitized the response of NSCLC cells to cisplatin, resulting in a 4- to 6-fold increase in tumor-suppressing activity. A systemic treatment with a combination of FUS1-nanoparticles and cisplatin in a human H322 lung cancer orthotopic xenograft mouse model dramatically enhanced the therapeutic efficacy of cisplatin. We also found that the FUS1-enhanced chemosensitivity is associated with the downregulation of MDM2, accumulation of p53 and activation of the Apaf-1-dependent apoptosis pathway. Our results demonstrated an important role of FUS1 in modulating chemosensitivity of lung cancer cells, and suggested that a proper combination of molecular therapeutics such as the proapoptotic tumor suppressor FUS1 and the conventional chemotherapeutic drugs such as cisplatin may be an efficient treatment strategy for human lung cancer.  相似文献   

9.
We report chromosome 3p deletion mapping of 32 cervical carcinoma (CC) biopsies using 26 microsatellite markers located in frequently deleted 3p regions to detect loss of heterozygosity and homozygous loss. In addition, two STS markers (NLJ-003 and NL3-001) located in the 3p21.3 telomeric (3p21.3T) and 3p21.3 centromeric (3p21.3C) regions, respectively, were used for quantitative real-time PCR as TaqMan probes. We show that quantitative real-time PCR is reliable and sensitive and allows discriminating between 0, 1 and 2 marker copies per human genome. For the first time, frequent (five of 32 cases, i.e. 15.6%) homozygous deletions were demonstrated in CCs in both 3p21.3T and 3p21.3C regions. The smallest region homozygously deleted in 3p21.3C was located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene) and contains 17 genes previously defined as lung cancer candidate Tumor suppressor genes (TSG(s)). The smallest region homozygously deleted in 3p21.3T was flanked by D3S1298 and NL1-024 (D3S4285), excluding DLEC1 and MYD88 as candidate TSGs involved in cervical carcinogenesis. Overall, this region contains five potential candidates, namely GOLGA4, APRG1, ITGA9, HYA22 and VILL, which need to be analysed. The data showed that aberrations of either NLJ-003 or NL3-001 were detected in 29 cases (90.6%) and most likely have a synergistic effect (P<0.01). The study also demonstrated that aberrations in 3p21.3 were complex and in addition to deletions, may involve gene amplification as well. The results strongly suggest that 3p21.3T and 3p21.3C regions harbor genes involved in the origin and/or development of CCs and imply that those genes might be multiple TSG(s).  相似文献   

10.
A group of candidate tumor suppressor genes (designated CACNA2D2, PL6, 101F6, NPRL2, BLU, RASSF1, FUS1, HYAL2, and HYAL1) has been identified in a 120-kb critical tumor homozygous deletion region (found in lung and breast cancers) of human chromosome 3p21.3. We studied the effects of six of these 3p21.3 genes (101F6, NPRL2, BLU, FUS1, HYAL2, and HYAL1) on tumor cell proliferation and apoptosis in human lung cancer cells by recombinant adenovirus-mediated gene transfer in vitro and in vivo. We found that forced expression of wild-type FUS1, 101F6, and NPRL2 genes significantly inhibited tumor cell growth by induction of apoptosis and alteration of cell cycle processes in 3p21.3 120-kb region-deficient (homozygous) H1299 and A549 cells but not in the 3p21.3 120-kb region-heterozygous H358 and the normal human bronchial epithelial cells. Intratumoral injection of Ad-101F6, Ad-FUS1, Ad-NPRL2, and Ad-HYAL2 vectors or systemic administration of protamine-complexed vectors significantly suppressed growth of H1299 and A549 tumor xenografts and inhibited A549 experimental lung metastases in nu/nu mice. Together, our results, coupled with other studies demonstrating a tumor suppressor role for the RASSSF1A isoform, suggest that multiple contiguous genes in the 3p21.3 120-kb chromosomal region may exhibit tumor suppressor activity in vitro and in vivo.  相似文献   

11.
FUS1 is a novel tumor suppressor gene identified in human chromosome 3p21.3 region. Loss of expression and deficiency of posttranslational modification of FUS1 protein have been found in a majority of human lung cancers. Restoration of wild-type FUS1 in 3p21.3-deficient human lung cancer cells exhibited a potent tumor suppression function in vitro and in vivo. In this study, we evaluated the combined effects of FUS1 and tumor suppressor p53 on antitumor activity and explored the molecular mechanisms of their mutual actions in human non-small cell lung cancer (NSCLC) cells. We found that coexpression of FUS1 and p53 by N-[1-(2,3-dioleoyloxyl)propyl]-NNN-trimethylammoniummethyl sulfate:cholesterol nanoparticle-mediated gene transfer significantly and synergistically inhibited NSCLC cell growth and induced apoptosis in vitro. We also found that a systemic treatment with a combination of FUS1 and p53 nanoparticles synergistically suppressed the development and growth of tumors in a human H322 lung cancer orthotopic mouse model. Furthermore, we showed that the observed synergistic tumor suppression by FUS1 and p53 concurred with the FUS1-mediated down-regulation of murine double minute-2 (MDM2) expression, the accumulation and stabilization of p53 protein, as well as the activation of the apoptotic protease-activating factor 1 (Apaf-1)-dependent apoptotic pathway in human NSCLC cells. Our results therefore provide new insights into the molecular mechanism of FUS1-mediated tumor suppression activity and imply that a molecular therapy combining two or more functionally synergistic tumor suppressors may constitute a novel and effective strategy for cancer treatment.  相似文献   

