首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cochlear hair cells express SK2, a small-conductance Ca(2+)-activated K(+) channel thought to act in concert with Ca(2+)-permeable nicotinic acetylcholine receptors (nAChRs) alpha9 and alpha10 in mediating suppressive effects of the olivocochlear efferent innervation. To probe the in vivo role of SK2 channels in hearing, we examined gene expression, cochlear function, efferent suppression, and noise vulnerability in mice overexpressing SK2 channels. Cochlear thresholds, as measured by auditory brain stem responses and otoacoustic emissions, were normal in overexpressers as was overall cochlear morphology and the size, number, and distribution of efferent terminals on outer hair cells. Cochlear expression levels of SK2 channels were elevated eightfold without striking changes in other SK channels or in the alpha9/alpha10 nAChRs. Shock-evoked efferent suppression of cochlear responses was significantly enhanced in overexpresser mice as seen previously in alpha9 overexpresser mice; however, in contrast to alpha9 overexpressers, SK2 overexpressers were not protected from acoustic injury. Results suggest that efferent-mediated cochlear protection is mediated by other downstream effects of ACh-mediated Ca(2+) entry different from those involving SK2-mediated hyperpolarization and the associated reduction in outer hair cell electromotility.  相似文献   

2.
The contribution of subclasses of K(+) channels to the response of mammalian neurons to anoxia is not yet clear. We investigated the role of ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) currents (small conductance, SK, big conductance, BK) in mediating the effects of chemical anoxia by cyanide, as determined by electrophysiological analysis and fluorometric Ca(2+) measurements in dorsal vagal neurons of rat brainstem slices. The cyanide-evoked persistent outward current was abolished by the K(ATP) channel blocker tolbutamide, but not changed by the SK and BK channel blockers apamin or tetraethylammonium. The K(+) channel blockers also revealed that ongoing activation of K(ATP) and SK channels counteracts a tonic, spike-related rise in intracellular Ca(2+) ([Ca(2+)](i)) under normoxic conditions, but did not modify the rise of [Ca(2+)](i) associated with the cyanide-induced outward current. Cyanide depressed the SK channel-mediated afterhyperpolarizing current without changing the depolarization-induced [Ca(2+)](i) transient, but did not affect spike duration that is determined by BK channels. The afterhyperpolarizing current and the concomitant [Ca(2+)](i) rise were abolished by Ca(2+)-free superfusate that changed neither the cyanide-induced outward current nor the associated [Ca(2+)](i) increase. Intracellular BAPTA for Ca(2+) chelation blocked the afterhyperpolarizing current and the accompanying [Ca(2+)](i) increase, but had no effect on the cyanide-induced outward current although the associated [Ca(2+)](i) increase was noticeably attenuated. Reproducing the cyanide-evoked [Ca(2+)](i) transient with the Ca(2+) pump blocker cyclopiazonic acid did not evoke an outward current.Our results show that anoxia mediates a persistent hyperpolarization due to activation of K(ATP) channels, blocks SK channels and has no effect on BK channels, and that the anoxic rise of [Ca(2+)](i) does not interfere with the activity of these K(+) channels.  相似文献   

3.
4.
From just after birth, mouse inner hair cells (IHCs) expressed a Ca2+-activated K+ current that was reduced by intracellular BAPTA at concentrations ≥ 1 m m . The block of this current by nifedipine suggests the direct involvement of Cav1.3 Ca2+ channels in its activation. On the basis of its high sensitivity to apamin ( K D 360 p m ) it was identified as a small-conductance Ca2+-activated K+ current (SK), probably SK2. A similar current was also found in outer hair cells (OHCs) from the beginning of the second postnatal week. In both cell types the appearance of the SK current coincided with their becoming responsive to acetylcholine (ACh), the main efferent neurotransmitter in the cochlea. The effect of ACh on IHCs was abolished when they were simultaneously superfused with strychnine, consistent with the presence of nicotinic ACh receptors (nAChRs). Extracellular Ca2+ either potentiated or blocked the nAChR current depending on its concentration, as previously reported for the recombinant α9α10 nAChR. Outward currents activated by ACh were reduced by blocking the SK current with apamin or by preventing SK current activation with intracellular BAPTA (≥ 10 m m ). The endogenous mobile Ca2+ buffer concentration was estimated to be equivalent to about 1 m m BAPTA, suggesting that in physiological conditions the SK channel is significantly activated by Ca2+ influx through both Cav1.3 Ca2+ channels and α9α10 nAChRs. Current clamp experiments showed that in IHCs the SK current is required for sustaining a train of action potentials and also modulates their frequency when activated by ACh.  相似文献   

