首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vaccine》2018,36(1):43-49
BackgroundIn this study, we examined the effectiveness of RV1 and RV5 vaccines during an outbreak of G8P[8] rotavirus group A strain (G8P[8]-RVA). These vaccines were originally designed to provide protection against severe diseases caused by common circulating strains, whereas G8P[8]-RVA remains emerging strain and partially heterotypic to the vaccines. It is imperative to investigate vaccine effectiveness (VE) against G8P[8]-RVA because this strain appears to be predominant in recent years, particularly, in post-vaccine era.MethodsRVA infection and genotypes were confirmed by polymerase chain reaction (PCR) followed by sequence-based genotyping. VE was determined during an outbreak of G8P[8]-RVA in Shizuoka Prefecture, Japan, in February-July 2017, retrospectively, by comparing vaccination status of children suffering from acute gastroenteritis (AGE) between ‘PCR-positive’ and ‘PCR-negative’ cases using conditional logistic regression adjusted for age.ResultsAmong 80 AGE children, RVA was detected in 58 (73%), of which 53 (66%) was G8P[8]-RVA. The clinical characteristics of G8P[8]-RVA and other RVA strains were identically severe. Notably, the attack rates of G8P[8]-RVA in vaccinated (61.1%) and unvaccinated (65.5%) children were almost similar. Indeed, no substantial effectiveness were found against G8P[8]-RVA (VE, 14% [95% CI: −140% to 70%]) or other RVA strains (VE, 58% [95% CI: −20% to 90%]) for mild infections. However, these vaccines remained strongly effective against moderate (VE, 75% [95% CI: 1% to 40%]) and severe (VE, 92% [95% CI: 60% to 98%]) RVA infections. The disease severity including Vesikari score, duration and frequency of diarrhea, and body temperature were significantly lower in vaccinated children.ConclusionsThis study demonstrates the effectiveness of current RV vaccines against moderate and severe, but not against the mild infections during an outbreak caused by unusual G8P[8]-RVA, which was virtually not targeted in the vaccines.  相似文献   

2.
Group A rotavirus (RVA) is a major cause of diarrhea and diarrhea-related mortality in foals in parts of the world. In addition to careful horse farm management, vaccination is the only known alternative to reduce the RVA associated disease burden on horse farms. The precise evaluation of vaccine effectiveness against circulating strains needs enhanced surveillance of equine RVAs in areas where vaccine is already available or vaccine introduction is anticipated. Therefore, we undertook the overview of relevant information on epidemiology of equine RVA strains through systematic search of public literature databases. Our findings indicated that over 99% of equine RVA strains characterized during the past three decades belonged to two common genotypes, G3P[12] and G14P[12], whereas most of the minority equine RVA strains were probably introduced from a heterologous host by interspecies transmission. These baseline data on RVA strains in horses shall contribute to a better understanding of the spatiotemporal dynamics of strain prevalence in vaccinated and non-vaccinated herds.  相似文献   

3.
In 2009 the World Health Organization recommended the use of group A rotavirus (RVA) vaccines in all national immunization programs (NIPs) in order to control severe RVA gastroenteritis disease. In Brazil, Rotarix™ was introduced in the NIP in March 2006, and a significant reduction in mortality rates among children ⩽5 years old was observed, especially in the Northern and Northeastern Brazil. In the current study the 11 gene segments of six Brazilian G1P[6] RVA strains, isolated in 2009 and 2010 from vaccinated children, were analyzed in order to investigate if the genetic composition of these strains might help to elucidate why they were able to cause acute gastroenteritis in vaccinated children. All six Brazilian RVA strains revealed a complete Wa-like genotype constellation: G1-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Phylogenetic analysis showed that all six strains were nearly identical and showed a close genetic relationship with contemporary typical human Wa-like RVA strains. These results suggests that the fact that these strains were able to cause acute gastroenteritis in vaccinated children is likely not due to the genetic background of the strains, but rather to other factors such as host relating factors, co-infecting pathogens or vaccine efficacy. P[6] RVA strains are detected rather occasionally in humans in most regions of the world, except for South Asia and Sub-Saharan Africa. However, recently two studies conducted in Brazil showed the circulation of G12P[6] and G2P[6]. This is the first report on the detection and complete genome analyses of G1P[6] RVA strains in Brazil. Surveillance studies will be crucial to further investigate the prevalence of this genotype in the Brazilian population, and the efficacy of current licensed vaccines, which do not contain the P[6] genotype.  相似文献   

