首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This study was designed to evaluate the signaling pathways coupling adenosine A1 receptors and extracellular signal-regulated kinase (ERK) 1 and 2 in human trabecular meshwork (HTM) cells. Studies were conducted using cultures of primary HTM cells and the HTM-3 cell line. Activation of ERK1/2, location of protein kinase C (PKC) isoforms, and matrix metalloproteinase (MMP) secretion were determined by Western blotting. In primary HTM cells and the HTM-3 cell line, administration of the A1 agonist N6-cyclohexyladenosine (CHA) produced a concentration-dependent increase in ERK1/2 activation. This CHA-induced ERK activation was blocked by pretreatment with the A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine or pertussis toxin. Transfection with dominant negative N17 Ras produced only a small (31%) decline in CHA-induced ERK activation, and the response was not altered by pretreatment with the Src tyrosine kinase inhibitor, PP2 [3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-D] pyrimidin-4-amine], the phosphoinositide kinase-3 inhibitor, LY-294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], or the A3 receptor antagonist, MRS-1191 [3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate]. Administration of CHA also induced the translocation of PKCalpha from the cytosol to the membrane, and pretreatment with the phospholipase C (PLC) inhibitor, U73122 [1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]-hexyl]-1H-pyrrole-2,5-dione], blocked ERK1/2 activation induced by CHA. Transfection of short interfering RNA targeting PKCalpha blocked the CHA-induced ERK1/2 activation and the secretion of MMP-2. These results confirm the existence of functional adenosine A1 receptors in the trabecular meshwork cells. These receptors are coupled to the activation of ERK1/2 through G(i/o) proteins and dependent upon the upstream activation of PLC and PKCalpha. These studies provide evidence that adenosine A1 receptor agonists increase outflow facility through sequential activation of G(i/o) > PLC > PKCalpha > c-Raf > mitogen-activated protein kinase kinase > ERK1/2, leading to secretion of MMP-2.  相似文献   

2.
Parasympathetic control of murine urinary bladder consists of contractile components mediated by both muscarinic and purinergic receptors. Using intracellular recording techniques, the purinergic component of transmission was measured as both evoked excitatory junctional potentials (EJPs) in response to electrical field stimulation and spontaneous events [spontaneous EJPs (sEJPs)]. EJPs, but not sEJPs, were abolished by the application of the Na(+) channel blocker tetrodotoxin and the Ca(2+) channel blocker Cd(2+). Both EJPs and sEJPs were abolished by the application of the P2X(1) antagonist 8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF279). Application of phorbol dibutyrate (PDBu) increased electrically evoked EJP amplitudes with no effect on mean sEJP amplitudes. Similar increases in EJP amplitudes were produced by PDBu in the presence of either the nonselective protein kinase inhibitor staurosporine or the specific protein kinase C (PKC) inhibitor 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide (GF109203X). These results suggest that PDBu increases the purinergic component of detrusor transmission through increasing neurogenic ATP release via a PKC-independent mechanism.  相似文献   

3.
The mitogen-activated protein kinase signaling cascade is used by many G protein-coupled receptors to initiate functional events. In this study, activation of the Gq/G11-coupled thromboxane A2 (TxA2) receptor (TP) by the TxA2 mimetic IBOP in ECV304 cells was found to induce extracellular regulated kinase (ERK) phosphorylation and tyrosine phosphorylation of the epidermal growth factor receptor (EGFR), which were inhibited by the TP antagonist SQ29548, the EGFR kinase inhibitor AG1478, the Src family kinase inhibitor PP1, the Gi/o protein inhibitor pertussis toxin (PTX), or the protein kinase C (PKC) inhibitor calphostin C. TP activation also increased Src kinase activity, which was blocked by PTX, PP1, and calphostin C, but not by AG1478, indicating that Src activation occurs before phosphorylation of EGFR. Blockade of Src activity by expression of dominant negative mutant of Src inhibits mitogen-activated protein kinase (MAPK) activation induced by TxA2. ERK activation induced by the PKC activator phorbol myristate acetate was inhibited by PTX, PP1, AG1478, and calphostin C. In contrast, activation of ERK by lysophosphatidic acid, a Gi-coupled receptor activator, was inhibited by PTX, PP1, and AG1478, but not by calphostin C. Thus, TP-stimulated ERK activation requires Gi, which in turn requires PKC activation. Immunoprecipitation of Galphai showed increased association of Galphai with TPalpha following PKC activation. In conclusion, TPalpha is directly coupled to the Gi protein by a PKC-regulated mechanism; Gi coupling causes Src-dependent transactivation of the EGFR, which is the dominant pathway in TP-mediated ERK activation.  相似文献   