5.
Long lasting outward currents mediated by Ca2+-activated K+ channels can be induced by Ca2+ influx through N-methyl-D-aspartate (NMDA)-receptor channels in voltage-clamped hippocampal pyramidal neurons. Using specific inhibitors, we have attempted to identify the channels that underlie these outward currents. At a holding potential of -50 mV, applications of 1 mM NMDA to the soma of cultured hippocampal pyramidal neurons induced the expected inward currents. In 44% of cells tested, these were followed by outward currents (average amplitude 60 +/- 7 pA) that peaked 2.5 s after the initiation of the inward NMDA currents and decayed with a time constant of 1.4 s. In 43% of those cells exhibiting an outward current, SK channel inhibitors, UCL 1848 (100 nM) and apamin (100 nM) abolished the outward current. In the remainder of the cells, the outward currents were either insensitive or only partly inhibited (44 +/- 4%) by 100 nM UCL 1848. In these cells, the outward currents were reduced by the slow afterhyperpolarization (sAHP) inhibitors, muscarine (3 microM; 43 +/- 9%), UCL 1880 (3 microM; 34 +/- 10%), and UCL 2027 (3 microM; 57 +/- 6%). Neither the BK channel inhibitor, charybdotoxin (100 nM), nor the Na+/K+ ATPase inhibitor, ouabain (100 microM), reduced these outward currents. Irrespective of the pharmacology, the time course of the outward current did not differ. Interestingly, no correlation was observed between the presence of a slow apamin-insensitive afterhyperpolarization and an outward current insensitive to SK channel blockers following NMDA-receptor activation. It is concluded that an NMDA-mediated rise in [Ca2+]i can result in the activation of apamin-sensitive SK channels and of the channels that underlie the sAHP. The activation of these channels may, however, depend on their location relative to NMDA receptors as well as on the spatial Ca2+ buffering within individual neurons.  相似文献   

6.
The purpose of the present study was to examine how apamin interacts with the three cloned subtypes of small-conductance Ca2+-activated K+ channels (hSK1, rSK2 and rSK3). Expression of the SK channel subtypes in Xenopus laevis oocytes resulted in large outward currents (0.5-5 microA) after direct injection of Ca2+. In all three cases the Ca2+-activated K+ currents could be totally inhibited by 500 nM apamin. Dose-response curves revealed a subtype-specific affinity for the apamin-induced inhibition with IC50 values of 704 pM and 196 nM (biphasic) for hSK1, 27 pM for rSK2 and 4 nM for rSK3. Consistent with these results, membranes prepared from oocytes expressing the SK channel subtypes bound 125I-labelled apamin with distinct dissociation constants (Kd values) of approx. 390 pM for hSK1, 4 pM for rSK2 and 11 pM for rSK3. These results show that apamin binds to and blocks all three subtypes of cloned SK channels, and the distinct values for IC50 and Kd suggest that apamin may be useful for determining the expression pattern of SK channel subtypes in native tissue.  相似文献   

7.
Teshima K  Kim SH  Allen CN 《Neuroscience》2003,120(1):65-73
In neurons of the suprachiasmatic nucleus, spike frequency adaptation and membrane afterhyperpolarization occur during a train of action potentials. Extracellular Ca2+ may regulate neuronal excitability by several mechanisms, including activation of small conductance and large conductance Ca(2+)-activated K+ channels. The overall goal of this study was to examine the role of Ca(2+)-activated K+ currents in individual suprachiasmatic nucleus neurons. To this end, we used the nystatin-perforated patch technique to record currents from suprachiasmatic nucleus neurons. Iberiotoxin and tetraethylammonium, antagonists of large conductance Ca(2+)-activated K+ channels, had no effect on the membrane afterhyperpolarization. However, antagonists of small conductance Ca(2+)-activated K+ channels, apamin and d-tubocurarine, reduced the amplitude of the membrane afterhyperpolarization and inhibited the spike frequency adaptation that occurred during a train of action potentials. Although there was no significant difference in membrane AHP between different portions of the circadian day, apamin and d-tubocurarine increased the spontaneous firing frequency of suprachiasmatic nucleus neurons during the daytime. In voltage-clamp mode, membrane depolarization-activated currents were followed by an outward tail current reversing near the K+ equilibrium potential. The tail current decayed with a time constant of 220 ms at +20 mV and 149 ms at -40 mV. Apamin irreversibly and d-tubocurarine reversibly inhibited the tail current. The tail current amplitude was also reduced by the GABAA receptor antagonist, bicuculline methiodide, while picrotoxin (another GABAA receptor antagonist) was without effect. Removal of extracellular Ca2+ or the addition of Cd2+ reversibly inhibited the tail current. These results indicate that apamin- and d-tubocurarine-sensitive small conductance Ca(2+)-activated K+ channels have a modulatory function on the action potential firing frequency as well as the membrane afterhyperpolarization that follows a train of action potentials in suprachiasmatic nucleus neurons. Importantly, our data also indicate that a portion of the effects of bicuculline methiodide on suprachiasmatic nucleus neurons may be mediated by inhibition of small conductance Ca(2+)-activated K+ channels.  相似文献   

