首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jang IS  Nakamura M  Ito Y  Akaike N 《Neuroscience》2006,138(1):25-35
Mossy fiber-derived giant spontaneous miniature excitatory postsynaptic currents have been suggested to be large enough to generate action potentials in postsynaptic CA3 pyramidal neurons. Here we report on the functional roles of presynaptic GABA(A) receptors on excitatory terminals in contributing to spontaneous glutamatergic transmission to CA3 neurons. In mechanically dissociated rat hippocampal CA3 neurons with adherent presynaptic nerve terminals, spontaneous excitatory postsynaptic currents were recorded using conventional whole-cell patch clamp recordings. In most recordings, unusually large spontaneous excitatory postsynaptic currents up to 500 pA were observed. These large spontaneous excitatory postsynaptic currents were highly sensitive to group II metabotropic glutamate receptor activation, and were still observed even after the blockade of voltage-dependent Na(+) or Ca(2+) channels. Exogenously applied muscimol (0.1-3 microM) significantly increased the frequency of spontaneous excitatory postsynaptic currents including the large ones. This facilitatory effect of muscimol was completely inhibited in the presence of 10 microM 6-imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid HBr, a specific GABA(A) receptor antagonist. Pharmacological data suggest that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. In the current-clamp condition, a subset of large spontaneous excitatory postsynaptic potentials triggered action potentials, and muscimol greatly increased the frequency of spontaneous excitatory postsynaptic potential-triggered action potentials in postsynaptic CA3 pyramidal neurons. The results suggest that presynaptic GABA(A) receptors on glutamatergic terminals play an important role in the excitability of CA3 neurons as well as in the presynaptic modulation of glutamatergic transmission onto hippocampal CA3 neurons.  相似文献   

2.
Orexin (hypocretin) peptides are known to depolarize rat thalamic paraventricular nucleus (PVT) neurons by suppression of one or more undefined potassium conductances. Here, we investigated a contribution of TWIK-related acid-sensitive K+ (TASK) channels to the resting membrane potential and orexin-induced depolarization of PVT neurons, using patch clamp recording techniques in brain slice preparations. Upon exposure to an acidic (pH 6.3) extracellular solution, PVT neurons displayed membrane depolarization. Under voltage-clamp and in the presence of tetrodotoxin (TTX, 0.5 μM), low pH solutions induced an inward shift in baseline membrane current, accompanied by a net decrease in membrane conductance, reversing close to the potassium equilibrium potential. By contrast, exposure to alkaline (pH 8.3) solutions resulted in membrane hyperpolarization, induced an outward shift in baseline membrane current and an increase in net conductance that reversed close to the potassium equilibrium potential. A local anesthetic bupivacaine (20–40 μM) and the endocannabinoid anandamide (5–10 μM) mimicked the effects of the acidic solution. Exposure to the volatile anesthetic isoflurane (0.2–0.5 mM) induced changes in resting membrane potential, baseline current and membrane conductance similar to those caused by the alkaline solution. Although responsiveness to orexins was preserved under each of the above conditions, the amplitude of the orexin B (0.5 μM)-induced inward current was depressed in the acidic solution and in the presence of anandamide, remained largely unchanged in the alkaline solution, and was enhanced by isoflurane when compared with that in normal artificial cerebrospinal solution. We conclude that pH-sensitive potassium channels, TASK-1 and TASK-3 channels, contribute substantially to the resting membrane conductance(s) and excitability in PVT neurons. The observations that orexin-induced currents were affected by putative TASK-specific drugs in a manner predictable from their effects on TASK channels also suggest that the orexin-induced excitation in PVT neurons is mediated by closure of TASK channels.  相似文献   