4.
Mild doses of oxidative stress in the heart correlate with the induction of apoptosis or hypertrophy in cardiomyocytes (CMCs) and fibrosis or proliferation of fibroblasts. Three branches of mitogen-activated protein kinases (MAPKs), i.e., c-Jun N-terminal kinases (JNKs), extracellular signal-related kinases 1 and 2 (ERK1/2), and p38, are activated by oxidants in a variety of cell types, including CMCs. However, the initiation process of these signaling pathways remains unsolved. We explored the role of the epidermal growth factor (EGF) receptor in H(2)O(2)-induced MAPK activation using two different cell types from the same organ: CMCs and heart fibroblasts (HFs). Pretreatment of each cell type with EGF revealed differences in how CMCs and HFs responded to subsequent treatment with H(2)O(2): in CMCs, the second treatment resulted in little further activation of JNKs and ERK1/2, whereas HFs retained the full response of JNKs and ERK1/2 activation by H(2)O(2) regardless of EGF pretreatment. AG-1478 [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline], a pharmacologic inhibitor of the EGF receptor tyrosine kinase, inhibited JNK and ERK1/2 activations but not p38 in both cell types. The data using the Src inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] resemble those found when using AG-1478 in either cell type. Pharmacologic inhibitors of matrix metalloproteinases (MMPs) further illustrated the difference between the two cell types. In HFs, MMP inhibitors GM6001 [N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide] and BB2516 [[2S-[N4(R(*)),2R(*),3S(*)]]-N4-[2,2-dimethyl-1-[(methylamino)carbonyl]propyl]-N1,2-dihydroxy-3-(2-methylpropyl)butanediamide, marimastat] inhibited JNKs and ERK1/2 activation without affecting p38 activation by H(2)O(2) inhibitors. In contrast, these MMP failed to significantly inhibit the activation of JNKs, ERKs, or p38 in CMCs. These data suggest the complexity of the cell type-dependent signaling web initiated by oxidants in the heart.  相似文献   

5.
In hypertension, blood vessels exhibit increased reactive oxygen species production that may alter vascular tone. We previously observed that H2O2 contracted rat thoracic vena cava under resting tone and aorta contracted with KCl. In arteries but not veins, H2O2-induced contraction required extracellular Ca2+ influx. Because of this difference in Ca2+ utilization, we hypothesized that signaling pathways mediating H2O2-induced contraction in vena cava under resting tone differed from those mediating H2O2-induced contraction in aorta contracted with KCl. Inhibitors of cyclooxygenase (COX) 1 and 2 (indomethacin, 10 microM), thromboxane A2 (TXA2) receptors [ICI185282 (2RS,4RS,5SR-4-o-hydroxyphenyl-2-trifluoromethyl-1,3-dioxan-5-yl heptenoic acid), 10 microM], p38 mitogen-activated protein kinase (MAPK) [SB203580 (4-[5-(4-fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-yl]pyridine), 10 microM], extracellular signal-regulated kinase (Erk) [PD98059 (2'-amino-3'-methoxyflavone), 10 microM], src [PP1 (4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, 10 microM], and rho kinase [Y27632 (trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride), 10 microM], significantly reduced H2O2-induced contraction in vena cava under resting tone and aorta after KCl (30 mM) contraction. In contrast, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, 20 microM] did not reduce aortic or venous H2O2-induced contraction. p38 MAPK, Erk MAPK, and src inhibition did not reduce aortic or venous contraction to the TXA2 receptor agonist U46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxy PGF(2alpha), 1 microM), whereas rho kinase inhibition significantly reduced aortic and venous contraction to U46619, and PI3-K inhibition reduced venous contraction to U46619. Our data suggest that, in rat thoracic aorta and vena cava, a COX-derived metabolite is one important mediator of H2O2 contraction, possibly via rho kinase activation, and that H2O2-induced contraction via p38 and Erk MAPK probably occurs independently of TXA2 receptor activation.  相似文献   