8.
The effect of hypoxia on small-conductance Ca(2+)-activated K+ current was investigated in a study of adult rat adrenomedullary chromaffin cells (AMCs), which were maintained in short-term culture. The nystatin-perforated, whole-cell patchclamp technique was used to study the effect of hypoxia with minimum perturbation of the intracellular milieu. Under voltage-clamp conditions, acute hypoxia (P(O2) approximately equal to 25 mmHg) suppressed the whole-cell outward currents of more than half the AMCs (24/46). This suppression was eliminated after application of apamin (400 nM), a selective inhibitor of small-conductance Ca(2+)-activated K+ current (I(SK)(Ca)) (n=5), suggesting that an apamin-sensitive component of whole-cell currents is suppressed during hypoxia. In contrast to I(SK)(Ca), Ca2+ current (I(Ca)) (n=10) was not affected by hypoxia. Finally, under current-clamp conditions, hypoxia reversibly depolarized the resting membrane potential of adult AMCs (34/40). Apamin, however, eliminated the hypoxia-induced depolarization (400 nM) (7/8), suggesting that hypoxic depolarization is related to the suppression of I(SK(Ca). From the above results, we conclude that adult AMCs are sensitive to hypoxia, and that I(SK)(Ca) contributes to the hypoxia-induced suppression of whole-cell outward current and depolarization of the resting membrane potential in adult AMCs.  相似文献   

9.
Colonic crypt cells possess basolateral Ca(2+)-regulated K+ channels which support Cl- secretion by providing the necessary driving force. The pharmacological characteristics of these channels were examined in Ussing chamber experiments of rat and rabbit colon mucosa by the use of blockers. The chromanol 293B, a blocker of KVLQT1 channels, and clotrimazole (CTZ), a blocker of small Ca(2+)-activated K+ channels, blocked stimulated Cl- secretion completely. Small-conductance Ca(2+)-activated K+ channels (SK) in excised basolateral patches of rat colonic crypts were inhibited concentration dependently by the imidazoles CTZ, NS004 and NS1619 and activated by 1-EBIO. These properties are similar to those of the known human SK channel (hSK4). hSK4-expressing Xenopus laevis oocytes showed ionomycin-activated and CTZ-inhibited K+ currents. When P2Y2 receptors were coexpressed these currents were also activated by ATP. The concentration/response curve was identical to that of rat SK channels. In human colonocytes (T84) exposed to hSK4 antisense probes, but not to sense probes, carbachol-induced K+ currents were attenuated. With RT-PCR an hSK4 could be demonstrated in human colon and in T84 colonocytes. By homology cloning the SK of the rat colon (rSK4) was identified. This protein has a high homology to hSK4 and mouse IK1. These data indicate that the Ca(2+)-activated and imidazole-inhibited basolateral K+ current in the colon is caused by SK4 channels.  相似文献   

10.
Cochlear outer hair cells (OHCs) are dominantly innervated by efferents, with acetylcholine (ACh) being their principal neurotransmitter. ACh activation of the cholinergic receptors on isolated OHCs induces calcium influx through the ionotropic receptors, followed by a large outward K+ current through nearby Ca2+-activated K+ channels. The outward K+ current hyperpolarizes the cell, resulting in the fast inhibitory effects of efferent action. Although the ACh receptors (AChRs) in adult OHCs have been identified and the ACh-induced current responses have been characterized, it is unclear when the ACh-induced current responses occur during development. In this study we attempt to address this question by determining the time of onset of the ACh-induced currents in neonatal gerbil OHCs, using whole cell patch-clamp techniques. Developing gerbils ranging in age from 4 to 12 days were used in these experiments, because efferent synaptogenesis and functional maturation of OHCs occur after birth. Results show that the first detectable ACh-induced current occurred at 6 days after birth (DAB) in 12% of the basal turn cells with a small outward current. The fraction of responsive cells and the size of outward currents increased as development progressed. By 11 DAB, the fraction of responsive cells and the current size were comparable with those of adult OHCs. The results indicate that the maturation of the ACh-induced response begins around 6 DAB. It appears that the development of ACh-induced responses occur during the same time period when OHCs develop motility but before the onset of auditory function, which is around 12 DAB when cochlear microphonic potentials can first be evoked with acoustic stimulation in gerbils.  相似文献   