3.
Cardiovascular and behavioral responses to circulating angiotensin require intact connectivity along the upper lamina terminalis joining the subfornical organ (SFO) with the median preoptic nucleus (MnPO). Whole cell patch-clamp recordings in sagittal rat brain slice preparations revealed that 28/40 MnPO neurons responded to electrical stimulation of SFO efferents with bicuculline-sensitive GABA(A) receptor-mediated inhibition and glutamate-mediated postsynaptic excitation involving AMPA and N-methyl-d-aspartate (NMDA) receptor subtypes, blockable with 2,3-dioxo-6nitro-1, 2,3,4-tetrahydrobenzo [f] quinoxaline-7-sulfoamide disodium (NBQX) and d-2-amino-4-phosphonovaleric acid (d-APV), respectively. Bath applications of baclofen induced a concentration-dependent (0.3-10 microM) reduction in these SFO-evoked postsynaptic currents, attenuation of SFO-evoked paired-pulse depression, and reduction in frequency (but not amplitude) of miniature postsynaptic currents, consistent with an action at presynaptic GABA(B) receptors. Baclofen's effects on miniature currents lacked sensitivity to barium, omega-conotoxin GVIA, and cadmium. Acting at postsynaptic GABA(B) receptors, baclofen hyperpolarized a majority of MnPO neurons by increasing a G protein-coupled inwardly rectifying potassium conductance and suppressing an N-type high-voltage-activated calcium conductance. The latter contributed to reduction in action potential afterhyperpolarization and enhanced cell firing and spike frequency adaptation when tested with a depolarizing stimulus. All baclofen-induced effects were blockable with CGP52432. CGP52432 alone had no significant effect on SFO-evoked postsynaptic current amplitudes or paired-pulse ratios, but did induce an increase in miniature inhibitory postsynaptic current (mIPSC) frequency in 2/4 cells tested, indicating that ambient levels of GABA could activate presynaptic GABA(B) receptors on undefined inputs. These observations indicate that MnPO neurons receive both a GABAergic and glutamatergic innervation from SFO. Both forms of rapid neurotransmission are subject to modulation via pre- and postsynaptic GABA(B) receptors.  相似文献   

4.
The thalamic paraventricular nucleus (PVT) receives a dense innervation from orexin-synthesizing lateral hypothalamic neurons. Since PVT neurons display state-dependent tonic or low threshold spike-driven burst firing patterns, we examined how the response to exogenously applied orexins might modulate these features. Data were obtained with whole-cell patch clamp recording techniques in rat brain slices prepared during the subjective lights-on period. PVT neurons displayed a mean resting membrane potential of -61+/-6 mV and input conductance of 1.3+/-0.1 nS (n=60). The majority (90/107) of cells tested responded to orexin A and/or orexin B peptides (100-1000 nM), each inducing similar slowly rising and prolonged membrane depolarizations. We next evaluated associated changes in firing patterns and action potential frequency. Of 17 spontaneously silent neurons, 5 were induced into tonic firing and 4 into burst firing modes. Of nine spontaneously bursting neurons, three displayed an increase in burst frequency and in the number of action potentials within a burst. By contrast, another six cells were induced into tonic firing mode, with a marked decrease in instantaneous firing frequency and a shift in their excitatory postsynaptic potential-evoked responses from burst firing patterns to single action potentials. Under voltage clamp, orexins induced inward current (-21.8+/-2.4 pA at -60 mV) in 20/22 cells. In 13 cells, current-voltage (I-V) plots revealed a decrease in net conductance and reversal at -110+/-9 mV, while 3 cells displayed an increase in net conductance that reversed at -26+/-8 mV. These observations imply suppression of potassium and/or induction of nonselective cationic conductances in orexin-induced depolarization in PVT neurons, permitting these peptides to modulate intrinsic state-dependent properties. In vivo, such changes in firing patterns and frequency of action potential discharges could influence neurotransmission through PVT and activity-dependent synaptic plasticity at target sites of these neurons.  相似文献   

