首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A monoclonal antibody (MAb) to a rat acetone-inducible and nitrosamine-metabolizing form of microsomal cytochrome P-450, P-450ac, detected a related P-450 in human liver microsomes by both immunoblot and competitive radioimmunoassay. This MAb was also used to immunopurify microsomal cytochromes P-450 from both human liver and acetone-treated rats; these were electrophoretically homogeneous with apparent molecular weights of 56,200 and 53,000 daltons, respectively. The structures of the cytochromes P-450 were compared by peptide mapping and amino-terminal sequence analyses. They differed in their peptide maps but displayed amino-terminal sequence similarity in their first 19 residues. This report thus demonstrates the utility of MAbs to rat cytochromes P-450 for detection, identification and structural characterization of human P-450s.  相似文献   

3.
Isoform-selective metabolism of mianserin by cytochrome P-450 2D.   总被引:2,自引:0,他引:2  
The involvement of cytochrome P-450 (CYP) 2D isoforms in the metabolism of mianserin and the stereoselectivity of their catalytic activities were investigated by using five CYP2D isoforms (CYP2D1, 2D2, 2D3, 2D4, and 2D6). Using RS-mianserin as a substrate, we found that five CYP2D isoforms had similar levels of 8-hydroxylation activity. However, N-demethylation activity differed among the isoforms; CYP2D3 and 2D4 efficiently demethylated RS-mianserin compared with the other three isoforms. N-Oxidation activity was specific to CYP2D1 although its level was relatively low. Another metabolite, assigned as 8-hydroxy-N-desmethylmianserin by liquid chromatography/mass spectrometry analysis, was formed by CYP2D4 and 2D6. The metabolism exhibited stereoselectivity. CYP2D1 and 2D4 selectively 8-hydroxylated the R(-)-enantiomer, and CYP2D6 predominately N-demethylated R(-)-enantiomer. N-Oxidation by CYP2D1 was specific to R(-)-enantiomer. In conclusion, CYP2D isoforms are involved in several metabolic pathways of mianserin acting in an isoform-specific manner. Stereoselectivity of the catalytic activities was clearly observed in the reactions of CYP2D1, 2D4, and 2D6.  相似文献   

4.
The reductive metabolism of halothane was determined using purified RLM2, PBRLM4 and PBRLM5 forms of rat liver microsomal cytochrome P-450. The metabolites, 2-chloro-1,1,1-trifluoroethane (CTE) and 2-chloro-1,1-difluoroethylene (CDE), were determined. All three forms of cytochrome P-450 produced CTE with relatively small differences in its production among the various forms. There were major differences, however, in the production of CDE, with PBRLM5 being the most active. PBRLM5 was also the only form to show the development of a complex between halothane and cytochrome P-450. This complex absorbed light maximally at 470 nm. The complex formation and the production of CDE by PBRLM5 were stimulated by the addition of cytochrome b5. Cytochrome b5 had no effect on CDE production by PBRLM4 and inhibited the production of both CTE and CDE by RLM2. These results show that the two-electron reduction of halothane by cytochrome P-450 was catalyzed by the PBRLM5 form and that cytochrome b5 stimulated the transfer of the second electron to halothane through PBRLM5, but not RLM2 or PBRLM4.  相似文献   