11.
Yanovsky Y  Zhang W  Misgeld U 《Neuroscience》2005,136(4):1027-1036
Neurons in substantia nigra pars reticulata express the messenger RNA for SK2 but not for SK3 subunits that form small-conductance, Ca2+-dependent K+ channels in dopamine neurons. To determine pathways for the activation of small-conductance, Ca2+-dependent K+ channels in substantia nigra pars reticulata neurons of rats and mice, we studied effects of the selective blocker of small-conductance, Ca2+-dependent K+ channels, apamin (0.01 or 0.3 microM). Apamin diminished the afterhyperpolarization following each action potential and induced burst discharges in substantia nigra pars reticulata neurons. Apamin had a robust effect already at a low (10 nM) concentration consistent with the expression of the SK2 subunit. Afterhyperpolarizations were also reduced by the Ca2+ channel blockers Ni2+ (100 microM) and omega-conotoxin GVIA (1 microM). Depletion of intracellular Ca2+ stores did not change the afterhyperpolarization. However, we observed outward current pulses that occurred independently from action potentials and were abrogated by apamin. Apart from a faster time course, they shared all properties with spontaneous hyperpolarizations or outward currents that ryanodine receptor-mediated Ca2+ release from intracellular stores induces in juvenile dopamine neurons. Sensitization of ryanodine receptors by caffeine silenced substantia nigra pars reticulata neurons. This effect was abolished by the depletion of intracellular Ca2+ stores. We conclude that SK2 channels in substantia nigra pars reticulata neurons are activated by Ca2+ influx through at least two types of Ca2+ channels in the membrane and by ryanodine receptor-mediated Ca2+ release from intracellular stores. Ryanodine receptors do not amplify small-conductance, Ca2+-dependent K+ channel activation by the Ca2+ influx during a single spike. Yet, ryanodine receptor-mediated Ca2+ release and, thereby, an activation of small-conductance, Ca2+-dependent K+ channels by intracellular Ca2+ are available for excitability modulation in these output neurons of the basal ganglia system.  相似文献   

12.
AIMS: Thyrotropin-releasing hormone (TRH) induces biphasic changes in electrical activity, cytosolic free Ca(2+) level ([Ca(2+)](i)), and prolactin secretion from both clonal GH cells and native lactotrophs. The first phase of the TRH response is characterized by hyperpolarization because of activation of Ca(2+)-activated K(+) channels (K(Ca)). In the present study, the relative contribution of BK, SK, and IK channels to the first phase of the TRH response in GH(4) cells was assessed. METHODS: The expression of IK channels was confirmed by PCR with specific primers for SK4 (IK). The response to TRH was studied using the perforated patch technique and Ca(2+) microfluoromety (fura-2). The involvement of different K(Ca) channels was estimated by employing the specific channel blockers iberiotoxin (BK), apamin (SK) and clotrimazole (IK). RESULTS: Application of 100 nM iberiotoxin, 1 microM apamin, and 10 microM clotrimazole reduced the peak value of the outward K(+) current during the first phase of the TRH response by 33, 26, and 33%, respectively. Clotrimazole also shortened the duration of the outward current response by 60%, causing a reduction of total charge movement by 73%. All these toxin-induced reductions were significant (P < 0.05). A combination of all three toxins abolished the current response almost completely. CONCLUSION: All the three main types of K(Ca) channels are involved in the first phase of the TRH response, with IK as the major contributor. This is the first demonstration of a dominant role of IK compared with BK and SK channels in excitable cells.  相似文献   

