首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We reported previously that a synthetic mucosal adjuvant SF-10, which mimics human pulmonary surfactant, delivers antigen to mucosal dendritic cells in the nasal cavity and promotes induction of humoral and cellular immunity. The aim of the present study was to determine the effects of oral administration of antigen combined with SF-10 (antigen-SF-10) on systemic and local immunity. Oral administration of ovalbumin, a model antigen, combined with SF-10 enhanced ovalbumin uptake into intestinal antigen presenting MHC II+CD11c+ cells and their CD11b+CD103+ and CD11b+CD103- subtype dendritic cells, which are the major antigen presenting subsets of the intestinal tract, more efficiently compared to without SF-10. Oral vaccination with influenza hemagglutinin vaccine (HAv)-SF-10 induced HAv-specific IgA and IgG in the serum, and HAv-specific secretory IgA and IgG in bronchoalveolar lavage fluid, nasal washes, gastric extracts and fecal material; their levels were significantly higher than those induced by subcutaneous HAv or intranasal HAv and HAv-SF-10 vaccinations. Enzyme-linked immunospot assay showed high numbers of HAv-specific IgA and IgG antibody secreting cells in the gastrointestinal and respiratory mucosal lymphoid tissues after oral vaccination with HAv-SF-10, but no or very low induction following oral vaccination with HAv alone. Oral vaccination with HAv-SF-10 provided protective immunity against severe influenza A virus infection, which was significantly higher than that induced by HAv combined with cholera toxin. Oral vaccination with HAv-SF-10 was associated with unique cytokine production patterns in the spleen after HAv stimulation; including marked induction of HAv-responsive Th17 cytokines (e.g., IL-17A and IL-22), high induction of Th1 cytokines (e.g., IL-2 and IFN-γ) and moderate induction of Th2 cytokines (e.g., IL-4 and IL-5). These results indicate that oral vaccination with HAv-SF-10 induces more efficient systemic and local immunity than nasal or subcutaneous vaccination with characteristically high levels of secretory HAv-specific IgA in various mucosal organs and protective immunity.  相似文献   

3.
7-Valent pneumococcal conjugate vaccine (PCV7) immunization in adulthood can inhibit allergic asthma in mouse model. The aim of this study is to investigate the effects of infant PCV7 immunization on young adulthood CD4+T cell subsets in a murine allergic airway disease (AAD) model. Our study indicated that infant PCV7 immunization can inhibit young adulthood airway inflammation and airway hyperresponsiveness (AHR) by inducing the production of Foxp3+Treg, Th1 cells and their cytokines IL-10 and IFN-γ, inhibiting the production of Th2, Th17 cells and their cytokines IL-13 and IL-17A in BALB/c mice model. These results suggested that infant PCV7 immunization may serve as an effective measure to prevent young adulthood mice AAD.  相似文献   

4.
《Vaccine》2018,36(29):4188-4197
Neonates have an increased susceptibility to infections, particularly those caused by intracellular pathogens, leading to high morbidity and mortality rates. This is partly because of a poor response of neonatal CD4+ T cells, leading to deficient antibody production and a low production of IFN-γ, resulting in deficient elimination of intracellular pathogens. The poor memory response of human neonates has underpinned the need for improving vaccine formulations. Molecular adjuvants that improve the response of neonatal lymphocytes, such as the ligands of toll-like receptors (TLRs), are attractive candidates. Among them, flagellin, the TLR5 ligand, is effective at very low doses; prior immunity to flagellin does not impair its adjuvant activity. Human CD4+ and CD8+ T cells express TLR5. We found that flagellin induces the expression of IFN-γ, IL-1β and IL-12 in mononuclear cells from human neonate and adult donors. When human naïve CD4+ T cells were activated in the presence of flagellin, there was high level of expression of IFN-γ in both neonates and adults. Furthermore, flagellin induced IFN-γ production in Th1 cells obtained from adult donors; in the Th2 population, it inhibited IL-4 cytokine production. Flagellin also promoted expression of the IFN-γ receptor in naive CD4+ T cells from neonates and adults. To test the adjuvant capacity of flagellin in vivo, we used a murine neonate vaccination model for infection with rotavirus, a pathogen responsible for severe diarrhea in young infants. Using the conserved VP6 antigen, we observed an 80% protection against rotavirus infection in the presence of flagellin, but only in those mice previously primed in the neonatal period. Our data suggest that flagellin could be an attractive adjuvant for achieving a Th1 response.  相似文献   