6.
We have used human erythroleukemia (HEL) cells to investigate distal signaling mechanisms of neuropeptide-Y (NPY) receptors. NPY did not activate phospholipase D, determined as a phosphatidylethanol formation, or protein kinase C (PKC) determined enzymatically as a translocation to the plasma membrane. However, NPY caused a rapid (already maximal after 30 s) and concentration-dependent (maximum at 10-100 nM) activation of extracellular signal-regulated kinase (ERK) as assessed by immunoblotting with epitope-specific, antiphosphotyrosine antibodies and in some cases enzymatically. ERK activation by 100 nM NPY was abolished by the Y(1) NPY receptor antagonist BIBP 3226 (1 microM), pertussis toxin treatment (100 ng ml(-1) overnight), the mitogen-activated protein kinase (MAPK) kinase inhibitor PD 98059 (100 microM), and the phosphatidylinositol-3-kinase inhibitor wortmannin (100 nM). Whereas the PKC inhibitor staurosporine (3 microM) inhibited ERK activation by NPY, the chemically distinct PKC inhibitors calphostin C (3 microM), G? 6976 (3 microM), and bisindolylmaleimide I (3 microM) did not. NPY did not activate other MAPK such as jun N-terminal kinase or p38 MAPK. We conclude that NPY does not activate phospholipase D, PKC, jun N-terminal kinase, or p38 MAPK in HEL cells. However, NPY activates ERK by a pathway involving Y(1) receptors, pertussis toxin-sensitive G proteins, and phosphatidylinositol-3-kinase, whereas PKC may not be involved. Staurosporine may have PKC-independent effects on ERK activation.  相似文献   

7.
We have shown that neurokinin A-induced contraction of human sigmoid circular muscle (HSCM) is reduced in patients with ulcerative colitis and that interleukin (IL)-1beta may play a role in this change. We now examine changes in the signal transduction pathway mediating neurokinin A-induced contraction of HSCM and explore the role of IL-1beta and of H(2)O(2) in these changes. In Fura 2-AM-loaded ulcerative colitis HSCM cells, neurokinin A- and caffeine-induced peak Ca(2+) increase and cell shortening were significantly reduced. In normal cells, neurokinin A-induced contraction was decreased by protein kinase C inhibitor chelerythrine and by calmodulin inhibitor CGS9343B [1,3-dihydro-1-[1-[(4-methyl-4H,6H-pyrrolo[1,2-a][4,1]-benzoxazepin-4-yl)methyl]-4-piperidinyl]-2H-benzimidazol-2-one (1:1) maleate]. In ulcerative colitis muscle cells, contraction was inhibited only by chelerythrine but not by CGS9343B. IL-1beta treatment of normal HSCM strips and cells reproduced the changes observed in ulcerative colitis. IL-1beta-induced reduction in caffeine-induced peak Ca(2+) increase and contraction was reversed by catalase, suggesting a role of H(2)O(2). IL-1beta-induced H(2)O(2) production was inhibited by mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) and by cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF3 (arachidonyltrifluoromethyl ketone), but neither by p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] nor by nuclear factor-kappaB (NF-kappaB) inhibitory peptide NF-kappaB SN50 (H-Ala-Ala-Val-Ala-Leu-Leu-Pro-Ala-Val-Leu-Leu-Ala-Leu-Leu-Ala-Pro-Val-Gln-Arg-Lys-Arg-Gln-Lys-Leu-Met-Pro-OH). IL-1beta significantly increased the phosphorylation of extracellular signal-regulated kinase 1 (ERK1)/ERK2 MAPKs and cPLA(2) and IL-1beta-induced cPLA(2) phosphorylation was blocked by PD98059. We conclude that Ca(2+) stores of HSCM cells may be reduced in ulcerative colitis and that the signal transduction pathway of neurokinin A-induced contraction switches from calmodulin- and protein kinase C-dependent in normal cells to protein kinase C-dependent in ulcerative colitis cells. IL-1beta reproduces these changes, possibly by production of H(2)O(2) via sequential activation of MAPKs (ERK1/ERK2) and cPLA(2).  相似文献   