4.
P[6] group A rotavirus (RVA) strains identified in four stool specimens collected from children with acute diarrhea in Guangxi Province, southern China in 2010, with unknown G type were further analyzed by full genomic analysis. It was revealed by whole genome sequencing that 11 genomic cognate gene segments of these P[6] RVA strains shared almost 100% nucleotide identities and all exhibited an identical G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 genotype constellation. Phylogenetic analyses of VP7, VP1-VP4, NSP1, NSP2, NSP4 and NSP5 genes revealed that these Guangxi G4P[6] RVA strains were closely related to porcine and porcine-like human RVAs, while VP6 and NSP3 were closely related to those of common human RVAs. Interestingly, the four infants from whom these specimens were collected had come from different villages and/or towns. They had not contacted with each other and had had acute diarrhea before admitted into the same hospital. The genomic analyses and the clinical data revealed that these four Guangxi G4P[6] RVA strains from China were reassortants possessing VP6 and NSP3 gene segments of human origin yet all other nine gene segments of porcine origin. It is the first report on porcine–human reassortant G4P[6] RVA with identical genome configuration circulating in children.  相似文献   

5.
Approximately 20,000 stool specimens from patients with diarrhea visiting 1 urban and 1 rural hospital in Bangladesh during January 2001-May 2006 were tested for group A rotavirus antigen, and 4,712 (24.0%) were positive. G and P genotyping was performed on a subset of 10% of the positive samples (n = 471). During the 2001-2005 rotavirus seasons, G1P[8] (36.4%) and G9P[8] (27.7%) were the dominant strains, but G2[4] and G12P[6] were present in 15.4% and 3.1% of the rotavirus-positive patients, respectively. During the 2005-06 rotavirus season, G2P[4] (43.2%) appeared as the most prevalent strain, and G12P[6] became a more prevalent strain (11.1%) during this season. Because recently licensed rotavirus vaccines include only the P[8] specificity, it is unknown how the vaccines will perform in settings where non-P[8] types are prevalent.  相似文献   

6.
This study aims to estimate the frequency of group A rotaviruses (RVA) infection with genotypes G3P[8] and G9P[8] in children that suffered from diarrheal disease (DD) between 2001 and 2011 in different Brazilian regions. In addition, the genetic diversity of G3P[8] and G9P[8] RVA strains recovered from vaccinated and non-vaccinated children was assessed. Laboratory-based RVA surveillance included 15,115 cases of DD, and RVA was detected by enzyme immune-assay and/or polyacrylamide gel electrophoresis in 3357 (22%) samples. RVA was genotyped by the semi-nested RT-PCR and among RVA-positive samples, 100 (2.9%) were G3 (63 G3P[8], 32 G3P not typed [NT], and 5 G3P[6]) and 378 (16.2%) were G9 (318 G9P[8], 59 G9P[NT], and 1 G9P[6]). From the G3 and G9 positive samples, 16 and 12, respectively, were obtained from children aged 4–48 months vaccinated with the monovalent vaccine (Rotarix®, RV1). Phylogenetic analyses of the VP7 and VP81 encoding genes were performed for 26 G3P[8] and 48 G9P[8] strains. VP81 phylogenetic analysis revealed that all strains analyzed belonged to P[8] lineage III, whereas RV1 belongs to P[8]-I lineage. VP7 analysis revealed that all G3 and G9 strains belonged to G3-lineage III and G9-lineage III. The comparison of the VP7 and VP81 antigenic epitopes regions of Brazilian strains with RV1 strain revealed several amino acid changes. However, no particular differences among Brazilian strains detected before and after vaccine introduction were observed, or among strains detected from vaccinated and non-vaccinated children. Complete genome characterization of four G3P[8] and seven G9P[8] strains revealed a typical conserved human Wa-like genomic constellation. Changes in the genetic diversity of G3P[8] and G9P[8] RVA detected from 2001 to 2011 in Brazil seemed not be related to RV1 introduction in Brazil.  相似文献   

