首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify the neutralizing B-cell epitope of epididymal protease inhibitor (Eppin) and promote its immunogenicity, we designed four candidate B-cell epitopes peptide and employed a recombinant human Eppin (rhEppin) protein prime/peptide boost strategy to compare the immune responses and fertility inhibition effect with that of rhEppin or peptide alone vaccination. Our results indicate that priming with Eppin and boosting with different peptide showed similarly enhanced antibodies titers but different fertility inhibition effect, which coordinated with the motility inhibition of the antisera to human sperm. Thus we explored an alternative approach to induce dominant neutralizing B-cell epitope specific immune response and an ideal protocol for providing effective and long-term fertility inhibition of male mice.  相似文献   

2.
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has recently caused huge economic losses in the pig industry worldwide. Commercial vaccines, including inactivated vaccines and attenuated live vaccines, are available but fail to provide sustainable protection, especially against genetically heterologous strains. Thus several approaches have been used to develop more effective PRRSV vaccines and/or immune modulators to accelerate and magnify immune responses to PRRSV vaccines. Heat shock protein Gp96 is one such modulator that enhances both the innate and adaptive immune responses. In the present study, two B-cell epitopes and seven T-cell epitopes from PRRSV and a Pan DR T-helper cell epitope were synthesized and mixed with the N-terminal 22–355 aa of Gp96 (Gp96N) as an adjuvant, and immune responses were evaluated. Our results show that Gp96N activated PRRSV-specific humoral immune responses elicited by BCE-peptides and promoted the PRRSV-specific cellular immunity induced by TCE-peptides. Moreover, higher levels of IL-12 and TNF-α and lower levels of IL-4 and IL-10 were observed in the serum of Gp96N-vaccinated piglets compared to piglets immunized with no Gp96N, displaying a predominant Th1 type of immune response induced by Gp96N. Following challenge with the virulent HP-PRRSV isolate JXwn06, piglets vaccinated with the mixture of peptides and Gp96N presented with milder clinical symptoms, lower viremia, and less pathological lesions in their lungs, however, this vaccine could not provide lasting and effective protection against HP-PRRSV infection. These data provide important bases for the development of PRRSV epitope-based synthetic peptide vaccines combined with Gp96N as attractive immunomodulators in swine.  相似文献   

3.
Plasmodium vivax Merozoite Surface Protein-9 (PvMSP-9) is a malaria vaccine candidate naturally immunogenic in humans and able to induce high antibody titers in animals when delivered as a recombinant protein. Recently, we identified the sequence EAAPENAEPVHENA (PvMSP9E795-A808) as the main linear B-cell epitope in naturally exposed individuals. However, the potential of PvMSP9E795-A808 as an immunogen in experimental animal models remained unexplored. Here we assess the immunogenicity of PvMSP9E795-A808 using synthetic peptides. The peptides tested in BALB/c mice include two repeats of the sequence EAAPENAEPVHENA tested alone (peptide RII), or linked to an autologous (PvMSP9 peptide pL; pLRII) or heterologous (p2 tetanus toxin universal T cell epitope; TTRII) T cell epitope. Immune responses were evaluated by ELISA, FLUOROSPOT, and indirect immunofluorescence. We show that all of the peptide constructs tested were immunogenic eliciting specific IgG antibodies at different levels, with a prevalence of IgG1 and IgG2. Animals immunized with synthetic peptides containing T cell epitopes (pLRII or TTRII) had more efficient antibody responses that resulted in higher antibody titers able to recognize the native protein by immunofluorescence. Relevantly, the frequency of IFN-γ secreting SFC elicited by immunization with TTRII synthetic peptide was comparable to that reported to the PvMSP9-Nt recombinant protein. Taken together, our study indicates that PvMSP9E795-A808 is highly immunogenic in mice and further studies to evaluate its value as promising vaccine target are warranted. Moreover, our study supports the critical role of CD4 T cell epitopes to enhance humoral responses induced by subunit based vaccines.  相似文献   