8.
The effect of ZSET1446 (spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) on cognitive impairment in mice, previously treated with methamphetamine (METH) at a dose of 1 mg/kg for 7 days, was investigated. ZSET1446 showed a significant ameliorating effect on METH-induced impairment of recognition memory, although it had no effect on exploratory behavior. ZSET1446 (1 microg/kg) recovered the defect of the novelty-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the prefrontal cortex (PFC) of METH-treated mice. The compound increased phosphorylated ERK1/2 levels in the hippocampus but not PFC of naive mice without affecting the total ERK1/2 levels. The ameliorating effect of ZSET1446 on recognition memory in METH-treated mice was negated by pretreatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, SL327 (alpha-[amino-(4-aminophenylthio)methylene]-2-(trifluoromethyl)phenylacetonitrile). Furthermore, the dopamine D1 receptor antagonist, SCH23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine], and N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 [5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate)], blocked the ameliorating effect of ZSET1446 on METH-induced memory impairment, whereas the D2 receptor antagonist, raclopride, had no effect. These results suggest that the ameliorative effect of ZSET1446 on METH-induced memory impairment is associated with indirect activation of ERK1/2 following stimulation with dopamine D1 and NMDA receptors of the PFC. ZSET1446 would be a potential candidate for further preclinical study aimed at the treatment of cognitive deficits in Alzheimer's disease and schizophrenia, as well as METH psychosis.  相似文献   

9.
The present study evaluated some of the mechanisms underlying prostaglandin E2 (PGE2)-induced paw edema formation in mice. Intraplantar (i.pl.) injection of PGE2 (0.10-10.0 nmol/paw) into the hindpaw elicited a dose-related edema formation, with a mean ED50 value of 0.42 nmol/paw. The coinjection of selective E-prostanoid (EP)3 [(2E)-N-[(5-bromo-2-methoxyphenyl)-sulfonyl]-3-[5-chloro-2-(2-naphthylmethyl)phenyl]acrylamide; L826266), but not EP2 or EP4 (all 10 nmol/paw), receptor antagonists significantly inhibited PGE2-induced paw edema. Like L826266, the PGE2-induced paw edema was markedly reduced by treatment with pertussis toxin and phospholipase C (PLC) inhibitor 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122). Likewise, the selective neurokinin (NK)1 receptor antagonist N-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl)carbonyl-l-prolyl]-N-methyl-N-phenyl-methyl-3-(2-aphthyl)-l-alaninamide (FK888) and the antagonist of vanilloid receptor (TRPV1) receptors 4'-chloro-3-methoxycinnamanilide (SB366791) (both 1 nmol/paw) also significantly inhibited PGE2-mediated paw edema. Conversely, the selective NK2, NK3, and calcitonin gene-related peptide (CGRP) CGRP(8-37) receptor antagonists all failed to interfere with PGE2-induced paw edema. The neonatal treatment of mice with capsaicin was also able to reduce PGE2-induced paw edema. The inhibitors of protein kinase C (PKC) 3-[1-[3-(dimethylaminopropyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (GF109203X) and mitogen protein-activated kinases (MAPKs; 30 nmol/paw) c-Jun NH2-terminal kinase (JNK) (anthra[1,9-cd]pyrazol-6(2H)-one; SP600125), extracellular signal-regulated kinase (PD98059), and p38 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole; SB203580], but not protein kinase A, markedly decreased the PGE2-mediated edema formation. The i.pl. injection of PGE2 (3 nmol/paw) induced a significant activation of MAPKs, namely, JNK and p38, an effect that was largely prevented by the selective EP3 receptor antagonist L826266 (10 nmol/paw). Collectively, these findings indicate that edematogenic responses elicited by PGE2 are mediated by EP3 receptor activation, also involving the stimulation of PLC, PKC, and MAPKs pathways and the participation of TRPV1 and NK1 receptors. These results make a considerable contribution to our comprehension of the mechanisms involved in PGE2-mediated inflammatory responses in mice.  相似文献   