5.
The aim of the present study was to determine optimum conditions for studying promazine and perazine metabolism in rat liver microsomes, and to investigate the influence of specific cytochrome P-450 inhibitors on 5-sulfoxidation and N-demethylation of these neuroleptics. Based on the developed method, the metabolism of neuroleptics in liver microsomes was studied at linear dependence of product formation on time, and protein and substrate concentrations (incubation time: 10 min; concentration of microsomal proteins: promazine-0.7 mg ml(-1), perazine-0.5 mg ml(-1); substrate concentrations: promazine-25, 40 and 75 nmol ml(-1), perazine-20, 35, 50 nmol ml(-1)). A Dixon analysis of the metabolism of neuroleptics showed that quinine (a CYP2D1 inhibitor), metyrapone (a CYP2B1/B2 inhibitor) and alpha-naphthoflavone (a CYP1A1/2 inhibitor) affected, whereas erythromycin (a CYP3A inhibitor) and sulfaphenazole (a CYP2C inhibitor) did not change the neuroleptic biotransformation. N-Demethylation of promazine was competitively inhibited by quinine (K(i)=20 microM) and metyrapone (K(i)=83 microM), while that of perazine-by quinine (K(i)=46.5 microM), metyrapone (K(i)=46 microM) and alpha-naphthoflavone (K(i)=78.8 microM). 5-Sulfoxidation of promazine was inhibited only by quinine (K(i)=28.6 microM), whereas that of perazine-by quinine (K(i)=10 microM) and metyrapone (K(i)=96 microM). The results obtained are compared with our previous findings of analogous experiments concerning thioridazine, and with the data on other phenothiazines and species. In summary, it is proposed that N-demethylation of the mentioned phenothiazine neuroleptics in the rat is catalyzed by the isoenzymes CYP2D1, CYP2B2 and CYP1A2 (CYP1A2 does not refer to promazine). 5-Sulfoxidation of these drugs may be mediated by different isoenzymes, e.g. CYP2D1 (promazine and perazine), CYP2B2 (perazine) and CYP1A2 (thioridazine). Isoenzymes belonging to subfamilies CYP2C and CYP3A do not seem to be involved in the metabolism of the investigated neuroleptics in the rat. The results obtained point to the drug structure and species differences in the contribution of cytochrome P-450 isoenzymes to the metabolism of phenothiazines.  相似文献   

6.
P-450-male is a male specific form of cytochrome P-450 in rat liver microsomes. Cytochrome P-450 crossreactive with anti-P-450-male antibodies was purified to an electrophoretical homogeneity from liver microsomes of male beagle dogs. The specific content of the purified cytochrome P-450 (P-450-D1) was 16.9 nmol/mg protein. The apparent monomeric molecular weight of P-450-D1 was 48,000, which was smaller than P-450-male (51,000). P-450-D1 showed similarities in spectral properties, N-terminal amino acid sequence, and catalytic activities with some limited exceptions: P-450-D1 did not catalyze 2 alpha-hydroxylation of testosterone and progesterone and catalyzed 21-hydroxylation of progesterone. Based on these results, we propose that P-450-D1 is a form of cytochrome P-450 in the same gene subfamily as P-450-male.  相似文献   

7.
8.
Human liver microsomal fractions from 27 renal donors (tissue obtained post mortem) and from six cancer patients (tissue obtained during surgery) were used to investigate human hepatic cytochrome P-450 isozyme compositions. In vitro microsomal metabolism of the R and S enantiomers of warfarin to dehydrowarfarin and 4'-, 6-, 7-, 8-, and 10-hydroxywarfarin is catalyzed by cytochrome P-450 isozymes and was used as the basis for evaluating similarities and differences between human cytochrome P-450 isozyme compositions. The mean hepatic cytochrome P-450 concentration from postmortem samples was not significantly different from that of surgical patients (0.51 +/- 0.16 vs. 0.35 +/- 0.14 nmol/mg protein), but the NADPH-cytochrome P-450 reductase activity of the former was significantly higher than that of the latter (141 +/- 56 vs. 29 +/- 6 nmol cytochrome c reduced/min/mg protein). In general, the microsomal preparations were overall stereoselective for R warfarin metabolism. The stereoselectivities for formation of the individual metabolites of the R enantiomer were 6-, 8-, and 10-hydroxywarfarin and the S enantiomer were 4'- and 7-hydroxywarfarin. Of the 33 microsomal preparations, 21 exhibited qualitatively similar warfarin metabolite profiles with 6R- and 7S-hydroxywarfarin having the highest formation rates. Some of the preparations exhibited markedly different metabolite profiles, the most notable having 10R-hydroxywarfarin as the major metabolite. Based on the known warfarin metabolite profiles of five purified cytochrome P-450 isozymes, the isozyme composition of the microsomes can be estimated. The majority of the microsomal preparations apparently had similar isozyme compositions but some preparations were markedly different.  相似文献   