4.
HIV-Tat based vaccines have been proposed as an attractive option to prevent or treat AIDS. A vaccine to induce optimal anti-Tat neutralizing antibody responses was designed by inserting this protein, or its dominant B-cell epitope, into the CyaA vector, which targets dendritic cells (DC). Tat was inserted into various sites of CyaA, including regions that do not translocate into the cytosol of the targeted DC. The presentation of the Tat CD4+ T-cell epitope delivered by the CyaA-Tat proteins was observed with a recombinant CyaA in which the entire AC domain was replaced by the entire Tat protein (Tat-Δ373 CyaA) but was abolished with large deletions of the N-terminal region. Moreover, CyaA carrying multiple copies of the dominant Tat: 1–21 B-cell epitope were shown to induce high titers of anti-Tat antibodies, even after a single immunization, that persisted up to 10 weeks post-immunization.  相似文献   

5.
《Vaccine》2022,40(33):4796-4805
The identification of novel targets for cancer immunotherapy and the development of new vaccine immunogens are subjects of permanent interest. MUC1 is an overexpressed antigen found in most tumors, and its overexpression correlates with poor prognosis. Many attempts to direct the immune response against MUC1 in tumor cells have failed, including several clinical trials. We have previously developed an innovative Variable Epitope Library (VEL) vaccine platform that carries massively substituted mutant variants of defined epitopes or epitope regions as an alternative to using wild-type peptide sequences-based immunogens. Here, two murine MUC1-derived epitopes equivalent to the previously tested in cancer immunotherapy human MUC1 regions were used to generate VELs. We observed that vaccination with the 23L VEL immunogens, encompassing the entire signal peptide region of MUC1, reduces the tumor area compared to the wild-type sequence treatment. Contrastingly, vaccination with the MUC1 signal peptide-derived predicted CD8++ T cell epitope-based VEL, 9MUC1spL, showed similar tumor area reduction as the wild-type treatment; however, a decrease in lung metastasis after 9MUC1spL treatment was observed. In addition, vaccination induced a large pool of CD8+ T cells which recognized most variant epitopes from 9MUC1spL. Also, we generated MUC1 variable number tandem repeat (VNTR)-based VELs that reduced the metastatic burden when dendritic cells and M13 recombinant bacteriophages were used as vaccine carriers. Collectively, our data demonstrate the immunogenic and antitumor properties of MUC1 signal peptide- and VNTR-derived VEL immunogens.  相似文献   

6.
《Vaccine》2015,33(24):2764-2770
Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria.  相似文献   

7.
目的:重组表达新型隐球菌Cap10蛋白并制备特异抗体,为新型隐球菌的检测和诊断提供特异抗原和抗体。方法:选择CAP10基因开放阅读框架(ORF)抗原表位集中、保守性高的片段,经过大肠杆菌偏嗜的密码子优化后进行基因合成,将目的片段克隆至原核表达载体pQE30中构建重组蛋白表达载体pQE30-CAP10并鉴定,IPTG诱导重组蛋白在M15中表达,并用SDS-PAGE和Western blot鉴定;镍柱纯化后,免疫家兔制备抗血清。结果:在大肠杆菌中成功表达Cap10,其纯度大于95%;二免后家兔血清抗体效价达到200万以上。结论:获得了高纯度的Cap10蛋白及高效价的多克隆抗体,为新型隐球菌的检测和致病机制研究奠定了基础。  相似文献   

8.
《Vaccine》2016,34(14):1680-1687
Atroxlysin-I (Atr-I) is a hemorrhagic snake venom metalloproteinase (SVMP) from Bothrops atrox venom, the snake responsible for the majority of bites in the north region of South America. SVMPs like Atr-I produce toxic effects in victims including hemorrhage, inflammation, necrosis and blood coagulation deficiency. Mapping of B-cell epitopes in SVMPs might result in the identification of non-toxic molecules capable of inducing neutralizing antibodies and improving the anti-venom therapy. Here, using the SPOT-synthesis technique we identified two epitopes located in the N-ter region of Atr-I (AtrEp1—22YNGNSDKIRRRIHQM36; and AtrEp2—55GVEIWSNKDLINVQ68). Based on the sequence of AtrEp1 and AtrEp2 a third peptide named Atr-I biepitope (AtrBiEp) was designed and synthesized (23NGNSDKIRRRIH34GG55GVEIWSNKDLINVQ68). AtrBiEp was used to immunize BALB/c mice. Anti-AtrBiEp serum cross-reacted against Atr-I in western blot and was able to fully neutralize the hemorrhagic activity of Atr-I. Our results provide a rational basis for the identification of neutralizing epitopes on Atr-I snake venom toxin and show that the use of synthetic peptides could improve the generation of immuno-therapeutics.  相似文献   

