首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
The role of EVI1 in normal and leukemic cells   总被引:6,自引:0,他引:6  
  相似文献   

2.
3.
Embryonic stem cell-derived hematopoietic stem cells   总被引:8,自引:0,他引:8       下载免费PDF全文
Despite two decades of studies documenting the in vitro blood-forming potential of murine embryonic stem cells (ESCs), achieving stable long-term blood engraftment of ESC-derived hematopoietic stem cells in irradiated mice has proven difficult. We have exploited the Cdx-Hox pathway, a genetic program important for blood development, to enhance the differentiation of ESCs along the hematopoietic lineage. Using an embryonic stem cell line engineered with tetracycline-inducible Cdx4, we demonstrate that ectopic Cdx4 expression promotes hematopoietic mesoderm specification, increases hematopoietic progenitor formation, and, together with HoxB4, enhances multilineage hematopoietic engraftment of lethally irradiated adult mice. Clonal analysis of retroviral integration sites confirms a common stem cell origin of lymphoid and myeloid populations in engrafted primary and secondary mice. These data document the cardinal stem cell features of self-renewal and multilineage differentiation of ESC-derived hematopoietic stem cells.  相似文献   

4.
One mechanism for disrupting the MLL gene in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is through partial tandem duplication (MLL-PTD); however, the mechanism by which MLL-PTD contributes to MDS and AML development and maintenance is currently unknown. Herein, we investigated hematopoietic stem/progenitor cell (HSPC) phenotypes of Mll-PTD knock-in mice. Although HSPCs (Lin(-)Sca1(+)Kit(+) (LSK)/SLAM(+) and LSK) in Mll(PTD/WT) mice are reduced in absolute number in steady state because of increased apoptosis, they have a proliferative advantage in colony replating assays, CFU-spleen assays, and competitive transplantation assays over wild-type HSPCs. The Mll(PTD/WT)-derived phenotypic short-term (ST)-HSCs/multipotent progenitors and granulocyte/macrophage progenitors have self-renewal capability, rescuing hematopoiesis by giving rise to long-term repopulating cells in recipient mice with an unexpected myeloid differentiation blockade and lymphoid-lineage bias. However, Mll(PTD/WT) HSPCs never develop leukemia in primary or recipient mice, suggesting that additional genetic and/or epigenetic defects are necessary for full leukemogenic transformation. Thus, the Mll-PTD aberrantly alters HSPCs, enhances self-renewal, causes lineage bias, and blocks myeloid differentiation. These findings provide a framework by which we can ascertain the underlying pathogenic role of MLL-PTD in the clonal evolution of human leukemia, which should facilitate improved therapies and patient outcomes.  相似文献   

5.
6.
Chronic myeloid leukemia is the first disease in which the potential of molecular targeted therapy with tyrosine kinase inhibitors (TKIs) was realized. Despite this success, a proportion of patients, particularly with advanced disease, are, or become, resistant to this treatment. Overcoming resistance and uncovering the underlying mechanisms is vital for further improvement of clinical outcomes. Here we report the identification, development, and characterization of a novel chronic myeloid leukemia cell line carrying the additional chromosomal aberration t(3;12)(q26;p13) resulting in expression of the TEL/MDS1/EVI1 fusion protein, which is resistant to TKIs. Resistance to TKIs was overcome by the co-administration of the BH3-mimetic, ABT-737. In addition, application of EVI1-specific small interfering RNA decreased expression of the TEL/MDS1/EVI1 fusion, reduced resistance to imatinib, and increased sensitivity to ABT-737. Subsequent studies revealed a role for the BH3-only protein BAD, probably via a phosphoinositide 3-kinase/AKT-dependent pathway, as pharmacological inhibition of AKT could also resensitize cells to death from TKIs. These findings indicate a novel pathway of TKI resistance regulated by EVI1 proteins and provide a promising means for overcoming resistance in chronic myeloid leukemia and other hematological malignancies displaying EVI1 overexpression.  相似文献   