9.
The metabolism of retinoic acid, retinol, and retinal has been investigated with eight purified rabbit cytochrome P-450 (P-450) isozymes, including the major forms in nasal and liver microsomes. Retinoids hydroxylated at the 4-position were found to be major metabolites with each of the isozymes examined. Only two of the isozymes, polycyclic aromatic hydrocarbon-inducible P-450 1A2 and antibiotic-inducible P-450 3A6, also catalyze the oxidation of retinal to retinoic acid, a reaction not previously attributed to P-450. P-450 1A2 showed high activities in both the 4-hydroxylation and aldehyde oxidation reactions. Phenobarbital-inducible P-450 2B4 also had high activity in the 4-hydroxylation reaction of retinoids, and cytochrome b5 was found to increase the activity of P-450 2B4 with each substrate but to increase the activity of P-450 1A2 only with retinoic acid. In microsomes, retinoic acid is converted in an NADPH-dependent manner to both 4-hydroxyretinoic acid and 4-oxoretinoic acid, but none of the isozymes investigated was found to convert the 4-hydroxy derivative to the 4-oxo derivative. Microsomes from animals treated with phenobarbital were more active than those from untreated animals in the 4-hydroxylation reaction and, consequently, showed an increase in the ratio of 4-hydroxy to 4-oxo derivatives produced. These results show that the individual forms of P-450 metabolize retinoic acid, retinol, and retinal to multiple products, and they indicate that the amounts formed may be dependent on the exposure of animals to various inducers of P-450.  相似文献   

10.
11.
Cytochrome P-450, designated as P-450-MK1, which is cross-reactive with antibodies to rat P-450-male, was purified to an electrophoretical homogeneity from liver microsomes of the untreated male crab-eating monkey. The molecular weight of P-450-MK1 was estimated to be 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The oxidized form of P-450-MK1 showed a peak at 418 nm, indicating that this cytochrome is in a low spin state. The carbon monoxide-bound reduced form showed a peak at 451 nm. The first 22 amino acid residues of the NH2-terminal sequence of P-450-MK1 was fairly homologous to those of P-450-male (75% identity, not including unidentified amino acid residues). Unlike the P-450-male, P-450-MK1 did not exhibit catalytic activities for testosterone 2 alpha- and 16 alpha-hydroxylations and catalyzed testosterone 6 beta-hydroxylation. It is, therefore, suggested that although the spectral and immunochemical properties and the N-terminal amino acid sequence of P-450-MK1 were similar to those of P-450-male, the physiological functions of P-450-MK1 may be somewhat different from those of P-450-male. Comparison of the physico-chemical properties of P-450-MK1 with those of P-450-D1 and P-450-HM2, which are cross-reactive with anti-P-450-male antibodies, purified from liver microsomes of dogs and humans, respectively, are also discussed.  相似文献   

12.
13.
Of the family of P-450 cytochromes occurring in rabbit liver microsomes, only isozyme 3 a (P-450ALC) is induced by alcohol administration and is effective in catalyzing the reaction: ethanol+02+NADPH+H+ acetaldehyde +2H2O+NADP+. As judged by immuno-chemical quantitation, P-450ALC is also induced in the animals by other diverse agents, including imidazole, trichlorethylene, acetone, pyrazole, and isoniazid. Evidence has been obtained for the occurrence of a protein immuno-chemically related to P-450ALC in human liver microsomes and of a similar alcohol-inducible protein in the rat and in the normal and alcohol dehydrogenase-deficient deer-mouse. P-450ALC catalyzes the activation of foreign compounds such as acetaminophen, various nitrosamines, and carbon tetrachloride and is therefore believed to play an important role in the enhanced toxicity of these substances accompanying alcohol administrationDedicated to Professor Dr. Herbert Remmer on the occasion of his 65th birthday  相似文献   