12.
13.
14.
We searched for chromosome 3p homo- and hemizygous losses in 23 lung cancer cell lines, 53 renal cell and 22 breast carcinoma biopsies using 31 microsatellite markers located in frequently deleted 3p regions. In addition, two sequence-tagged site markers (NLJ-003 and NL3-001) located in the Alu-PCR clone 20 region (AP20) and lung cancer (LUCA) regions, respectively, were used for quantitative real-time PCR (QPCR). We found frequent (10-18%) homozygous deletions (HDs) in both 3p21.3 regions in the biopsies and lung cancer cell lines. In addition, we discovered that amplification of 3p is a very common (15-42.5%) event in these cancers and probably in other epithelial malignancies. QPCR showed that aberrations of either NLJ-003 or NL3-001 were detected in more than 90% of all studied cases. HDs were frequently detected simultaneously both in NLJ-003 or NL3-001 loci in the same tumour (P<3-10(-7)). This observation suggests that tumour suppressor genes (TSG) in these regions could have a synergistic effect. The exceptionally high frequency of chromosome aberrations in NLJ-003 and NL3-001 loci suggests that multiple TSG(s) involved in different malignancies are located very near to these markers. Precise mapping of 15 independent HDs in the LUCA region allowed us to establish the smallest HD region in 3p21.3C located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene). This region contains 17 genes. Mapping of 19 HDs in the AP20 region resulted in the localization of the minimal region to the interval flanked by D3S1298 and D3S3623 markers. Only four genes were discovered in this interval, namely, APRG1, ITGA9, HYA22 and VILL.  相似文献   

15.
101F6 is a candidate tumor suppressor gene harbored on chromosome 3p21.3, a region with frequent and early allele loss and genetic alterations in many human cancers. We previously showed that enforced expression of wild-type 101F6 by adenoviral vector-mediated gene transfer significantly inhibited tumor cell growth in 3p21.3-deficient non-small cell lung cancer (NSCLC) cells in vitro and in vivo. The molecular mechanism of 101F6-mediated tumor suppression is largely unknown. A computer-aided structural and functional model predicts the 101F6 protein to be a member of the cytochrome b561 protein family that is involved in the regeneration of the antioxidant ascorbate. 101F6 protein is expressed in normal lung bronchial epithelial cells and fibroblasts but is lost in most lung cancers. Treatment with 101F6 nanoparticle-mediated gene transfer in combination with a subpharmacologic dose (200-500 micromol/L) of ascorbate synergistically and selectively inhibited lung cancer cell growth in vitro. Systemic injection of 101F6 nanoparticles plus the i.p. injection of ascorbate synergistically inhibited both tumor formation and growth in human NSCLC H322 orthotopic lung cancer mouse models (P<0.001). Furthermore, exogenous expression of 101F6 enhanced intracellular uptake of ascorbate, leading to an accumulation of cytotoxic H(2)O(2) and a synergistic killing of tumor cells through caspase-independent apoptotic and autophagic pathways. The antitumor synergism showed by the combination treatment with systemic administration of 101F6 nanoparticles and ascorbate on lung cancer offers an attractive therapeutic strategy for future clinical trials in cancer prevention and treatment.  相似文献   

16.
Genetic lesions in chromosomal region 3p21.3 marks one of the earliest events in human lung cancer development. It is hypothesized that one or more tumor suppressor genes reside in this region. Identification and characterization of these genes are important for the understanding of lung cancer initiation. UBE1L (UBA7) is a long-suspected 3p21.3 residing tumor suppressor gene. It encodes the key enzyme that activates ISGylation, a novel, ubiquitination-like, post-translational protein modification system that is inducible by interferon. It has been implicated that ISGylation plays a variety of biological roles ranging from viral defense to tumor surveillance. Here we tested the possible function of ISGylation during lung cancer development by using the Ube1l-deficient mice and the K-ras(LA2) lung cancer mice. Protein ISGylation levels were largely unchanged during lung cancer progression. Ube1l deficiency neither altered the lung cancer progression nor affected the overall survival of K-ras(LA2) lung cancer mice. Our study suggests that Ube1l is not a tumor suppressor gene in K-ras(LA2) lung cancer mouse model. However, as described in the discussion, additional studies with other lung cancer mouse models will be necessary to elucidate the potential tumor suppressor function of UBE1L in K-RAS mutation independent human lung cancers.  相似文献   