5.
The nucleus accumbens (NAc) of the ventral striatum is involved in attention, motivation, movement, learning, reward, and addiction. GABAergic medium spiny projection neurons that make up approximately 90% of the neuronal population are commonly driven by convergent bursts of afferent excitation. We monitored spiny projection neurons in mouse striatal slices while applying stimulus trains to mimic bursts of excitation. A stimulus train evoked a simple, short-lived postsynaptic response from CA1 hippocampal pyramidal neurons, but the train evoked a complex series of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) from the NAc spiny projection neurons. As is commonly seen with projection neurons, the EPSC amplitudes initially displayed facilitation followed by depression, and that pattern was sensitive to the extracellular calcium concentration. In addition, there were two other novel observations. The spiny projection neurons responded to the stimulus train with a prolonged depolarization that was accompanied by a posttrain increase of spontaneous glutamatergic synaptic activity. Blocking AMPA/kainate glutamate receptors strongly inhibited the evoked EPSP/EPSCs, the posttrain spontaneous synaptic activity, and the prolonged depolarization. A potassium channel inhibitor increased and extended the prolonged postsynaptic depolarization, causing a long-lasting depolarized plateau potential. Our results indicate that burst-like activity along ventral striatal afferents is extended in time by additional spontaneous glutamate release that is integrated by the postsynaptic spiny projection neurons into a prolonged depolarization. The results suggest that the posttrain quantal glutamate release helps to blend and maintain multiple afferent inputs. That convergent excitation is further integrated by the postsynaptic neuron into a prolonged depolarization that may contribute to the depolarized "up state" observed in vivo.  相似文献   

6.
Zhang L  Kolaj M  Renaud LP 《Neuroscience》2006,141(4):2059-2066
The hypothalamic suprachiasmatic nucleus uniquely projects to the midline thalamic paraventricular nucleus. To characterize this projection, patch clamp techniques applied in acute rat brain slice preparations examined responses of anterior thalamic paraventricular nucleus neurons to focal suprachiasmatic nucleus stimulation. Whole cell recordings from slices obtained during daytime (n=40) revealed neurons with a mean membrane potential of -66+/-1.2 mV, input conductance of 1.5+/-0.1 nS and state-dependent tonic or burst firing patterns. Electrical stimulation (one or four pulses) in suprachiasmatic nucleus elicited monosynaptic excitatory postsynaptic potentials (mean latency of 12.6+/-0.6 ms; n=12), featuring both AMPA and N-methyl-D-aspartate-glutamate receptor-mediated components, and monosynaptic bicuculline-sensitive inhibitory postsynaptic potentials (mean latency of 16.6+/-0.6 ms; n=7) reversing polarity at -72+/-2.6 mV, close to the chloride equilibrium potential. Glutamate microstimulation of suprachiasmatic nucleus also elicited transient increases in spontaneous excitatory or inhibitory postsynaptic currents in anterior thalamic paraventricular neurons. Recordings from rats under reverse light/dark conditions (n=22) yielded essentially similar responses to electrical stimulation. At depolarized membrane potentials, suprachiasmatic nucleus-evoked excitatory postsynaptic potentials triggered single action potentials, while evoked inhibitory postsynaptic potentials elicited a silent period in ongoing tonic firing. By contrast, after manual adjustment of membrane potentials to hyperpolarized levels, neuronal response to the same "excitatory" stimulus was a low threshold spike and superimposed burst firing, while responses to "inhibitory" stimuli paradoxically elicited excitatory rebound low threshold spikes and burst firing. These data support the existence of glutamatergic and GABAergic efferents from the suprachiasmatic nucleus to its target neurons. Additionally, in thalamic paraventricular nucleus neurons, responses to activation of their suprachiasmatic afferents may vary in accordance with their membrane potential-dependent intrinsic properties, a characteristic typical of thalamocortical neurons.  相似文献   

7.
Focal developmental abnormalities in neocortex, including ectopic collections of neurons in layer I (ectopias), have been associated with behavioral and neurological deficits. In this study, we used infrared differential interference contrast microscopy and whole cell patch-clamp to complete the first characterization of neurons within and surrounding neocortical ectopias. Current-clamp recordings revealed that neurons within ectopias display multiple types of action potential firing patterns, and biocytin labeling indicated that approximately 20% of the cells in neocortical ectopias can be classified as nonpyramidal cells and the rest as atypically oriented pyramidal cells. All cells had spontaneous excitatory (glutamatergic) and inhibitory (GABAergic) postsynaptic currents. Exhibitory postsynaptic currents consisted of both N-methyl-D-aspartate (NMDA) receptor-mediated and AMPA/kainate (A/K) receptor-mediated currents. The NMDA receptor-mediated component had decay time constants of 15.35 +/- 2.2 (SE) ms, while the A/K component had faster decay kinetics of 7.6 +/- 1.7 ms at -20 mV. GABA(A) receptor-mediated synaptic currents in ectopic cells reversed at potentials near the Cl- equilibrium potential and had decay kinetics of 16.65 +/- 1.3 ms at 0 mV. Furthermore we show that cells within ectopias receive direct excitatory and inhibitory input from adjacent normatopic cortex and can display a form of epileptiform activity.  相似文献   