7.
8.
9.
10.
11.
Loss of immune function and an increased incidence of myeloid leukemia are two of the most clinically significant consequences of aging of the hematopoietic system. To better understand the mechanisms underlying hematopoietic aging, we evaluated the cell intrinsic functional and molecular properties of highly purified long-term hematopoietic stem cells (LT-HSCs) from young and old mice. We found that LT-HSC aging was accompanied by cell autonomous changes, including increased stem cell self-renewal, differential capacity to generate committed myeloid and lymphoid progenitors, and diminished lymphoid potential. Expression profiling revealed that LT-HSC aging was accompanied by the systemic down-regulation of genes mediating lymphoid specification and function and up-regulation of genes involved in specifying myeloid fate and function. Moreover, LT-HSCs from old mice expressed elevated levels of many genes involved in leukemic transformation. These data support a model in which age-dependent alterations in gene expression at the stem cell level presage downstream developmental potential and thereby contribute to age-dependent immune decline, and perhaps also to the increased incidence of leukemia in the elderly.  相似文献   

12.
Li Z  Cai X  Cai CL  Wang J  Zhang W  Petersen BE  Yang FC  Xu M 《Blood》2011,118(17):4509-4518
TET2 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies including MDS, CMML, MPN, and AML. However, little is known regarding the biological function of TET2 and its role in the pathogenesis of myeloid malignancies. To study the function of TET2 in vivo, we generated a Tet2 knock out mouse model. Deletion of Tet2 in mice led to dramatic reduction in the 5-hydroxymethylcytosine levels and concomitant increase in the 5-methylcytosine levels in the genomic DNA of BM cells. The Tet2(-/-) mice contained an increased Lin(-)Sca-1(+)c-Kit(+) (LSK) cell pool before the development of myeloid malignancies. A competitive reconstitution assay revealed that Tet2(-/-) LSK cells had an increased hematopoietic repopulating capacity with an altered cell differentiation skewing toward monocytic/granulocytic lineages. Approximately 1/3 of Tet2(-/-) and 8% of Tet2(+/-) mice died within 1 year of age because of the development of myeloid malignancies resembling characteristics of CMML, MPD-like myeloid leukemia, and MDS. Furthermore, transplantation of Tet2(-/-), but not wild-type (WT) or Tet2(+/-) BM cells, led to increased WBC counts, monocytosis, and splenomegaly in WT recipient mice. These data indicate that Tet2-deficient mice recapitulate patients with myeloid malignancies, implying that Tet2 functions as a tumor suppressor to maintain hematopoietic cell homeostasis.  相似文献   