9.
Immune responses to a pseudovirion-based HIV vaccine enriched in Env conformations, which have been induced to an authentic intermediate fusion stage by interaction with the cellular HIV receptor complex, have been analysed in human CD4/CCR5-transgenic rats. High titre Env-binding antibodies were elicited. However, these immune sera failed to neutralise HIV-1, but rather led to an enhancement of infection in vitro. This enhancing activity appeared to be directed towards contaminating cellular proteins in the vaccine and was able to mask neutralisation of potent, mixed-in neutralising antibodies. The induced Env-specific antibodies, purified on the basis of binding to monomeric Env, retained high-binding activity, but failed to be neutralising. Thus, it remains unclear whether vaccines based on induced HIV Env fusion intermediates can elicit broadly neutralising responses.  相似文献   

10.
The safety and availability of the human polyclonal sera that is currently utilized for post-exposure treatment (PET) of rabies virus (RABV) infection remain a concern. Recombinant monoclonal antibodies have been postulated as suitable alternatives by WHO. To this extent, CL184, the RABV human antibody combination comprising monoclonal antibodies (mAbs) CR57 and CR4098, has been developed and has delivered promising clinical data to support its use for RABV PET. For this fully human IgG1 cocktail, mAbs CR57 and CR4098 are produced in the PER.C6 human cell line and combined in equal amounts in the final product. During preclinical evaluation, CR57 was shown to bind to antigenic site I whereas CR4098 neutralization was influenced by a mutation of position 336 (N336) located within antigenic site III. Here, alanine scanning was used to analyze the influence of mutations within the potential binding site for CR4098, antigenic site III, in order to evaluate the possibility of mutated rabies viruses escaping neutralization. For this approach, twenty flanking amino acids (10 upstream and 10 downstream) of the RABV glycoprotein (G) asparagine (N336) were exchanged to alanine (or serine, if already alanine) by site-directed mutagenesis. Analysis of G expression revealed four of the twenty mutant Gs to be non-functional, as shown by their lack of cell surface expression, which is a requirement for the production of infectious RABV. Therefore, these mutants were excluded from further study. The remaining sixteen mutants were introduced in an infectious clone of RABV, and recombinant RABVs (rRABVs) were recovered and utilized for in vitro neutralization assays. All of the viruses were effectively neutralized by CR4098 as well as by CR57, indicating that single amino acid exchanges in this region does not affect the broad neutralizing capability of the CL184 mAb combination.  相似文献   

11.
目的:预测EB病毒LMP-1、BALF4及BARF1片段的B细胞表位。方法:采用Protean软件分析EBV的LMP1、BALF4及BARF1三个氨基酸片段的亲水性、表面可能性、抗原指数及其二级结构中的柔性区域,并结合吴玉章的抗原指数预测法预测其B细胞表位。结果:B细胞表位可能位于LMP-1 N端第356-358,2-19,249-314区段,BARF1N端第8-11,18-25,41-49,203-211区段,BALF4N端第385-387,833-845,398-415,427-435,453-458,23-32,466-473,234-250,642-652区段;另外LMP-1第185-223、BARF1第265-272,132-135以及BALF4第827-832区段内或附近也可能存在B细胞表位。结论:用多参数同时预测LMP-1、BALF4及BARF1的B细胞表位,为制备高效的鼻咽癌血清学诊断试剂和表位疫苗奠定了理论基础。  相似文献   