17.
Contrary to the recent hypothesis that S100A2 is a tumour suppressor, no somatic mutations have yet been identified. We therefore screened 90 non-small cell lung carcinoma (NSCLC) samples, initially for mutations in S100A2 and then also for mutations in P53 and K-RAS genes. Alterations were detected in 46.7% of squamous lung cancer (SCC) samples, but we detected only one novel tumour specific mutation, Q23X in squamous carcinoma. We detected four polymorphisms, two of them published for the first time (144+109 C/G and 297+75A/G) and two already published: S62N, in the coding region and related to squamous cell carcinoma (SCC), and 297+17T/C. Analysis of S100A2 expression revealed that expression in adenocarcinomas and squamous cell carcinomas is significantly different, but not related to any of the found alterations. In one tumour with S62N polymorphism, P53 and K-RAS genes were also mutated, while two tumours with the Q23X mutation have a P53 but no K-RAS mutation. To the best of our knowledge, this is the first report describing alterations in the S100A2 gene proving a relation between changes in predominantly squamous lung cancer.  相似文献   

18.
Non-small cell lung cancer frequently shows loss of heterozygosity of the chromosome 3p21.3 region and several genes such as RASSF1A, BLU, and SEMA3B have been identified as candidate tumor suppressor genes at this region since their downregulation and hypermethylation at their promoter regions were frequently detected in lung cancer. To determine whether these three genes are simultaneously inactivated during lung cancer development, we studied 138 primary non-small cell lung cancers for the promoter methylation status of these genes and allelic loss of the chromosome 3p21.3 region. We found promoter hypermethylation at 32% in RASSF1A, 30% in BLU, and 47% in SEMA3B. Allelic loss of 3p21.3 was detected in 54 (58%) of 93 informative tumors. Despite the weak association of methylation status among these three genes, there was no correlation between the methylation status of each gene and loss of heterozygosity. We also studied possible genes downstream of RASSF1A in 16 primary non-small cell lung cancers and found that the expressions of SM22 and SPARC were significantly downregulated in RASSF1A-hypermethylated tumors. Our results showed that, while candidate tumor suppressor genes at this locus can be simultaneously inactivated by epigenetic alterations, loss of heterozygosity without any hypermethylation of the three genes can also occur in some cases, suggesting that just one allelic loss might also be sufficient for the inactivation of any of these genes for lung cancer development.  相似文献   

19.
The beta-catenin gene (CTNNB1) has been shown to be genetically mutated in various human malignancies. To determine whether the beta-catenin gene is responsible for oncogenesis in thoracic malignancies, we searched for the mutation in 166 lung cancers (90 primary tumors and 76 cell lines), one blastoma and 10 malignant mesotheliomas (two primary tumors and eight cell lines). Among the lung cancers, including 43 small cell lung cancers (SCLCs) and 123 non-small cell lung cancers (NSCLCs), we identified four alterations in exon 3, which is the target region of mutation for stabilizing beta-catenin. One primary adenocarcinoma had a somatic mutation from C to G, leading to an amino acid substitution from Ser to Cys at codon 37. Among the cell lines, SCLC NCI-H1092 had a mutation from A to G, leading to an Asp to Gly substitution at codon 6, NSCLC HCC15 had a mutation from C to T, leading to a Ser to Phe substitution at codon 45, and NSCLC NCI-H358 had a mutation from A to G, leading to a Thr to Ala substitution at codon 75. One blastoma also had a somatic mutation from C to G, leading to a Ser to Cys substitution at codon 37. Among the 10 malignant mesotheliomas, we identified a homozygous deletion in the NCI-H28 cell line. Cloning of the rearranged fragment from NCI-H28 indicated that all the exons except exon 1 of the beta-catenin gene are deleted and that the deletion junction is 13 kb downstream from exon 1. Furthermore, Northern blot analysis of 26 lung cancer and eight mesothelioma cell line RNAs detected ubiquitous expression of the beta-catenin messages except NCI-H28, although Western blot analysis showed that relatively less amounts of protein products were expressed in some of lung cancer cell lines. Our findings suggest that the beta-catenin gene is infrequently mutated in lung cancer and that the NCI-H28 homozygous deletion of the beta-catenin gene might indicate the possibility of a new tumor suppressor gene residing in this region at 3p21.3, where various types of human cancers show frequent allelic loss.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号