14.
The interaction of tetrachloroethylene with hepatic microsomal cytochromes P-450 has been investigated using male Long-Evans rats. The spectral binding of tetrachloroethylene to cytochromes P-450 in hepatic microsomes from uninduced rats was characterized by a Ks of 0.4 mM. The Ks was not affected by phenobarbital induction, but was increased following pregnenolone-16α-carbonitrile induction. The KM of 1.1 mM, calculated for the conversion of tetrachloroethylene to total chlorinated metabolites by the hepatic microsomal cytochrome P-450 system, was decreased by phenobarbital induction and increased by pregnenolone-16α-carbonitrile induction. The maximum extents of binding (ΔAmax) and metabolism (Vmax) of tetrachloroethylene were increased by both phenobarbital and pregnenolone-16α-carbonitrile induction. Induction with β-naphthoflavone was without effect on any of the above parameters. The effects of the inducing agents on tetrachloroethylene-stimulated CO-inhibitable hepatic microsomal NADPH oxidation followed the same trend as their effects on Vmax for the metabolism of tetrachloroethylene, although in all cases the extent of NADPH oxidation was 5- to 25-fold greater than the extent of metabolite production. The inhibitors of cytochromes P-450, viz. metyrapone, SKF 525-A, and CO, inhibited the hepatic microsomal binding and metabolism of tetrachloroethylene. Free trichloroacetic acid was found to be the major metabolite of tetrachloroethylene from the hepatic microsomal cytochrome P-450 system. Neither 2.2,2-trichloroethanol nor chloral hydrate was produced in measurable amounts from tetrachloroethylene. A minor but significant metabolite of tetrachloroethylene by cytochrome P-450 was the trichloroacetyl moiety covalently bound to components of the hepatic microsomes. Incubation of tetrachloroethylene. an NADPH-generating system. EDTA and hepatic microsomes was without effect on the levels of microsomal cytochromes P-450, cytochrome b5, beme, and NADPH-cytochrome c reductase. It is concluded that hepatic microsomal cytochromes P-450 bind and metabolize tetrachloroethylene. The major product of this interaction is trichloroacetic acid, which is also the major urinary metabolite of tetrachloroethylene in vivo. The forms of cytochrome P-450 that bind and metabolize tetrachloroethylene include those induced by pregnenolone-16α-carbonitrile and by phenobarbital. Cytochrome P-448. which was induced in rat liver by β-naphthoflavone, does not appear to spectrally bind or metabolize tetrachloroethylene. The metabolism and toxicity of tetrachloroethylene are considered in relation to other chlorinated ethylenes.  相似文献   

15.
The in vivo and in vitro metabolism of triphenyltin using rat hepatic cytochrome P-450 (CYP) systems was investigated to confirm the specific CYP that is closely related to triphenyltin metabolism. No significant sex differences occurred between the in vivo and in vitro metabolic patterns of the chemical, indicating that the principal CYP for triphenyltin metabolism in rats is not a sex-specific form of CYP. In addition, seven types of complementary DNA (cDNA)-expressed rat CYPs, typical phenobarbital (PB)-inducible forms and the CYP2C subfamily were tested to determine the activity of triphenyltin metabolism. Among the CYP isoforms studied, although CYP2B1 had a small metabolic capacity, a marked dearylation of the chemical was induced by CYP2C6. Furthermore, anti-rat CYP2C6 antibodies and cimetidine, a selective CYP2C6 inhibitor, inhibited triphenyltin dearylation activity in the hepatic microsomes of rats. Taken together, these findings suggest that CYP2C6 is the principal CYP for the triphenyltin metabolism in rats.  相似文献   