8.
In the hippocampus, glutamatergic inputs to pyramidal neurons and interneurons are modulated by alpha7* and alpha3beta4* nicotinic acetylcholine receptors (nAChRs), respectively, present in glutamatergic neurons. This study examines how nicotinic AMPA, and NMDA receptor nAChR activities are integrated to regulate the excitability of CA1 stratum radiatum (SR) interneurons in rat hippocampal slices. At resting membrane potentials and in the presence of extracellular Mg2+ (1 mM), nicotinic agonists triggered in SR interneurons excitatory postsynaptic currents (EPSCs) that had two components: one mediated by AMPA receptors, and the other by NMDA receptors. As previously shown, nicotinic agonist-triggered EPSCs resulted from glutamate released by activation of alpha3beta4* nAChRs in glutamatergic neurons/fibers synapsing directly onto the neurons under study. The finding that CNQX caused more inhibition of nicotinic agonist-triggered EPSCs than expected from the blockade of postsynaptic AMPA receptors indicated that this nicotinic response also depended on the AMPA receptor activity in the glutamatergic neurons synapsing onto the interneuron under study. Nicotinic agonists always triggered action potentials in CA1 SR interneurons. In most interneurons, these action potentials resulted from activation of somatodendritic AMPA receptors and alpha7* nAChRs. In interneurons expressing somatodendritic alpha4beta2* nAChRs, activation of these receptors caused sufficient membrane depolarization to remove the Mg2+-induced block of somatodendritic NMDA receptors; in these neurons, nicotinic agonist-triggered action potentials were partially dependent on NMDA receptor activation. Removing extracellular Mg2+ or clamping the neuron at positive membrane potentials revealed the existence of a tonic NMDA current in SR interneurons that was unaffected by nAChR activation or inhibition. Thus integration of the activities of nAChRs, NMDA, and AMPA receptors in different compartments of CA1 neurons contributes to the excitability of CA1 SR interneurons.  相似文献   

9.
Dopamine (DA) is an endogenous neuromodulator in the mammalian brain. However, it is still controversial how DA modulates excitability and input-output relations in cortical neurons. It was suggested that DA innervation of dendritic spines regulates glutamatergic inputs to pyramidal neurons, but no experiments were done to test this idea. By recording individual neurons under direct visualization we found that DA enhances inhibitory neuron excitability but decreases pyramidal cell excitability, through depolarization and hyperpolarization, respectively. Accordingly, DA also increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). In the presence of TTX, DA did not affect the frequency, amplitude, or kinetics of miniature IPSCs and excitatory postsynaptic currents in inhibitory interneurons or pyramidal cells. Our results suggest that DA can directly excite cortical interneurons, but there is no detectable DA gate to regulate spontaneous GABA and glutamate release or the properties of postsynaptic GABA and glutamate receptors in neocortical neurons.  相似文献   