5.
6.
Kodama S  Hirano T  Noda K  Umemoto S  Suzuki M 《Vaccine》2011,29(10):1881-1890
Nasal vaccination is an effective therapeutic regimen for preventing upper respiratory infection, while DNA vaccines represent a new approach for controlling infectious diseases. Here, we examined the efficacy of nasally administered DNA vaccine on upper respiratory infections.A DNA plasmid encoding the P6 outer membrane protein of nontypeable Haemophilus influenzae (NTHi) was constructed. Mice were immunized 3 times intranasally with the DNA plasmid and Matrix-M, an immunostimulatory complex adjuvant. P6-specific immune responses were examined using purified P6 protein. Nasal-associated lymphoid tissue (NALT) CD4+ T cells were purified and incubated with feeder cells in the presence of P6, and the expression of cytokine mRNA was examined. In addition, NTHi challenges were performed and the level of NTHi was quantified in nasal washes.P6-specific nasal wash IgA and serum IgG were elevated following immunization with the DNA plasmid and Matrix-M. The number of specific IgA-producing cells increased in the nasal passages of the immunized mice. In addition to Th1 and Th2 cytokine expression, IL-17 was detected in P6-specific NALT CD4+ T cells. Moreover, DNA vaccination enhanced bacterial clearance.These findings suggest that a successful DNA vaccination protocol has been developed for inducing in vivo immune responses against NTHi. Nasal vaccination with P6 DNA vaccine and Matrix-M might be a new effective regimen for the induction of specific protective immunity in the upper respiratory tract.  相似文献   

7.
8.
Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing acute pulmonary infections and is a leading cause of hospital-acquired and ventilator-associated pneumonia. With multidrug-resistant P. aeruginosa infections on the rise, the need for a vaccine against this pathogen is critical. Growing evidence suggests that a successful P. aeruginosa vaccine may require mucosal antibody and Th1- and Th17-type CD4+ T cells to prevent pulmonary infection. Intradermal immunization with adjuvants, such as the bacterial ADP-Ribosylating Enterotoxin Adjuvant (BARE) double mutant of E. coli heat-labile toxin (dmLT), can direct protective immune responses to mucosal tissues, including the lungs. We reasoned that intradermal immunization with P. aeruginosa outer membrane proteins (OMPs) adjuvanted with dmLT could drive neutralizing antibodies and migration of CD4+ T cells to the lungs and protect against P. aeruginosa pneumonia in a murine model. Here we show that mice immunized with OMPs and dmLT had significantly more antigen-specific IgG and Th1- and Th17-type CD4+ memory T cells in the pulmonary environment compared to control groups of mice. Furthermore, OMPs and dmLT immunized mice were significantly protected against an otherwise lethal lung infection. Protection was associated with early IFN-γ and IL-17 production in the lungs of immunized mice. These results indicate that intradermal immunization with dmLT can drive protective immunity to the lung mucosa and may be a viable vaccination strategy for a multitude of respiratory pathogens.  相似文献   

9.
《Vaccine》2015,33(35):4313-4320
Identifying new molecular adjuvants that elicit effective vaccine-induced CD8+ T cell immunity may be critical for the elimination of many challenging diseases including Tuberculosis, HIV and cancer. Here, we report that co-administration of molecular adjuvant IL-33 during vaccination enhanced the magnitude and function of antigen (Ag)-specific CD8+ T cells against a model Ag, LCMV NP target protein. These enhanced responses were characterized by higher frequencies of Ag-specific, polyfunctional CD8+ T cells exhibiting cytotoxic characteristics. Importantly, these cells were capable of robust expansion upon Ag-specific restimulation in vivo and conferred remarkable protection against a high dose lethal LCMV challenge. In addition, we demonstrate the ability of IL-33 to amplifying the frequency of Ag-specific KLRG1+ effector CD8+ T cells. These data show that IL-33 is a promising immunoadjuvant at improving T cell immunity in a vaccine setting and suggest further development and understanding of this molecular adjuvant for strategies against many obstinate infectious diseases and cancer.  相似文献   