10.
Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have previously shown that NADPH oxidase NOX5-S generates reactive oxygen species (ROS) when Barrett's metaplastic cells are exposed to acid. Besides metaplastic cells, other H(2)O(2)-producing cells (e.g., inflammatory cells) present in BE mucosa may produce additional ROS, which may also affect metaplastic cells contributing to esophageal tumorigenesis. In this study, we investigate whether exogenous H(2)O(2) stimulates cell proliferation by increasing NOX5-S expression. Low dose (10(-13) M) of H(2)O(2) significantly increased thymidine incorporation, NOX5-S mRNA, and protein expression in a Barrett's EA cell line FLO. H(2)O(2)-induced increase in NOX5-S expression was significantly inhibited by knockdown of nuclear factor (NF)-κB1 p50 with p50 small interfering RNA (siRNA) in EA cell lines FLO and OE33. H(2)O(2) significantly increased p65 phosphorylation and the luciferase activity in FLO cells transfected with a NF-κB activation reporter plasmid pNF-κB-Luc. H(2)O(2)-induced increase in luciferase activity in FLO cells was significantly decreased by knockdown of extracellular signal-regulated kinase 2 (ERK2) mitogen-activated protein kinase (MAPK). Overexpression of p50 and p65 remarkably increased the luciferase activity in FLO cells transfected with a NOX5-S reporter plasmid NOX5-LP. In addition, H(2)O(2)-induced thymidine incorporation in FLO cells was significantly decreased by the MAPK kinase 1/2 inhibitor 2'-amino-3'methoxyflavone (PD98059) and ERK2 siRNA but not by ERK1 siRNA. Likewise, H(2)O(2)-induced increase in NOX5-S expression was significantly decreased by ERK2 siRNA in FLO and OE33 cells. We conclude that a low dose of H(2)O(2) increases cell proliferation. H(2)O(2)-induced increase in cell proliferation may depend on sequential activation of ERK2 MAPK, NF-κB1 p50, and NOX5-S.  相似文献   

11.
Much data in the literature suggest a role for protein kinase C (PKC) in regulating keratinocyte proliferation and differentiation. Nevertheless, the exact role of this family of isoenzymes is unclear, since PKC agonists (e.g., phorbol esters) are known to stimulate expression of both proliferative and differentiative markers in keratinocytes. Similarly, PKC inhibitors have been demonstrated both to inhibit [2-[1-3(aminopropyl)indol-3-yl]-3(1-methyl-1H-indol-3-yl)maleimide, acetate (Ro 31-7549) and 3-[1-[3-(amidinothio)propyl-1H-indol-3-(1-methyl-1H-indol-3yl) maleimide (Ro 31-8220)] and to induce (staurosporine) keratinocyte differentiation. In this study, we examined the role of the PKC inhibitor, G?decke 6976 (G?6976) [12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo (3,4-c)-carbazole], on keratinocyte proliferation, as measured by DNA synthesis, and differentiation, as monitored by transglutaminase activity. This compound is reported to be selective for the conventional PKC isoforms, of which keratinocytes express only PKCalpha, and for protein kinase D (PKD; also known as PKCmu). We report that G?6976 stimulated transglutaminase activity. Consistent with this effect, G?6976 also potently inhibited [(3)H]thymidine incorporation (a half-maximal inhibitory concentration of approximately 0.1 microM). In addition, G?6976 (1 microM) was able to enhance the stimulation of transglutaminase activity by 1,25-dihydroxyvitamin D(3) but had no effect on D(3)-induced expression of keratin-1. Conversely, G?6983 [2-[1-(3-dimethylaminopropy)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide], a similar compound that also selectively inhibits conventional PKCalpha, but not PKD, had little or no effect on DNA synthesis or transglutaminase activity (up to 1 microM). The effect of G?6976 was not due to cytotoxicity as its effect on thymidine incorporation was largely reversible, and its stimulation of transglutaminase activity could be inhibited by another general PKC inhibitor, bisindolylmaleimide I. Therefore, our results suggest a proproliferative, antidifferentiative role for PKD in epidermal maturation.  相似文献   