10.
Zheng F  Johnson SW 《Neuroscience》2003,119(2):453-460
The effects of metabotropic glutamate receptor (mGluR) activation on non-dopamine (putative GABAergic) neurons and inhibitory synaptic transmission in the ventral tegmental area were examined using intracellular recordings from rat midbrain slices. Perfusion of (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD; agonist for group I and II mGluRs), but not L-amino-4-phosphonobutyric acid (L-AP4; agonist for group III mGluRs), produced membrane depolarization (current clamp) and inward current (voltage clamp) in non-dopamine neurons. The t-ACPD-induced depolarization was concentration-dependent (concentration producing 50% maximal depolarization [EC(50)]=6.1+/-2.5 microM), and was blocked by the antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine, but not by tetrodotoxin and ionotropic glutamate-receptor antagonists. The t-ACPD-evoked responses were mimicked comparably by selective group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG). Furthermore, the DHPG-induced depolarization in non-dopamine neurons was greatly reduced by mGluR1-specific antagonist 7(hydroxyimino)cyclopropachromen-1a-carboxylate ethyl ester. When recorded in dopamine neurons, the frequency of spontaneous GABA(A) receptor-mediated inhibitory postsynaptic potentials was increased by t-ACPD but not L-AP4. However, the amplitude of evoked inhibitory postsynaptic currents in dopamine neurons was reduced by all three group mGluR agonists.These results reveal a dual modulation of mGLuR activation on inhibitory transmission in midbrain ventral tegmental area: enhancing putative GABAergic neuronal excitability and thus potentiating tonic inhibitory synaptic transmission while reducing evoked synaptic transmission at inhibitory terminals.  相似文献   

11.
Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition arises from depression of excitatory synaptic transmission to hypocretin/orexin neurons because adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose dependent, pertussis toxin sensitive, and mediated by A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH by inhibition of hypocretin/orexin neurons.  相似文献   

12.
In the inferior colliculus (IC), GABAergic inhibition mediated by GABAA receptors has been shown to play a significant role in regulating physiological responses, but little is known about the physiological role of GABAB receptors in IC neurons. In the present study, we used whole-cell patch clamp recording in vitro to investigate the effects of activation of GABAB receptors on membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus (ICD). Repetitive stimulation of GABAergic inputs to ICD neurons at high frequencies could elicit a slow and long-lasting postsynaptic response, which was reversibly abolished by the GABAB receptor antagonist, CGP 35348. The results suggest that postsynaptic GABAB receptors can directly mediate inhibitory synaptic transmission in ICD. The role of postsynaptic GABAB receptors in regulation of membrane excitability was further investigated by application of the GABAB receptor agonist, baclofen. Baclofen hyperpolarized the cell, reduced the membrane input resistance and firing rate, increased the threshold for generating action potentials (APs), and decreased the amplitude of the AP and its associated after-hyperpolarization. The Ca2+-mediated rebound depolarization following hyperpolarization and the depolarization hump at the beginning of membrane depolarization were also suppressed by baclofen. In voltage clamp experiments, baclofen induced inward rectifying K+ current and reduced low- and high-threshold Ca2+ currents, which may account for the suppression of membrane excitability by postsynaptic GABAB receptors. Application of baclofen also reduced excitatory synaptic responses mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and inhibitory synaptic responses mediated by GABAA receptors. Baclofen increased the ratios of 2nd/1st excitatory and inhibitory postsynaptic currents to paired-pulse stimulation of the synaptic inputs. These results suggest that fast glutamatergic and GABAergic synaptic transmission in ICD can be modulated by presynaptic GABAB receptors.  相似文献   

13.
Chen L  Yung KK  Yung WH 《Neuroscience》2006,141(4):1871-1878
The tridecapeptide neurotensin has been demonstrated to modulate neurotransmission in a number of brain regions. There is evidence that neurotensin receptors exist in globus pallidus presynaptically and postsynaptically. Whole-cell patch-clamp recordings were used to investigate the modulatory effects of neurotensin on glutamate and GABA transmission in this basal ganglia nucleus in rats. Neurotensin at 1 microM significantly increased the frequency of glutamate receptor-mediated miniature excitatory postsynaptic currents. In contrast, neurotensin had no effect on GABA(A) receptor-mediated miniature inhibitory postsynaptic currents. The presynaptic facilitation of neurotensin on glutamatergic transmission could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). The selective neurotensin type-1 receptor antagonist, SR48692 {2-[(1-(7-chloro-4-quinolinyl)-5-2(2,6-dimethoxyphenyl)pyrazol-3-yl)carbonylamino]-tricyclo(3.3.1.1.(3.7))-decan-2-carboxylic acid}, blocked this facilitatory effect of neurotensin, and which itself had no effect on miniature excitatory postsynaptic currents. The specific phospholipase C inhibitor, U73122 {1-[6-[[17beta-3-methoyyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione}, significantly inhibit neurotensin-induced facilitation on glutamate release. Taken together with the reported postsynaptic depolarization of neurotensin in globus pallidus, it is suggested that neurotensin excites the globus pallidus neurons by multiple mechanisms which may provide a rationale for further investigations into its involvement in motor disorders originating from the basal ganglia.  相似文献   