10.
《Vaccine》2018,36(29):4198-4206
There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4+ T cells, whereby depletion of CD4+ T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4+ T cells were needed for early antibody production and CD8+ T cell recall responses. Furthermore, influenza-specific CD4+ T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4+ and CD8+ T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza.  相似文献   

11.
12.
Makino M  Uemura N  Moroda M  Kikumura A  Piao LX  Mohamed RM  Aosai F 《Vaccine》2011,29(10):1899-1905
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) is a tachyzoite-specific virulent molecule expressed before the death of hosts. We have already demonstrated the vaccine effects of T.g.HSP70 gene targeting peripheral epidermal or dermal dendritic cells (DC) to limit T. gondii loads in T. gondii-infected mice. In the present study, involvement of innate immunity in T.g.HSP70 gene vaccine-induced Th polarization at draining lymph nodes (dLN) of C57BL/6 (B6) mice and vaccine effects against toxoplasmosis have been evaluated. Compared to the mice unvaccinated or vaccinated with empty plasmid, CD11c+ cells at the dLN from naïve B6 mice expressed prominent IL-12 mRNA after the T.g.HSP70 gene vaccine. Also, CD4+ cells at the dLN from the mice expressed prominent interferon-γ, but not IL-4 or IL-17, mRNA at a maximum level at day 5 following vaccination. Thus, in vivo DC activation and successive early Th1 polarization were induced at the dLN of naïve mice by the T.g.HSP70 gene vaccine. The DC activation and Th1 polarization were observed at the dLN from wild type (WT) and Toll-like receptor (TLR) 2-deficient mice, but not TLR4-deficient mice with B6 background by the vaccine. This T.g.HSP70 gene vaccine-induced DC activation and Th1 polarization were also observed in TRIF-deficient mice, but not MyD88-deficient mice with B6 background indicating the involvement of TLR4/MyD88 signal transduction cascade in the vaccine effects with T.g.HSP70 gene. The T.g.HSP70 gene vaccine (twice at a 2-week interval) has been shown to limit T. gondii loads in the mesenteric LN of WT, TLR2-deficient and TRIF-deficient mice, but neither TLR4-deficient nor MyD88-deficient mice, at an acute phase of toxoplasmosis. The T.g.HSP70 gene vaccine also limited cyst number in the brains of WT, TLR2-deficient and TRIF-deficient mice, but not TLR4-deficient mice at a chronic phase of toxoplasmosis. Thus, innate immunity also has effects on the vaccine with T.g.HSP70 gene against acute and chronic phases of toxoplasmosis.  相似文献   

13.
The mechanisms of immune response following yellow fever (YF-17DD) vaccination are still poorly understood. In this study, we have performed a longitudinal investigation (days 0, 7, 15 and 30) to characterize the cytokine profile of innate and adaptive immunity following YF-17DD first-time vaccination. Data from non-stimulated cultures demonstrated a prominent participation of the innate immunity with increased frequency of TNF-α+ neutrophils and IFN-γ+ NK-cells at day 7 besides TNF-α+ monocytes at day 7, day 15 and day 30. Increased frequency of IL-10+ monocytes was observed at day 15 and day 30, and decreased percentage of IL-4+ NK-cells were detected at day 7, day 15 and day 30. Time-dependent and oscillating cytokine pattern was observed in CD4+ T-cells, with low percentage of IL-12+, IL-4+ and IL-10+ cells at day 7 and increased frequency of TNF-α+ cells at day 15 besides IFN-γ+ and IL-5+ cells at day 15 and day 30. Later changes with increased percentage of IL-12+ and IL-5+CD8+ T-cells were observed at day 30. Increased frequency of IL-10+ B-cells was observed at day 15, when seroconversion was detected in all vaccinees. The overall cytokine analysis of non-stimulated leukocytes showed a transient shift towards a pro-inflammatory profile at day 7, mainly due to changes in the innate immunity, which draws back toward a mixed/regulatory pattern at day 15 and day 30. The changes induced by the in vitro YF-17DD vaccine-stimulation were mainly observed at day 0 and day 7 (before seroconversion) with minor changes at day 15 and day 30 (after seroconversion). These data support the hypothesis that a complex network with mixed pro/anti-inflammatory cytokine profile is associated with the establishment of the protective immunity following YF-17DD primo-vaccination, free of adverse events.  相似文献   