7.
The introduction of rotavirus vaccines Rotarix® and RotaTeq® into the Australian National Immunisation Program in July 2007 has resulted in a dramatic decrease in the burden of rotavirus disease. G2P[4] strains became the dominant genotype Australia-wide during the 2010–2011 surveillance period and for the first time since vaccine introduction, a higher proportion were isolated in jurisdictions using RotaTeq® vaccine compared to locations using Rotarix®. Phylogenetic analysis of the VP7 gene of 32 G2P[4] strains identified six genetic clusters, these distinct clusters were also observed in the VP4 gene for a subset of 12 strains. The whole genome was determined for a representative strain of clusters; A (RVA/Human-wt/AUS/SA066/2010/G2P[4]), B (RVA/Human-wt/AUS/WAPC703/2010/G2P[4]), C (RVA/Human-wt/AUS/MON008/2010/G2P[4]) and E (RVA/Human-wt/AUS/RCH041/2010/G2P[4]). All of the strains possessed the archetypal DS-1 like genome constellation G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Three of the strains, SA066, MON008 and WAPC703 clustered together and were distinct to RCH041 for all 11 genes. The VP7 genes of 31/32 of the strains characterized in this study possessed five conserved amino acid substitutions when compared to the G2 VP7 gene present in the RotaTeq® vaccine. Three of the substitutions were in the VP7 antigenic regions A and C, the substitutions A87T, D96N and S213D have been reported in the majority of G2P[4] strains circulating globally over the previous decade. These changes may have improved the ability of strains to circulate in settings of high vaccine use.  相似文献   

8.
During an ongoing diarrhea etiology surveillance in Mirzapur, Bangladesh, a rare human G6P[8] RVA strain (RVA/Human-wt/BGD/KH2288/2011/G6P[8]) was detected in a stool sample of a 7-month-old infant with acute diarrhea. Complete genotype analyses revealed that KH2288 possessed the G6-P[8]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotype constellation. Sequence analysis of the VP7 gene revealed a close phylogenetic relationship with bovine G6 strains from India, whereas, the VP4 gene segment was nearly identical to typical human P[8] strain circulating in Bangladesh and the rest of the world. Phylogenetic analysis of the remaining nine gene segments revealed a close relatedness to either animal or animal derived human RVA strain. We speculated that, strain KH2288 was a monoreassortant between a human RVA strain and a RVA strain typically infecting member of the Artiodactyla, such as cattle, goat or sheep. To our knowledge, this is the first complete genotyping report of a naturally occurring G6P[8] RVA strain, worldwide.  相似文献   

9.
Group A rotaviruses (RVA) are the leading cause of acute gastroenteritis in young children, causing up to 450,000 deaths worldwide, mostly in developing countries. Most of RVA human infections in developed countries are related to five major G/P combinations: G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]. During the surveillance activity of RotaNet-Italy, three uncommon G3P[6] RVA strains, designated as RVA/Human-wt/ITA/NA01/2009/G3P[6], RVA/Human-wt/ITA/NA06/2009/G3P[6], and RVA/Human-wt/ITA/NA19/2009/G3P[6], were identified in the stools of children with diarrhea hospitalized in Southern Italy in 2009. Samples NA01, NA06 and NA19 were characterized as genotype G3P[6]. To investigate the three strains further, partial sequencing of the eleven genomic segments was performed. RVA strains NA01, NA06 and NA19 were found to share the rare genotype constellation: G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2, which had not been reported previously in continental Italy. The phylogenetic analysis of the eleven genomic segments showed no evidence of zoonosis or inter-species reassortment at the origin of the Italian G3P[6] strains, indicating that they possessed DS-1-like genomic constellations similar to those detected previously in human cases in Africa and Europe. The analysis of the hypervariable regions of VP7 and VP4 (VP8*) revealed high amino acid identity between the Italian G3P[6] RVA strains involved in this study.  相似文献   