14.
The excitability of neocortical neurons from cat association areas 5-7 was investigated during spontaneously occurring seizures with spike-wave (SW) complexes at 2-3 Hz. We tested the antidromic and orthodromic responsiveness of neocortical neurons during the "spike" and "wave" components of SW complexes, and we placed emphasis on the dynamics of excitability changes from sleeplike patterns to seizures. At the resting membrane potential, an overwhelming majority of neurons displayed seizures over a depolarizing envelope. Cortical as well as thalamic stimuli triggered isolated paroxysmal depolarizing shifts (PDSs) that eventually developed into SW seizures. PDSs could also be elicited by cortical or thalamic volleys during the wave-related hyperpolarization of neurons, but not during the spike-related depolarization. The latencies of evoked excitatory postsynaptic potentials (EPSPs) progressively decreased, and their slope and depolarization surface increased, from the control period preceding the seizure to the climax of paroxysm. Before the occurrence of full-blown seizures, thalamic stimuli evoked PDSs arising from the postinhibitory rebound excitation, whereas cortical stimuli triggered PDSs immediately after the early EPSP. These data shed light on the differential excitability of cortical neurons during the spike and wave components of SW seizures, and on the differential effects of cortical and thalamic volleys leading to such paroxysms. We conclude that the wave-related hyperpolarization does not represent GABA-mediated inhibitory postsynaptic potentials (IPSPs), and we suggest that it is a mixture of disfacilitation and Ca(2+)-dependent K(+) currents, similar to the prolonged hyperpolarization of the slow sleep oscillation.  相似文献   

15.
Nitric oxide (NO) in the paraventricular nucleus (PVN) is involved in the regulation of the excitability of PVN neurons. However, the effect of NO on the inhibitory GABAergic and excitatory glutamatergic inputs to spinally projecting PVN neurons has not been studied specifically. In the present study, we determined the role of the inhibitory GABAergic and excitatory glutamatergic inputs in the inhibitory action of NO on spinally projecting PVN neurons. Spinally projecting PVN neurons were retrogradely labeled by a fluorescent dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocasbocyane (DiI), injected into the spinal cord of rats. Whole cell voltage- and current-clamp recordings were performed on DiI-labeled PVN neurons in the hypothalamic slice. The spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded in DiI-labeled neurons were abolished by 20 microM bicuculline, whereas the miniature excitatory postsynaptic currents (mEPSCs) were eliminated by 20 microM 6-cyano-7-nitroquinoxaline-2,3-dione. Bath application of an NO donor, 100 microM S-nitroso-N-acetyl-penicillamine (SNAP), or the NO precursor, 100 microM L-arginine, both significantly increased the frequency of mIPSCs of DiI-labeled PVN neurons, without altering the amplitude and the decay time constant of mIPSCs. The effect of SNAP and L-arginine on the frequency of mIPSCs was eliminated by an NO scavenger, 2-(4-carboxypheny)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an NO synthase inhibitor, 1-(2-trifluoromethylphenyl) imidazole, respectively. Neither SNAP nor L-arginine significantly altered the frequency and the amplitude of mEPSCs. Under current-clamp conditions, 100 microM SNAP or 100 microM L-arginine significantly decreased the discharge rate of the DiI-labeled PVN neurons, without significantly affecting the resting membrane potential. On the other hand, 20 microM bicuculline significantly increased the impulse activity of PVN neurons. In the presence of bicuculline, SNAP or L-arginine both failed to inhibit the firing activity of PVN neurons. This electrophysiological study provides substantial new evidence that NO suppresses the activity of spinally projecting PVN neurons through potentiation of the GABAergic synaptic input.  相似文献   