14.
《Vaccine》2015,33(12):1483-1491
Whole cell pertussis (wP) vaccines are gradually being replaced by aluminum salt-adjuvanted acellular pertussis (aP) vaccines. These promote CD4+ T cell responses with a non-protective Th2 component, while protective immune mechanisms to B. pertussis may rather involve long-lived Th1/Th17 type CD4+ T cells. Here we asked whether addition of a non-toxic meningococcal LPS derivative, LpxL1, as adjuvant can favorably modulate the aP-induced pertussis-specific CD4+ T cell response in mice. To assess the effect of TLR4 ligation, Th type, quantity, and memory potential of pertussis-specific CD4+ T cells were determined at the single-cell level after aP and aP+LpxL1 vaccination using intracellular cytokine staining and MHC class II tetramers. Adding LpxL1 to the aP vaccine weakened the Th2 component and strengthened the Th1/Th17 component of the specific CD4+ T cell response. Notably, LpxL1 addition also induced higher frequencies of tetramer positive CD4+ T cells in draining lymph nodes or blood, depending on the phase after vaccination. Moreover, there was a net profit in the number of CD4+ T cells with a central memory phenotype, preferred for long-term immunity. Thus, adding a TLR4 ligand as adjuvant to a current aP vaccine was associated with a more favorable pertussis-specific CD4+ T cell response.  相似文献   

15.
Withania somnifera, commonly called Ashwagandha in the Indian traditional system of medicine has been reported for several pharmacological activities. This study demonstrates, for the first time, the potential role of the chemically standardized leaf extract of W. somnifera (WSL) and it's identified component in activating immune system. WSL enhanced Th1 cytokine IFN-γ expression in Con A primed splenocytes in vitro. When given orally for 2 weeks to BALB/c mice immunized with emulsion of OVA in Freund's adjuvant (OVA-FCA), it caused dose-dependent proliferation of T cells and improved their ability to secrete IL-2 and IFN-γ, but moderately down-regulated Th2 cytokine IL-4. Flow cytometric analysis of lymphocyte surface markers of T cells CD3+, CD4+ and CD8+, and B cells CD19+ indicated prominent enhancement in proliferation and differentiation of lymphocytes. Further, the effect of WSL in immunized mice elicited up-regulation of β-integrins LFA (CD11a) and Mac-1 (CD11b) in splenocytes. Co-stimulatory molecules CD80 and CD86 that are important secondary signals for the activation of immune system elicited remarkable enhanced expression when observed in spleen-derived macrophages isolated from WSL treated mice. Chemical standardization of WSL suggested that the withanolide 2,3 dihydro-3-sulphonile withanone is a major constituent of WSL responsible for skewing to Th1 immune polarization by stimulating the expression of IFN-γ and B cell switch over to secrete IgG2a while simultaneously enhancing the expression of co-stimulatory molecules and integrins. These studies demonstrate the possible usefulness of WSL and its major constituent WSL-2 as Th1 immune adjuvants for chronic infectious ailments where patients suffer from weakened Th1 immunity.  相似文献   

16.
MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8(+) CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4(+) T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8(+) T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4(+) T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies.  相似文献   