13.
The development of immunodeficient mouse xenograft models has greatly facilitated the investigation of some human hematopoietic malignancies, but application of this approach to the myelodysplastic syndromes (MDSs) has proven difficult. We now show that cells from most MDS patients (including all subtypes) repopulate nonobese diabetic-severe combined immunodeficient (scid)/scid-beta2 microglobulin null (NOD/SCID-beta2m(-/-)) mice at least transiently and produce abnormal differentiation patterns in this model. Normal marrow transplants initially produce predominantly erythroid cells and later predominantly B-lymphoid cells in these mice, whereas most MDS samples produced predominantly granulopoietic cells. In 4 of 4 MDS cases, the regenerated cells showed the same clonal markers (trisomy 8, n = 3; and 5q-, n = 1) as the original sample and, in one instance, regenerated trisomy 8(+) B-lymphoid as well as myeloid cells were identified. Interestingly, the enhanced growth of normal marrow obtained in NOD/SCID-beta2m(-/-) mice engineered to produce human interleukin-3, granulocyte-macrophage colony-stimulating factor, and Steel factor was seen only with 1 of 7 MDS samples. These findings support the concept that human MDS originates in a transplantable multilineage hematopoietic stem cell whose genetic alteration may affect patterns of differentiation and responsiveness to hematopoietic growth factors. They also demonstrate the potential of this new murine xenotransplant model for future investigations of MDS.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is a potent angiogenic peptide with biologic effects that include regulation of hematopoietic stem cell development, extracellular matrix remodeling, and inflammatory cytokine generation. To delineate the potential role of VEGF in patients with myelodysplastic syndrome (MDS), VEGF protein and receptor expression and its functional significance in MDS bone marrow (BM) were evaluated. In BM clot sections from normal donors, low-intensity cytoplasmic VEGF expression was detected infrequently in isolated myeloid elements. However, monocytoid precursors in chronic myelomonocytic leukemia (CMML) expressed VEGF in an intense cytoplasmic pattern with membranous co-expression of the Flt-1 or KDR receptors, or both. In situ hybridization confirmed the presence of VEGF mRNA in the neoplastic monocytes. In acute myelogenous leukemia (AML) and other MDS subtypes, intense co-expression of VEGF and one or both receptors was detected in myeloblasts and immature myeloid elements, whereas erythroid precursors and lymphoid cells lacked VEGF and receptor expression. Foci of abnormal localized immature myeloid precursors (ALIP) co-expressed VEGF and Flt-1 receptor, suggesting autocrine cytokine interaction. Antibody neutralization of VEGF inhibited colony-forming unit (CFU)-leukemia formation in 9 of 15 CMML and RAEB-t patient specimens, whereas VEGF stimulated leukemia colony formation in 12 patients. Neutralization of VEGF activity suppressed the generation of tumor necrosis factor-alpha and interleukin-1beta from MDS BM-mononuclear cells and BM-stroma and promoted the formation of CFU-GEMM and burst-forming unit-erythroid in methylcellulose cultures. These findings indicate that autocrine production of VEGF may contribute to leukemia progenitor self-renewal and inflammatory cytokine elaboration in CMML and MDS and thus provide a biologic rationale for ALIP and its adverse prognostic relevance in high-risk MDS.  相似文献   

15.
16.
Yahata T  Yumino S  Seng Y  Miyatake H  Uno T  Muguruma Y  Ito M  Miyoshi H  Kato S  Hotta T  Ando K 《Blood》2006,108(7):2446-2454
To elucidate the in vivo kinetics of human hematopoietic stem cells (HSCs), CD34+CD38- cells were infected with lentivirus vector and transplanted into immunodeficient mice. We analyzed the multilineage differentiation and self-renewal abilities of individual thymus-repopulating clones in primary recipients, and their descending clones in paired secondary recipients, by tracing lentivirus gene integration sites in each lymphomyeloid progeny using a linear amplification-mediated polymerase chain reaction (PCR) strategy. Our clonal analysis revealed that a single human thymus-repopulating cell had the ability to produce lymphoid and myeloid lineage cells in the primary recipient and each secondary recipient, indicating that individual human HSCs expand clonally by self-renewal division. Furthermore, we found that the proportion of HSC clones present in the CD34+ cell population decreased as HSCs replicated during extensive repopulation and also as the differentiation capacity of the HSC clones became limited. This indicates the restriction of the ability of individual HSCs despite the expansion of total HSC population. We also demonstrated that the extensive self-renewal potential was confined in the relatively small proportion of HSC clones. We conclude that our clonal tracking studies clearly demonstrated that heterogeneity in the self-renewal capacity of HSC clones underlies the differences in clonal longevity in the CD34+ stem cell pool.  相似文献   

17.
Hematopoiesis is a complex process involving hematopoietic stem cell (HSC) self-renewal and lineage commitment decisions that must continue throughout life. Establishing a reproducible technique that allows for the long-term ex vivo expansion of human HSCs and maintains self-renewal and multipotential differentiation will allow us to better understand these processes, and we report the ability of the leukemia-associated AML1-ETO fusion protein to establish such a system. AML1-ETO-transduced human CD34+ hematopoietic cells routinely proliferate in liquid culture for more than 7 months, remain cytokine dependent for survival and proliferation, and demonstrate self-renewal of immature cells that retain both lymphoid and myeloid potential in vitro. These cells continue to express the CD34 cell surface marker and have ongoing telomerase activity with maintenance of telomere ends, however they do not cause leukemia in nonobese diabetic-severe combined immunodeficiency (NOD/SCID) mice. Identification of the signaling pathways that are modulated by AML1-ETO and lead to the self-renewal of immature human progenitor cells may assist in identifying compounds that can efficiently expand human stem and progenitor cells ex vivo.  相似文献   