16.
Yan J  He C  Xia JX  Zhang D  Hu ZA 《Neuroscience letters》2012,520(1):92-97
The arousal peptides, orexins, play an important role in regulating the function of the prefrontal cortex (PFC). Although orexins have been shown to increase the excitability of deep-layer neurons in the medial prefrontal cortex (mPFC), little is known about their effect on layer 2/3, the main intracortical processing layer. In this study, we investigated the effect of orexin-A on pyramidal neurons in layer 2/3 of the mPFC using whole-cell recordings in rat brain slices. We observed that orexin-A reversibly depolarized layer 2/3 pyramidal neurons through a postsynaptic action. This depolarization was concentration-dependent and mediated via orexin receptor 1. In voltage-clamp recordings, the orexin-A-induced current was reduced by the replacement of internal K(+) with Cs(+), removal of external Na(+), or an application of flufenamic acid (an inhibitor of nonselective cation channels). A blocker of Na(+)/Ca(2+) exchangers (SN-6) did not influence the excitatory effect of orexin-A. Moreover, the current induced by orexin-A reversed near E(k) when the external solution contained low levels of Na(+). When recording with Cs(+)-containing pipettes in normal external solution, the reversal potential of the current was approximately -25 mV. These data suggest an involvement of both K(+) channels and nonselective cation channels in the effect of orexin-A. The direct excitatory action of orexin-A on layer 2/3 mPFC neurons may contribute to the modulation of PFC activity, and play a role in cognitive arousal.  相似文献   

17.
Activity-dependent long-term synaptic changes were investigated at glutamatergic synapses in the supraoptic nucleus (SON) of the rat hypothalamus. In acute hypothalamic slices, high frequency stimulation (HFS) of afferent fibres caused long-term potentiation (LTP) of the amplitude of AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) recorded with the whole-cell patch-clamp technique. LTP was also obtained in response to membrane depolarization paired with mild afferent stimulation. On the other hand, stimulating the inputs at 5 Hz for 3 min at resting membrane potential caused long-term depression (LTD) of excitatory transmission in the SON. These forms of synaptic plasticity required the activation of NMDA receptors since they were abolished in the presence of d -AP5 or ifenprodil, two selective blockers of these receptors. Analysis of paired-pulse facilitation and trial-to-trial variability indicated that LTP and LTD were not associated with changes in the probability of transmitter release, thereby suggesting that the locus of expression of these phenomena was postsynaptic. Using sharp microelectrode recordings in a hypothalamic explant preparation, we found that HFS also generates LTP at functionally defined glutamatergic synapses formed between the organum vasculosum lamina terminalis and SON neurons. Taken together, our findings indicate that glutamatergic synapses in the SON exhibit activity-dependent long-term synaptic changes similar to those prevailing in other brain areas. Such forms of plasticity could play an important role in the context of physiological responses, like dehydration or lactation, where the activity of presynaptic glutamatergic neurons is strongly increased.  相似文献   

18.
Human immunodeficiency virus 1 (HIV-1) Tat protein is one of the neurotoxins involved in the pathogenesis of HIV-1-associated neuronal disorders. Combined electrophysiological and optical imaging experiments were undertaken to investigate whether HIV-1 Tat30-86, herein referred to as Tat30-86, acted directly or indirectly via the release of glutamate or both and to test its effect on the properties of spontaneous quantal events in cultured cortical neurons. Whole-cell patch recordings were made from cultured rat cortical neurons in either current- or voltage-clamp mode. Tat30-86 (50-1000 nM) induced in a population of cortical neurons a long-lasting depolarization, which was accompanied by a decrease of membrane resistance and persisted in a Krebs solution containing tetrodotoxin (TTX, 0.5 microM). Depolarizations were slightly reduced by pretreatment with glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM) and d-2-amino-5-phosphonovaleric acid (AP-5) (50 microM), and were markedly reduced in a Ca(2+)-free Krebs solution; the differences were statistically significant. Tat30-86-induced inward currents had a reversal potential between -30 and 0 mV. While not causing a noticeable depolarization, lower concentrations of Tat30-86 (10 nM) increased membrane excitability, as indicated by increased numbers of neuronal discharge in response to a step depolarizing pulse. Tat30-86 (10 nM) increased the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs), while not significantly affecting their amplitude. Tat30-86 (10 nM) moderately increased the frequency as well as the amplitude of spontaneous miniature inhibitory postsynaptic currents (mIPSCs). Ratiometric Ca(2+) imaging studies showed that Tat30-86 produced three types of Ca(2+) responses: 1) a fast and transitory increase, 2) Ca(2+) oscillations, and 3) a fast increase followed by a plateau; the glutamate receptor antagonists eliminated the late component of Ca(2+) response. The result suggests that Tat30-86 is an active fragment and that it excites cortical neurons directly and indirectly via releasing glutamate from adjacent neurons.  相似文献   