10.
We report the genomic characterization of a rare human G8P[14] rotavirus strain, identified in a stool sample from Guatemala (GTM) during routine rotavirus surveillance. This strain was designated as RVA/Human-wt/GTM/2009726790/2009/G8P[14], with a genomic constellation of G8-P[14]-I2-R2-C2-M2-A13-N2-T6-E2-H3. The VP4 gene occupied lineage VII within the P[14] genotype. Phylogenetic analysis of each genome segment revealed close relatedness to several zoonotic simian, guanaco and bovine strains. Our findings suggest that strain RVA/Human-wt/GTM/2009726790/2009/G8P[14] is an example of a direct zoonotic transmission event. The results of this study reinforce the potential role of interspecies transmission and reassortment in generating novel and rare rotavirus strains which infect humans.  相似文献   

11.
Rotavirus A (RVA) genotype G1P[8], a hallmark of the Wa-like strain, typically contains only genotype 1 genes. However, an unusual RVA G1P[8] with genotype 2 genes was recently detected in Japan. We determined the complete genomic constellation of this RVA. Our findings suggest that mixed RVAs may be more competitive than once thought.  相似文献   

12.
Since 2004, the Pan American Health Organization (PAHO) has carried out rotavirus surveillance in Latin America and the Caribbean. Here we report the characterization of human rotavirus with the novel G–P combination of G4P[14], detected through PAHO surveillance in Barbados. Full genome sequencing of strain RVA/Human-wt/BRB/CDC1133/2012/G4P[14] revealed that its genotype is G4-P[14]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The possession of a Genogroup 1 (Wa-like) backbone distinguishes this strain from other P[14] rotavirus strains. Phylogenetic analyses suggested that this strain was likely generated by genetic reassortment between human, porcine and possibly other animal rotavirus strains and identified 7 lineages within the P[14] genotype. The results of this study reinforce the potential role of interspecies transmission in generating human rotavirus diversity through reassortment. Continued surveillance is important to determine if rotavirus vaccines will protect against strains that express the P[14] rotavirus genotype.  相似文献   

13.
Knowledge of rotavirus epidemiology is necessary to make informed decisions about vaccine introduction and to evaluate vaccine impact. During April 2010–March 2012, rotavirus surveillance was conducted among 9,745 children <5 years of age in 14 hospitals/health centers in Niger, where rotavirus vaccine has not been introduced. Study participants had acute watery diarrhea and moderate to severe dehydration, and 20% of the children were enrolled in a nutrition program. Of the 9,745 children, 30.6% were rotavirus positive. Genotyping of a subset of positive samples showed a variety of genotypes during the first year, although G2P[4] predominated. G12 genotypes, including G12P[8], which has emerged as a predominant strain in western Africa, represented >80% of isolates during the second year. Hospitalization and death rates and severe dehydration among rotavirus case-patients did not differ during the 2 years. The emergence of G12P[8] warrants close attention to the characteristics of associated epidemics and possible prevention measures.  相似文献   

14.
The G12 rotavirus genotype is globally emerging to cause severe gastroenteritis in children. Common G12 rotaviruses have either a Wa-like or DS-1-like genome constellation, while some G12 strains may have unusual genome composition. In this study, we determined the full-genome sequence of a G12P[9] strain (ME848/12) detected in a child hospitalized with acute gastroenteritis in Italy in 2012. Strain ME848/12 showed a complex genetic constellation (G12-P[9]-I17-R12-C12-M11-A12-N12-T7-E6-H2), likely derived from multiple reassortment events, with the VP1, VP2, VP3 and NSP2 genes being established as novel genotypes R12, C12, M11 and N12, respectively. Gathering sequence data on human and animal rotaviruses is important to trace the complex evolutionary history of atypical RVAs.  相似文献   