13.
Cholinergic efferent fibers modify hair cell responses to mechanical stimulation. It is hypothesized that calcium entering the hair cell through a nicotinic receptor activates a small-conductance (SK), calcium-activated potassium channel to hyperpolarize the hair cell. The calcium signal may be amplified by calcium-induced calcium release from the synaptic cisternae. Pharmacological tests of these ideas in the intact cochlea have been technically difficult because of the complex and fragile structure of the mammalian inner ear. We turned to the Xenopus laevis lateral line organ, whose simplicity and accessibility make it a model for understanding hair cell organ function in a relatively intact system. Drugs were applied to the inner surface of the skin while monitoring the effects of efferent stimulation on afferent fiber discharge rate. Efferent effects were blocked by antagonists of SK channels including apamin (EC50 = 0.5 microM) and dequalinium (EC50 = 12 microM). The effect of apamin was not enhanced by co-administration of phenylmethylsulfonyl fluoride, a proteolysis inhibitor. Efferent effects were attenuated by ryanodine, an agent that can interfere with calcium-induced calcium release, although relatively high (mM) concentrations of ryanodine were required. Fluorescent cationic styryl dyes, 4-di-2-asp and fm 1-43, blocked efferent effects, although it was not possible to observe specific entry of the dye into the base of hair cells. These pharmacological findings in the Xenopus lateral line organ support the hypothesis that effects of efferent stimulation are mediated by calcium entry through the nicotinic receptor via activation of SK channels and suggest the generality of this mechanism in meditating cholinergic efferent effects.  相似文献   

14.
This study investigates the firing properties of the inspiratory-activated and inspiratory-inhibited airway vagal preganglionic neurons located in the external formation of the nucleus ambiguus. The results showed that inspiratory-activated and inspiratory-inhibited neurons are distributed with different density and site preference in this area. Inspiratory-inhibited neurons exhibit significantly more positive resting membrane potential, more negative voltage threshold and lower minimal current required to evoke an action potential under current clamp. The afterhyperpolarization in inspiratory-activated neurons was blocked by apamin, a blocker of the small-conductance Ca(2+)-activated K(+) channels; and that in inspiratory-inhibited neurons by charybdotoxin, a blocker of the large-conductance Ca(2+)-activated K(+) channels. Under voltage clamp, depolarizing voltage steps evoked tetrodotoxin-sensitive rapid inward sodium currents, 4-aminopyridine-sensitive outward potassium transients and lasting outward potassium currents. 4-Aminopyridine partially blocked the lasting outward potassium currents of inspiratory-activated neurons but was ineffective on those of inspiratory-inhibited neurons. These findings suggest that inspiratory-activated and inspiratory-inhibited neurons are differentially organized and express different types of voltage-gated ion channels.  相似文献   

15.
Cooperative regulation of inosiol-1,4,5-trisphosphate receptors (IP(3)Rs) by Ca(2+) and IP(3) has been increasingly recognized, although its functional significance is not clear. The present experiments first confirmed that depolarization-induced Ca(2+) influx triggers an outward current in visual cortex pyramidal cells in normal medium, which was mediated by apamin-sensitive, small-conductance Ca(2+)-dependent K(+) channels (SK channels). With IP(3)-mobilizing neurotransmitters bath-applied, a delayed outward current was evoked in addition to the initial outward current and was mediated again by SK channels. Calcium turnover underlying this biphasic SK channel activation was investigated. By voltage-clamp recording, Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs) was shown to be responsible for activating the initial SK current, whereas the IP(3)R blocker heparin abolished the delayed component. High-speed Ca(2+) imaging revealed that a biphasic Ca(2+) elevation indeed underlays this dual activation of SK channels. The first Ca(2+) elevation originated from VDCCs, whereas the delayed phase was attributed to calcium release from IP(3)Rs. Such enhanced SK currents, activated dually by incoming and released calcium, were shown to intensify spike-frequency adaptation. We propose that spike-induced calcium release from IP(3)Rs leads to SK channel activation, thereby fine tuning membrane excitability in central neurons.  相似文献   