17.
Mycobacterium bovis BCG is an attractive vaccine vector against breast milk HIV transmission because it elicits Th1-type responses in newborns. However, BCG causes disease in HIV-infected infants. Genetically attenuated Mycobacterium tuberculosis (Mtb) mutants represent a safer alternative for immunocompromised populations. In the current study, we compared the immunogenicity in mice of three different recombinant attenuated Mtb strains expressing an HIV envelope (Env) antigen construct. Two of these strains (ΔlysA ΔpanCD Mtb and ΔRD1 ΔpanCD Mtb) failed to induce significant levels of HIV Env-specific CD8+ T cell responses. In striking contrast, an HIV-1 Env-expressing attenuated ΔlysA Mtb containing a deletion in secA2, which encodes a virulence-related secretion system involved in evading adaptive immunity, generated consistently measurable Env-specific CD8+ T cell responses that were significantly greater than those observed after immunization with BCG expressing HIV Env. Similarly, another strain of ΔlysA ΔsecA2 Mtb expressing SIV Gag induced Gag- and Mtb-specific CD8+ T cells producing perforin or IFNγ, and Gag-specific CD4+ T cells producing IFNγ within 3 weeks after immunization in adult mice; in addition, IFNγ-producing Gag-specific CD8+ T cells and Mtb-specific CD4+ T cells were observed in neonatal mice within 1 week of immunization. We conclude that ΔlysA ΔsecA2 Mtb is a promising vaccine platform to construct a safe combination HIV-TB vaccine for use in neonates.  相似文献   

18.
Griffin AJ  McSorley SJ 《Vaccine》2011,29(15):2697-2704
The administration of live attenuated Salmonella strains has proven to be an effective way to generate protective immunity against Salmonella infection in humans and mice. Studies in the mouse model have shown that protection requires Salmonella-specific Th1 cells, however the timing and stimulatory requirements for generating optimal Th1 responses have not been carefully examined. We used antibiotic interruption of vaccination with live attenuated Salmonella to examine the requirements for Salmonella-specific Th1 development and protective immunity. Optimal development of protective immunity to Salmonella infection required at least one week of exposure to the live attenuated Salmonella strain. In contrast, optimal development of Salmonella-specific Th1 cells required two weeks of in vivo colonization. Thus, sustained in vivo stimulation with a live vaccine strain is essential for the development of robust Salmonella-specific Th1 cells.  相似文献   

19.
Th17 cells constitute a subset of activated CD4+ T cells, characterized by their production of interleukin (IL)-17, IL-17F, and IL-22, that play a critical role in host defence against extracellular pathogens. An intriguing feature of these cells is their selective and constitutive presence in the intestinal lamina propria. The development of intestinal Th17 cells is controlled by intestinal commensal bacteria. Recently, segmented filamentous bacterium (SFB) was identified as a specific bacterial taxon that promotes Th17 differentiation in the small intestine of mice. We discuss the recent advances in our understanding of the mechanism of intestinal Th17 synthesis and its potential implications for the treatment of inflammatory bowel diseases.  相似文献   

20.
《Vaccine》2018,36(18):2462-2470
Tuberculosis (TB) infection affects a quarter of the global population resulting in a large burden of TB disease and mortality. The long-term control of TB requires vaccines with greater efficacy and durability than the current Mycobacterium bovis Bacille Calmette-Guérin (BCG). Pulmonary immunization may increase and prolong immunity at the site of Mycobacterium tuberculosis infection. We have investigated recombinant influenza A viruses (rIAVs) expressing the p25 CD4+ T cell epitope of M. tuberculosis Ag85B240–254 for single and sequential immunization against M. tuberculosis infection. Intranasal immunization with single dose of rIAV X31 (H3N2 strain) expressing the p25 epitope (X31-p25), induced p25-specific CD4+ T cells and conferred protection against aerosol delivery of M. tuberculosis infection in the lungs. To enhance this effect, prime-boost immunization with hetero-subtypic rIAVs was examined. Sequential immunization with X31-p25 and a second rIAV, PR8 (H1N1 strain) expressing the same epitope (PR8-p25), increased the frequency of p25-specific IFN-γ T cell responses and polyfunctional CD4+ T cells producing IFN-γ, IL-2, and TNF, compared to immunization with each rIAV alone. This combination resulted in protection against M. tuberculosis in both the lungs and spleen. Therefore, our study revealed that rIAV is not only an efficient vector to induce protective immunity in the lungs, but also has a potential use for sequential immunization with heterologous rIAV to boost the immunogenicity and improve the protection against M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号