12.
HIV genomic sequence variability has complicated efforts to generate an effective globally relevant vaccine. Regions of the viral genome conserved in sequence and across time may represent the “Achilles’ heel” of HIV. In this study, highly conserved T-cell epitopes were selected using immunoinformatics tools combining HLA-A2 supertype binding predictions with relative global conservation. Analysis performed in 2002 on 10,803 HIV-1 sequences, and again in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes. These epitopes were experimentally validated for HLA binding and immunogenicity with PBMCs from HIV-infected patients in Providence, Rhode Island, and/or Bamako, Mali. Thirty-five (92%) stimulated an IFNγ response in PBMCs from at least one subject. Eleven of fourteen peptides (79%) were confirmed as HLA-A2 epitopes in both locations. Validation of these HLA-A2 epitopes conserved across time, clades, and geography supports the hypothesis that such epitopes could provide effective coverage of virus diversity and would be appropriate for inclusion in a globally relevant HIV vaccine.  相似文献   

13.
《Vaccine》2015,33(48):6659-6665
Human adenoviruses 14 (HAdV-14) caused several clusters of acute respiratory disease (ARD) outbreaks in both civilian and military settings. The identification of the neutralizing epitopes of HAdV-14 is important for the surveillance and control of infection. Since the previous studies had indicated that the adenoviruses neutralizing epitopes were likely to be exposed on the surface of the hexon, four epitope peptides, A14R1 (residues 141–157), A14R2 (residues 181–189), A14R4 (residues 252–260) and A14R7 (residues 430–442) were predicted and mapped onto the 3D structures of hexon by homology modeling approach. Then the four peptides were synthesized, and all the four putative epitopes were identified as neutralizing epitopes by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally we incorporated the four epitopes into human adenoviruses 3 (HAdV-3) vectors using the “antigen capsid-incorporation” strategy, and two chimeric adenoviruses, A14R2A3 and A14R4A3, were successfully obtained which displayed A14R2 and A14R4 respectively on the hexon surface of HAdV-3 virions. Further analysis showed that the two chimeric viruses antiserum could neutralize both HAdV-14 and HAdV-3 infection. The neutralization titers of anti-A14R4A3 group were significantly higher than the anti-KLH-A14R4 group (P = 0.0442). These findings have important implications for the development of peptide-based broadly protective HAdV-14 and HAdV-3 bivalent vaccine.  相似文献   

14.
Vaccines targeting conserved epitopes in the HPV minor capsid protein, L2, can elicit antibodies that can protect against a broad spectrum of HPV types that are associated with cervical cancer and other HPV malignancies. Thus, L2 vaccines have been explored as alternatives to the current HPV vaccines, which are largely type-specific. In this study we assessed the immunogenicity of peptides spanning the N-terminal domain of L2 linked to the surface of a highly immunogenic bacteriophage virus-like particle (VLP) platform. Although all of the HPV16 L2 peptide-displaying VLPs elicited high-titer anti-peptide antibody responses, only a subset of the immunogens elicited antibody responses that were strongly protective from HPV16 pseudovirus (PsV) infection in a mouse genital challenge model. One of these peptides, mapping to HPV16 L2 amino acids 65–85, strongly neutralized HPV16 PsV but showed little ability to cross-neutralize other high-risk HPV types. In an attempt to broaden the protection generated through vaccination with this peptide, we immunized mice with VLPs displaying a peptide that represented a consensus sequence from high-risk and other HPV types. Vaccinated mice produced antibodies with broad, high-titer neutralizing activity against all of the HPV types that we tested. Therefore, immunization with virus-like particles displaying a consensus HPV sequence is an effective method to broaden neutralizing antibody responses against a type-specific epitope.  相似文献   

15.
Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily. Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi-immune individuals. Ten, 30 and 100 μg of GMZ2 were well tolerated in 30 healthy malaria-naïve German volunteers when given three times in monthly intervals. Antigen-specific antibodies as well as memory B-cells were induced and detectable throughout the one year follow-up of the study. We conclude that GMZ2 is a safe and immunogenic malaria vaccine candidate suitable for further clinical development.  相似文献   