12.
Our recent study demonstrated that central cannabinoid receptor 1 (CB?R) activation caused dose-related pressor response in conscious rats, and reported studies implicated the brainstem phosphatidylinositol 3-kinase (PI3K)/Akt-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in blood pressure control. Therefore, in this study, we tested the hypothesis that the modulation of brainstem PI3K/Akt-ERK1/2 signaling plays a critical role in the central CB(1)R-mediated pressor response. In conscious freely moving rats, the pressor response elicited by intracisternal (i.c.) (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (WIN55,212-2) (15 μg) was associated with significant increases in ERK1/2 phosphorylation in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS). In contrast, Akt phosphorylation was significantly reduced in the same neuronal pools. Pretreatment with the selective CB?R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (30 μg i.c.) attenuated the neurochemical responses elicited by central CB?R activation. Furthermore, pretreatment with the ERK/mitogen-activated protein kinase kinase inhibitor 2'-amino-3'-methoxyflavone (PD98059) (5 μg i.c.) abrogated WIN55,212-2-evoked increases in blood pressure and neuronal ERK1/2 phosphorylation but not the reduction in Akt phosphorylation. On the other hand, prior PI3K inhibition with wortmannin (0.4 μg i.c.) exacerbated the WIN55,212-2 (7.5 and 15 μg i.c.) dose-related increases in blood pressure and ERK1/2 phosphorylation in the RVLM. The present neurochemical and integrative studies yield new insight into the critical role of two brainstem kinases, PI3K and ERK1/2, in the pressor response elicited by central CB?R activation in conscious rats.  相似文献   

13.
Increased cardiovascular mortality is an unresolved problem in patients with chronic renal failure. Cardiac hypertrophy is observed in the majority of patients with chronic renal failure undergoing haemodialysis. However, the mechanisms, including signal transduction pathways, responsible for cardiac hypertrophy in renal failure remain unknown. We examined the subcellular localization of protein kinase C (PKC) isoforms and phosphorylation activities of 3 mitogen-activated protein (MAP) kinase families in hypertrophied hearts of progressive renal injury rat model by subtotal nephrectomy (SNx). We also examined the effects of a novel angiotensin II type-1 receptor antagonist, CS-866, on the PKC translocation, MAP kinase activity and cardiac hypertrophy in SNx rats. The left ventricle/body weight ratios were significantly larger in SNx rats than in sham rats at 1, 2, and 4 weeks after surgery. The translocation of PKCalpha and epsilon isoforms to membranous fraction was observed in SNx rat hearts at 1, 2, and 4 weeks after surgery. Activation of extracellular signal regulated kinase (ERK) 1/2, but not p38 MAP kinase and c-Jun N-terminal kinase (JNK), was observed at 1 and 2 weeks after surgery. Angiotensin II receptor blockade with CS-866 (1 mg kg-1 day-1) prevented cardiac hypertrophy, PKC translocation and ERK1/2 activation in SNx rats without significant changes in blood pressure. These data suggest that PKC and ERK1/2 are activated by an angiotensin II receptor-mediated pathway and might play an important role in the progression of cardiac hypertrophy in renal failure.  相似文献   