19.
The effects of antidepressant drugs on spontaneous excitatory postsynaptic currents (EPSCs) were investigated in the mechanically dissociated rat locus coeruleus (LC) neurons which had their presynaptic nerve terminals attached. The membrane currents were recorded by the whole-cell patch-clamp technique. Desipramine, a tricyclic antidepressant, reversibly and concentration-dependently increased the frequency of spontaneous EPSCs, but did not alter their amplitude distribution. The inhibitors of high-voltage-activated Ca2+ channels failed to block the facilitatory action of desipramine, while they inhibited the high K+-induced facilitation of spontaneous EPSC frequency. The desipramine action was also observed in the absence of extracellular Ca2+. Pretreatment of thapsigargin in Ca2+-free solution fully inhibited the desipramine action, thus suggesting the involvement of Ca2+ release from intracellular Ca2+ stores at glutamatergic presynaptic nerve terminals. Imipramine and nortriptyline, other tricyclic antidepressants, and amoxapine, mianserin and fluoxetine, non-tricyclic antidepressants, also increased the EPSC frequency, while tranylcypromine, an inhibitor of monoamine oxidase, did not increase the glutamate release. The present results indicate that modulation of spontaneous glutamatergic transmission by tricyclic- and non-tricyclic-antidepressant drugs may regulate the excitability of LC neurons.  相似文献   

20.
Prominent arginine-vasopressin (AVP) binding and AVP V(1) type receptors are expressed early in the developing rat spinal cord. We sought to characterize their influence on neural excitability by using patch-clamp techniques to record AVP-induced responses from a population of motoneurons and interneurons in neonatal (5-18 days) rat spinal cord slices. Data were obtained from 58 thoracolumbar (T(7)-L(5)) motoneurons and 166 local interneurons. A majority (>90%) of neurons responded to bath applied AVP (10 nM to 3 microM) and (Phe(2), Orn(8))-vasotocin, a V(1) receptor agonist, but not V(2) or oxytocin receptor agonists. In voltage-clamp, postsynaptic responses in motoneurons were characterized by slowly rising, prolonged (7-10 min) and tetrodotoxin-resistant inward currents associated with a 25% reduction in a membrane potassium conductance that reversed near -100 mV. In interneurons, net AVP-induced inward currents displayed three patterns: decreasing membrane conductance with reversal near -100 mV, i.e., similar to that in motoneurons (24 cells); increasing conductance with reversal near -40 mV (21 cells); small reduction in conductance with no reversal within the current range tested (41 cells). A presynaptic component recorded in most neurons was evident as an increase in the frequency but not amplitude (in motoneurons) of inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs), in large part due to AVP-induced firing in inhibitory (mainly glycinergic) and excitatory (glutamatergic) neurons synapsing on the recorded cells. An increase in frequency but not amplitude of miniature IPSCs and EPSCs also indicated an AVP enhancement of neurotransmitter release from axon terminals of inhibitory and excitatory interneurons. These observations provide support for a broad presynaptic and postsynaptic distribution of AVP V(1) type receptors and indicate that their activation can enhance the excitability of a majority of neurons in neonatal ventral spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号