15.
Group A rotaviruses (RVAs) are the major viruses that cause acute gastroenteritis in young children worldwide. The objective of this study was to investigate the prevalence and genotype diversity of RVAs circulating in children with acute gastroenteritis in Thailand in 2018–2019. A total of 1170 stool specimens were obtained from children admitted to hospitals with diarrhea and screened for RVAs by nested RT-PCR. The RVA genotypes were determined by multiplex-PCR or nucleotide sequencing and phylogenetic analysis. Out of 1170 stool specimens, 209 (17.9%) were positive for RVAs. The RVA G9P[8] genotype (24.4%) was the most dominant genotype, followed by G3P[8] (22.9%), G8P[8] (22.0%), G1P[8] (16.7%), G2P[4] (6.7%), G1P[6] (2.3%), G1P[4] (1.0%), G3P[4] (1.0%), G9P[4] (1.0%), mixed-infections of G1P[4] + G1P[8] (1.0%), and GXP[8] (0.5%). Moreover, an uncommon RVA G3P[10] genotype (0.5%), bearing bat-like VP7 and VP4 genes, was detected. This study reveals the prevalence and genetic diversity of RVA genotypes in children with acute gastroenteritis in Thailand. The knowledge obtained from this study is helpful for understanding the epidemiology of rotavirus in Thailand. The emergence of uncommon RVA strain G3P[10] provides an evidence for interspecies transmission of human and animal rotaviruses.  相似文献   

16.
In a community based case–control study in Kolkata, India, in 2009, two human rotaviruses with uncommon genotypes G6P[14] and G11P[25] were identified, having bovine and porcine characteristics respectively. Strain N-1/2009 with G6P[14] and strain N-38/2009 with G11P[25] genotypes, were isolated from a 13 months aged boy who was asymptomatic and a 10 months old girl with severe diarrhea respectively. The remaining 9 gene segments of these two strains were analyzed to find the exact origin of these unusual rotaviruses, and the origin of these two strains from bovine/porcine rotaviruses was apparent. This study identifies zoonotic transmission and single and multiple reassortment events as mechanisms driving the diversity of human rotaviruses. This study indicates interspecies transmission between human and animal rotaviruses causes single or multiple reassortment and thus contribute to the genetic diversity of rotavirus.  相似文献   

17.
Epidemiological data on species A rotavirus (RVA) infections have demonstrated the genetic diversity of strains circulating worldwide. Many G and P genotype combinations have been described over the years, varying regionally and temporally, especially in developing countries. However, the most common G and P genotype combinations identified in RVA human strains worldwide are G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]. RVA genotype G1P[8] strains are responsible for more than 50% of child infections worldwide and component of the two vaccines (Rotarix® [RV1] and RotaTeq® [RV5]) licensed globally. For a better understanding of the evolutionary mechanisms of this genotype in Brazil, phylogenetic analyses based on the 11 RVA genome segments (genomic constellation) from 90 G1P[8] RVA strains collected in two eras – (i) pre-vaccination with RV1 (1996–February 2006); (ii) post-vaccination (March 2006–2013) – in different Brazilian states were performed. The results showed the Wa-like genomic constellation of the Brazilian G1P[8] strains with a I1-R1-C1-M1-A1-N1-T1-E1-H1 specificity, except for two strains (rj14055-07 and ba19030-10) that belong to a I1-R1-C1-M1-A1-N1-T3-E1-H1 genomic constellation, evidencing the occurrence of reassortment (Wa-like × AU-1-like) of the NSP3 gene. Reassortment events were also demonstrated between Brazilian G1P[8] strains and the RV1 vaccine strain in some genes in vaccinated and unvaccinated children. VP7 and VP8* antigenic site analysis showed that the amino acid substitutions observed in samples collected after the introduction of RV1 in Brazil were already detected in samples collected in the 1980s and 1990s, suggesting that mass Brazilian RV1 vaccination had no impact on the diversity observed inside antigenic sites for these two proteins.  相似文献   