14.
Although tubular necrosis in acute renal failure is associated with excessive production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), the mechanism of ROS-induced cell necrosis remains poorly understood. In this study, we examined the role of the extracellular signaling-regulated kinase (ERK) pathway in H2O2-induced necrosis of renal proximal tubular cells (RPTC) in primary culture. Exposure of 60 to 70% confluent RPTC to 1 mM H2O2 for 3 h resulted in 44% necrotic cell death, as measured by trypan blue uptake, and inactivation of mitogen-activated protein kinase kinase (MEK), the upstream activator of ERK, by either 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126) or 2-(2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one (PD98059) or overexpression of dominant-negative mutant of MEK1, inhibited cell death. In contrast, overexpression of active MEK1 enhanced H2O2-induced cell death. H2O2 treatment led to the loss of mitochondrial membrane potential (MMP) in RPTC, which was decreased by U0126 and PD98059. Furthermore, inhibition of the MEK/ERK pathway decreased oxidant-mediated ERK1/2 activation and mitochondrial swelling in isolated renal cortex mitochondria. However, treatment with cyclosporin A (CsA), a mitochondrial permeability transition blocker, did not suppress RPTC necrotic cell death, loss of MMP, and mitochondrial swelling. We suggest that ERK is a critical mediator of mitochondrial dysfunction and necrotic cell death of renal epithelial cells following oxidant injury. Oxidant-induced necrotic cell death was mediated by a CsA-insensitive loss of MMP that is regulated by the ERK pathway.  相似文献   

15.
The possible participation of phosphatidylinositol (PI) 3-kinase, p44/42 mitogen-activated protein (MAP) kinases and protein kinase C (PKC) in staurosporine-induced prostaglandin E(2) (PGE(2)) production was investigated pharmacologically in rat peritoneal macrophages. When the cells were incubated in the presence of staurosporine (63 nM), phosphorylation of p44/42 MAP kinases and cytosolic phospholipase A(2) (cPLA(2)) was induced at 15 min and increased until 60 min, whereas PGE(2) production and expression of cyclooxygenase-2 (COX-2) protein began to increase at 2 h and increased thereafter. Both PD98059 and U0126, MAP kinase/extracellular signal-regulated kinase (ERK) kinase inhibitors, and LY294002, a PI 3-kinase inhibitor, inhibited staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2) and PGE(2) production. Moreover, U0126 inhibited staurosporine-induced arachidonic acid release at 1 h. Although PD98059 and U0126 at 30 microM partially inhibited staurosporine-induced COX-2 protein expression, they completely inhibited staurosporine-induced PGE(2) production. LY294002 at 100 microM did not inhibit staurosporine-induced expression of COX-2 protein. In contrast, Ro-31-8220, a PKC inhibitor, completely inhibited staurosporine-induced PGE(2) production and COX-2 protein expression at 8 h but did not inhibit staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2). These findings suggest that staurosporine induces PGE(2) production by two mechanisms. One is cPLA(2) phosphorylation through a signal transduction pathway from PI 3-kinase to p44/42 MAP kinases, by which arachidonic acid, a substrate for COX-1 and COX-2, is increased. The other is COX-2 protein expression, which is induced mainly by activation of PKC and partially by activation of p44/42 MAP kinases; thus, arachidonic acid is metabolized to PGE(2).  相似文献   

16.
17.
The signal transduction pathways governing the hypertrophic response of cardiomyocytes are not well defined. Constitutive activation of the stress-activated protein kinase (SAPK) family of mitogen-activated protein (MAP) kinases or another stress-response MAP kinase, p38, by overexpression of activated mutants of various components of the pathways is sufficient to induce a hypertrophic response in cardiomyocytes, but it is not clear what role these pathways play in the response to physiologically relevant hypertrophic stimuli. To determine the role of the SAPKs in the hypertrophic response, we used adenovirus-mediated gene transfer of SAPK/ERK kinase-1 (KR) [SEK-1(KR)], a dominant inhibitory mutant of SEK-1, the immediate upstream activator of the SAPKs, to block signal transmission down the SAPK pathway in response to the potent hypertrophic agent, endothelin-1 (ET-1). SEK-1(KR) completely inhibited ET-1-induced SAPK activation without affecting activation of the other MAP kinases implicated in the hypertrophic response, p38 and extracellular signal-regulated protein kinases (ERK)-1/ERK-2. Expression of SEK-1(KR) markedly inhibited the ET-1-induced increase in protein synthesis. In contrast, the MAPK/ERK kinase inhibitor, PD98059, which blocks ERK activation, and the p38 inhibitor, SB203580, had no effect on ET-1-induced protein synthesis. ET-1 also induced a significant increase in atrial natriuretic factor mRNA expression as well as in the percentage of cells with highly organized sarcomeres, responses which were also blocked by expression of SEK-1(KR). In summary, inhibiting activation of the SAPK pathway abrogated the hypertrophic response to ET-1. These data are the first demonstration that the SAPKs are necessary for the development of agonist-induced cardiomyocyte hypertrophy, and suggest that in response to ET-1, they transduce critical signals governing the hypertrophic response.  相似文献   