16.
Apical uridine triphosphate (UTP) stimulation was shown to increase short circuit current (I(sc)) in immortalized porcine endometrial gland epithelial monolayers. Pretreatment with the bee venom toxin apamin enhanced this response. Voltage-clamp experiments using amphotericin B-permeablized monolayers revealed that the apamin-sensitive current increased immediately after UTP stimulation and was K(+) dependent. The current-voltage relationship was slightly inwardly rectifying with a reversal potential of -52 +/- 2 mV, and the P(K)/P(Na) ratio was 14, indicating high selectivity for K(+). Concentration-response relationships for apamin and dequalinium had IC(50) values of 0.5 nm and 1.8 microm, respectively, consistent with data previously reported for SK3 channels in excitable cells and hepatocytes. Treatment of monolayers with 50 microm BAPTA-AM completely blocked the effects of UTP on K(+) channel activation, indicating that the apamin-sensitive current was also Ca(2+) dependent. Moreover, channel activation was blocked by calmidazolium (IC(50) = 5 microm), suggesting a role for calmodulin in Ca(2+)-dependent regulation of channel activity. RT-PCR experiments demonstrated expression of mRNA for the SK1 and SK3 channels, but not SK2 channels. Treatment of monolayers with 20 nm oestradiol-17beta produced a 2-fold increase in SK3 mRNA, a 2-fold decrease in SK1 mRNA, but no change in GAPDH mRNA expression. This result correlated with a 2.5-fold increase in apamin-sensitive K(+) channel activity in the apical membrane. We speculate that SK channels provide a mechanism for rapidly sensing changes in intracellular Ca(2+) near the apical membrane, evoking immediate hyperpolarization necessary for increasing the driving force for anion efflux following P2Y receptor activation.  相似文献   

17.
Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.  相似文献   

18.
Whole-cell voltage-clamp recordings of outward currents were obtained from acutely dissociated neurons of the rat neostriatum in conditions in which inward Ca2+ current was not blocked and intracellular Ca2+ concentration was lightly buffered. Na+ currents were blocked with tetrodotoxin. In this situation, about 53 +/- 4% (mean +/- S.E.M.; n = 18) of the outward current evoked by a depolarization to 0 mV was sensitive to 400 microM Cd2+. A similar percentage was sensitive to high concentrations of intracellular chelators or to extracellular Ca2+ reduction (<500 microM); 35+/-4% (n=25) of the outward current was sensitive to 3.0 mM 4-aminopyridine. Most of the remaining current was blocked by 10 mM tetraethylammonium. The results suggest that about half of the outward current is activated by Ca2+ entry in the present conditions. The peptidic toxins charybdotoxin, iberotoxin and apamin confirmed these results, since 34 +/- 5% (n = 14), 29 5% (n= 14) and 28 +/- 6% (n=9) of the outward current was blocked by these peptides, respectively. The effects of charybdotoxin and iberotoxin added to that of apamin, but their effects largely occluded each other. There was additional Cd2+ block after the effect of any combination of toxins. Therefore, it is concluded that Ca2+-activated outward currents in neostriatal neurons comprise several components, including small and large conductance types. In addition, the present experiments demonstrate that Ca2+-activated K+ currents are a very important component of the outward current activated by depolarization in neostriatal neurons.  相似文献   

19.
Olivocochlear (OC) efferent suppression of auditory-nerve responses comprises a fast effect lasting tens of milliseconds and a slow effect building and decaying over tens of seconds. Both fast and slow effects are mediated by activation of the same alpha 9 nicotinic receptor. We have hypothesized that fast effects are generated at the OC synapse, but that slow effects reflect activation of calcium-activated potassium (K(Ca)) channels by calcium release from the subsurface cisternae on the basolateral wall of the hair cells. We measured in vivo effects of apamin, a blocker of small-conductance (SK) K(Ca) channels, and charybdotoxin, a blocker of large-conductance K(Ca) channels, perfused through scala tympani, on fast and slow effects evoked by electrical stimulation of the OC bundle in anesthetized guinea pigs. Apamin selectively and reversibly reduced slow-effect amplitude without altering fast effects or baseline amplitude of the auditory-nerve response, but only when perfused at concentrations of 100 microM. In contrast, the effects of charybdotoxin were noted at 30 nM, but were not specific, reducing both afferent and efferent responses. The very high concentrations of apamin needed to block efferent effects contrasts with the high sensitivity of isolated hair cells to apamin's block of acetylcholine's effects. The results suggest that in vivo fast OC effects are dominated by a conductance that is not apamin sensitive.  相似文献   

20.
Cyclopiazonic acid (CPA) is a reticulum-like intracellular Ca(2+) store depletory, which raises intracellular Ca(2+) concentration. The effect of CPA on membrane currents in isolated inner hair cells (IHCs) from guinea-pig cochlea was investigated by the patch-clamp technique in the whole-cell configuration. Four out of eight IHCs showed an augmentation of the currents and the other four cells showed an inhibition of the currents by extracellular CPA application. The activation kinetics of outward currents were not changed by CPA. Three out of four IHCs obtained from the basal part of the cochlea demonstrated augmentation, whereas three out of four IHCs from the apical part demonstrated inhibition of the currents. This result suggests that Ca(2+)-activated currents were dominant in the basal IHCs of the cochlea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号