18.
Human group A rotaviruses (RVAs) possess a large genetic diversity and new RVA strains and G/P genotype combinations are been identified frequently. Only a few studies reporting the distribution and co-circulation of RVA G and P genotypes are available for Pakistan. This hospital based study showed a RVA prevalence rate of 23.8%, which is similar to RVA detection rates estimated in other Eastern Mediterranean countries. During 2010, the following RVA strains were found to co-circulate: G1P[8] and G2P[4] (both 24.3%), G1P[6] (12.1%), G9P[8] (10.8%), G9P[6] (5.4%), G12P[6] (6.7%), G6P[1] (2.7%) and mixed infections (6.7%). Sequence analyses of selected G1, G2, G9 and G12 RVA strains revealed a close evolutionary relationship with typical human RVA strains. Sequence identities among the Pakistani VP7 RVA genes encoding G1, G2, G9 and G12 ranged between 91.5–98.7%, 99.6–98.9%, 97.7–99.5% and 99.2–99.9%, respectively. Analysis of the VP4 genes revealed co-prevalence of distinct lineages of the P[8] genotype. P[6] and P[4] showed a close relationship with typical human RVA strains detected in several Asian countries. The two G6P[1] RVA strains were closely related to typical bovine RVA strains, suggesting one or multiple interspecies transmission events. Our data provide important baseline data on the burden of RVA disease and genotype distribution in Rawalpindi, Pakistan, which is important with respect to vaccine introduction in national immunization programs.  相似文献   

19.
G12 group A rotavirus (RVA) are currently recognized as a globally emerging genotype and have been described in combination with several P-types. In Brazil, G12 RVA strains have been described in the Southern (2003) and Northern (2008–2010) regions, in combination with the P[9] and P[6] genotype, respectively. To date, few complete genomes of G12 RVA strains have been described (none from Brazilian strains), considering G12P[9] genotype just one strain, RVA/Human-tc/THA/T152/1998/G12P[9], has their 11 gene segments characterized. This study aims to determine the genomic constellation of G12P[9] and G12P[8] RVA strains detected in Brazil between 2006 and 2011. Therefore, the eleven gene segments of five Brazilian G12 RVA strains were amplified and sequenced, and the genotype of each gene segment was assigned using phylogenetic analysis. Complete genome analyses of G12 RVA strain circulating between 2006 and 2011 in Brazil revealed a conserved Wa-like genomic constellation for three G12P[8] RVA strains; whereas the two G12P[9] strains possessed distinct reassorted AU-1-like genomic constellations, closely related to the reference strain RVA/Human-tc/THA/T152/1998/G12P[9] in most genes. The results obtained in the current study suggest that G12P[9] (AU-1-like) and G12P[8] (Wa-like) strains detected in different regions of Brazil do not share a common origin. Moreover, while Brazilian G12P[8] RVA strains showed a complete Wa-like human constellation, both G12P[9] strains possessed an NSP1 gene of bovine origin (NSP1), and RVA/Human-wt/BRA/PE18974/2010/G12P[9] also possessed a VP3 gene of canine/feline origin.  相似文献   

20.
Rotavirus A (RVA) is a leading cause of acute gastroenteritis in young children worldwide. Most human RVA strains are classified into three major genotype constellations: Wa-like, DS-1-like and AU-1-like. The evolution of G2P[4] strains possessing the DS-1-like genetic background was described in a few recent studies. However, the strains analyzed in these studies were almost exclusively the ones detected after 2000. In recognition of the scarcity of G2P[4] strains detected before 2000 for which whole genome information was available, this study was undertaken to characterize 19 Japanese G2P[4] strains detected between 1983 and 1990 (14 strains) and between 2001 and 2011 (5 strains), and to compare them with 131 G2P[4] strains from across the world. The Japanese strains along with the strains elsewhere in the world underwent stepwise changes from lineage I to IVa in 5 genes (the VP7, VP4, VP2, NSP1 and NSP5 genes) and from lineage I to V in 6 genes (the VP6, VP1, VP3, NSP2, NSP3 and NSP4 genes). Furthermore, G2P[4] strains detected after 2004 appeared to have undergone further intragenotype reassortment, resulting in the emergence of lineage V in the VP7 gene, and VI and VII in the VP3 and NSP4 genes. The time of the most recent common ancestor (tMRCA) for the emergent lineages VI and VII was estimated to be around the early 2000s. However, the year when the ancestor of the emergent lineages diverged from that of the rest of the lineages in the respective genes preceded the tMRCA 80–90 years. The origin of the emergent lineages is likely to be human RVA strains possessing genotypes other than G2P[4], and not RVA strains of an animal origin. In conclusion, stepwise changes in lineages imparted new genomic constellations to G2P[4] strains, which appears to have contributed to their successful spread across the globe, most notably since 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号