16.
《Vaccine》2016,34(13):1589-1596
Varicella-zoster virus (VZV) is a highly infectious agent of varicella and herpes zoster (HZ). Vaccination is by far the most effective way to prevent these diseases. More safe, stable and efficient vaccines, such as epitope-based vaccines, now have been increasingly investigated by many researchers. However, only a few VZV neutralizing epitopes have been identified to date. We have previously identified a linear epitope between amino acid residues 121 and 135 of gE. In this study, we validated that this epitope is highly conserved amongst different VZV strains that covered five existing phylogenetic clades with an identity of 100%. We evaluated the immunogenicity of the recombinant hepatitis B virus core (HBc) virus-like particles (VLPs) which included amino acids (121–135). VZV-gE-specific antibodies were detected in immunized mouse serum using ELISA. The anti-peptide antiserum positively detected VZV via Western blot and immunofluorescent staining assays. More importantly, these peptides could neutralize VZV, indicating that these peptides represented neutralizing epitopes. These findings have important implications for the development of epitope-based protective VZV vaccines.  相似文献   

17.
Tetanus, a severe infectious disease, is caused by tetanus toxin (TT) from Clostridium tetani, which remains one of the most critical unsolved health problems despite preventive strategies. The carboxyl terminal of TT (TTC) is responsible for the binding of TT to neurons and for its toxicity and has been proven to be immunogenic and protective in various forms. It would therefore be extremely interesting to identify the epitope on TTC at a molecular level. In this study, we generated a neutralizing monoclonal antibody, 5C4, which inhibited TT binding to its receptor and was efficiently protective at 73.7 IU/mg. Moreover, 5C4 recognized a novel linear epitope on TT, namely TC(1155–1171), which spans from Lys1155 to Val1171. In addition, TC(1155–1171) was shown to elicit the production of a serum IgG that protected mice against a challenge with TT. These results suggested that TC(1155–1171) and the monoclonal antibody 5C4 are good candidates for the development of epitope-based vaccines and therapeutic antibodies against tetanus.  相似文献   

18.
《Vaccine》2022,40(2):239-246
Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4+ and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7–11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.  相似文献   

19.
The objective of this study was to evaluate use of a cauda epididymis extract (CEE) as an immunocontraceptive in rats. Twenty-two rats in puberty or 19 rats that gave birth once (primipara) were immunized with intraperitoneal (IP) injection of CEE. Rats in puberty received one or two injections of CEE containing 1.5 × 109 sperm/mL, while primipara rats received injections of CEE containing 3 × 106 sperm/mL up to three times. Animals were tested for the presence and concentration of anti-CEE antibody by enzyme-linked immunosorbent assay (ELISA) and monitored for pregnancy following natural insemination. Results revealed that 38 (92.6%) of the 41 rats were positive for anti-CEE antibodies, regardless of animal type or immunization procedure. However, there was no relation between pregnancy rates and concentration of anti-CEE antibody in rats immunized with CEE. These results indicate that immune response against CEE may not play a major role in contraception in rats.  相似文献   

20.
Previous studies have reported on the development of a recombinant murine cytomegalovirus (rMCMV) containing the mouse zona pellucida 3 (mZP3) gene for use as a virally vectored immunocontraceptive (VVIC). This study aimed to alter promoter control over foreign antigen expression and cellular localisation of the antigen expressed in order to overcome virus attenuation previously encountered. Early studies reported on the mZP3 gene expressed by a strong constitutive human cytomegalovirus immediate-early 1 promoter (pHCMV IE1). This virus was able to induce >90% infertility in BALB/c mice despite being heavily attenuated in vivo. In this study the mZP3 was placed under the control of the MCMV early 1 (pMCMV E1) promoter and the inducible tetracycline promoter (Tet-On). In both instances the recombinant virus was able to induce infertility in directly infected mice. However, the viruses remained attenuated.This study demonstrated the capacity to manipulate the nature of the immune response by altering promoter control over foreign antigen expression and cellular localisation of the expressed antigen. We were able to demonstrate that by using the MCMV E1 promoter it was still possible to sterilize female BALB/c mice with an MCMV vector expressing mZP3. The use of the MCMV E1 promoter provides an added level of safety to any MCMV based VVIC approach as it only allows for transgene expression in MCMV permissive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号