16.
17.
When cannabidiol (CBD) was incubated with hepatic microsomes of mice in the presence of an NADPH-generating system, a significant decrease of cytochrome P-450 content was observed by measuring its carbon monoxide difference spectra. The decrease of cytochrome P-450 by CBD required NADPH and molecular oxygen. The effect was partially inhibited by SKF 525-A but not by various scavengers of active oxygen species, superoxide anion, hydroxyl radical and singlet oxygen. The incubation of CBD with hepatic microsomes did not affect total heme but decreased significantly free sulfhydryl contents in the microsomes. The derivatives of CBD modified in the resorcinol moiety, CBD-monomethyl- and dimethylethers, almost lost the effect on cytochrome P-450, whereas those modified in the terpene moiety, 8,9-dihydro- and 1,2,8,9-tetrahydro-CBDs exhibited some potency to inactivate cytochrome P-450. The inactivation of cytochrome P-450 by CBD and related compounds led to the inhibition of hepatic microsomal p-nitroanisole O-demethylase and aniline hydroxylase activities. These results suggest that the resorcinol moiety of CBD plays some role in the inactivation of cytochrome P-450 by the cannabinoid.  相似文献   

18.
19.
The N-demethylation of ethylmorphine was studied in liver microsomes from human fetuses and adult patients as well as from human fetal adrenals and kidneys. Unexpectedly the reaction was catalysed at the same rate in fetal (42.3-1277.4 pmol/mg/min in 11 individuals) and adult microsomes (414-1617.8 pmol/mg/min in two individuals), which also had similar values of the apparent Km (1.50, 1.72 mM respectively) and Vmax (1.33, 1.81 nmol/mg/min respectively) in studies of the enzyme kinetics. There was a close correlation (r = 0.96) between the semiquantitative immunoblotting assessment of cytochrome P-450 HL-p in fetal liver microsomes (with the use of a monoclonal antibody against pregnenolone-16-alpha-carbonitrile induced rat hepatic cytochrome P-450) and the catalytic activity. The fetal adrenal microsomal N-demethylation was only 11-30% of the hepatic activity when compared within three fetuses in which such a comparison was possible. No activity was measurable in the kidneys. Two drugs that are believed to be substrates of the cytochrome P-450 HLp were tested as inhibitors of the ethylmorphine N-demethylation in human fetal and adult liver microsomes and in rat liver microsomes. Midazolam was a potent inhibitor (100% at 0.4 mM) of the reaction in all specimens, whereas cyclosporin A inhibited the reaction clearly only in adult liver microsomes. Endogenous steroids of importance in the fetal circulation were also tested as inhibitors. Progesterone and dehydroepiandrosterone inhibited the reaction by 75-80% at a concentration of 0.4 mM, whereas pregnenolone and 17-alpha-hydroxyprogesterone were almost devoid of inhibitory potency. These results are of interest in the discussion about the physiological role of the human fetal cytochrome P-450 HLp which has an unprecedented relative abundance in the liver.  相似文献   

20.
A metabolite of thalidomide generated by hepatic microsomes inhibited the attachment of tumor cells to concanavalin A-coated polyethylene. Evidence that metabolite formation is mediated by microsomal cytochrome P-450 is presented. Microsomes incubated with thalidomide underwent a type I spectral shift. Metabolite formation was reduced or eliminated by carbon monoxide, SKF-525A, metyrapone, and N-octylamine. Superoxide dismutase treatment had no effect. Metabolite formation required microsomes and NADPH and was dependent on the length of 37 degrees C incubation. The metabolite could be isolated by successive hexane and chloroform extractions. It is likely the inhibitory thalidomide metabolite was generated by a minor cytochrome P-450 species. Whether this thalidomide metabolite is involved in the drug's teratogenic activity remains to be shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号