18.
The role of apoptosis in the pathogenesis of the myelodysplastic syndromes   总被引:3,自引:0,他引:3  
The paradoxical occurrence of peripheral cytopenias despite a normo/hypercellular marrow in myelodysplastic syndromes (MDS) has been attributed to excessive intramedullary hematopoietic cell apoptosis. It has also been postulated that abrogation of programmed cell death (PCD) may underlie MDS transformation to acute myeloid leukemia (AML). Despite overwhelming evidence for a role of aberrant apoptosis in myelodysplasia, the molecular mechanisms responsible for such changes have not been elucidated. This paper summarizes current evidence implicating a role for altered PCD in MDS and outlines potential cellular mechanisms whereby hematopoietic progenitor cell apoptosis may be dysregulated.  相似文献   

19.
According to the cancer stem cell (CSC) hypothesis, CSCs are the only cancer cells that can give rise to and sustain all cells that constitute a cancer as they possess inherent or acquired self-renewal potential, and their elimination is required and potentially sufficient to achieve a cure. Whilst establishing CSC identity remains challenging in most cancers, studies of low-intermediate risk myelodysplastic syndromes (MDS), other chronic myeloid malignancies and clonal haematopoiesis of indeterminant potential (CHIP) strongly support that the primary target cell usually resides in the rare haematopoietic stem cell (HSC) compartment. This probably reflects the unique self-renewal potential of HSCs in normal human haematopoiesis, combined with the somatic initiating genomic driver lesion not conferring extensive self-renewal potential to downstream progenitor cells. Mutational ‘fate mapping’ further supports that HSCs are the only disease-propagating cells in low-intermediate risk MDS, but that MDS-propagating potential might be extended to progenitors upon disease progression. The clinical importance of MDS stem cells has been highlighted through the demonstration of selective persistence of MDS stem cells in patients at complete remission in response to therapy. This implies that MDS stem cells might possess unique resistance mechanisms responsible for relapses following otherwise efficient treatments. Specific surveillance of MDS stem cells should be considered to assess the efficiency of therapies and as an early indicator of emerging relapses in patients in clinical remission. Moreover, further molecular characterization of purified MDS stem cells should facilitate identification and validation of improved and more stem cell-specific therapies for MDS.  相似文献   

20.
Stem cells have been identified as essential for maintaining multiple organ systems, including the hematopoietic system. The distinct cell fates of self-renewal and differentiation of hematopoietic stem cells (HSCs) depend on cell division. Recently, several negative regulators of the cell cycle, such as the cyclin-dependent kinase inhibitors p21(Cip1), p27(Kip1), and p16(INK4a)/p19(ARF), have been demonstrated to have a role in regulating HSC fate decisions, suggesting that regulation of the G(1)-S phase transition can contribute to HSC self-renewal. Because the retinoblastoma protein, Rb, plays a central role in the regulation of the G(1)-S phase cell cycle, we sought to determine whether it has an intrinsic role in the regulation of HSC fate. Surprisingly, we found that HSC function was essentially normal in the absence of Rb. Rb(Delta/Delta) HSCs contributed normally to both myeloid and lymphoid lineages in both primary and secondary recipients, and no evidence of transformation was observed. Additionally, we observed a mild myeloid expansion and decrease in mature B cells within the Rb(Delta/Delta) bone marrow but a similar contribution to phenotypic HSC populations compared with nondeleted bone marrow. The Rb family members p107 and p130 were not deregulated in cells in which Rb had been deleted, as determined by quantitative RT-PCR on the highly enriched stem and primitive progenitor cell lin(-)c-Kit(+)Sca-1(+) population. These studies demonstrate that Rb is not intrinsically required for self-renewal and multilineage differentiation of adult HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号