18.
BACKGROUND: Induction of stress-activated mitogen-activated protein (MAP) kinases such as p38 could be important for the development of cardiovascular diseases since p38 MAP kinase activation stimulates apoptosis, cell growth, prostanoid formation and other cellular dysfunctions when induced by oxidants, hyperosmolarity, or pro-inflammatory cytokines. On the other hand, insulin resistance is one of the most important factors promoting atherogenesis, including cardiovascular diseases, but it is not clear how these different factors transmit their signals intracellularly at the cytosolic and nuclear levels. In this study, we investigated the effect of insulin on p38 mitogen-activated protein (MAP) kinase activation in cultured rat vascular smooth muscle cells (VSMC). MATERIALS AND METHODS: VSMC were obtained from the aortas of male Wistar rats by the media explant technique. After being stimulated by insulin with SB-203580, PD-98059, or GF109203X, the cells were solubilized and the expressions of MAP kinases, MAP kinase kinases and p70 S6 kinase were examined by immunoblot analysis. The amount of DNA synthesis was measured by [3H]thymidine incorporation. RESULTS: Insulin activated p38 MAP kinase phosphorylation in a dose-dependent manner, and the phosphorylation was specifically inhibited by SB-203580, a p38 MAP kinase-specific inhibitor, but not by PD-98059, a specific inhibitor of upstream kinase (MEK), of extracellular signal-regulated kinase (ERK), or GF209203X, a protein kinase C-specific inhibitor. Insulin also activated MAP kinase kinase (MKK) 3/MKK 6 phosphorylation, the upstream kinase of p38 MAP kinase, but neither stress-activated protein kinase (SAPK)/ERK kinase (SEK1/MKK4) nor SAPK/c-jun NH2-terminal protein kinase. Surprisingly, phosphorylation of p70 S6 kinase and an increase of DNA synthesis by insulin were suppressed dose dependently by SB-203580. CONCLUSION: These results have established that insulin activates the p38 MAP kinase cascade via an MKK 3/6 pathway in rat VSMC, independently of a MEK-ERK cascade, and partly regulates cell growth.  相似文献   

19.
20.
Defining the mechanism for regulation of arachidonic acid (AA) release is important for understanding cellular production of AA metabolites, such as prostaglandins and leukotrienes. Here we have investigated the differential roles of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase in the regulation of cytosolic phospholipase A2 (cPLA2)-mediated AA release by P2U-purinergic receptors in MDCK-D1 cells. Treatment of cells with the P2U receptor agonists ATP and UTP increased PLA2 activity in subsequently prepared cell lysates. PLA2 activity was inhibited by the cPLA2 inhibitor AACOCF3, as was AA release in intact cells. Increased PLA2 activity was recovered in anti-cPLA2 immunoprecipitates of lysates derived from nucleotide-treated cells, and was lost from the immunodepleted lysates. Thus, cPLA2 is responsible for AA release by P2U receptors in MDCK-D1 cells. P2U receptors also activated MAP kinase. This activation was PKC-dependent since phorbol 12-myristate 13-acetate (PMA) promoted down-regulation of PKC-eliminated MAP kinase activation by ATP or UTP. Treatment of cells with the MAP kinase cascade inhibitor PD098059, the PKC inhibitor GF109203X, or down-regulation of PKC by PMA treatment, all suppressed AA release promoted by ATP or UTP, suggesting that both MAP kinase and PKC are involved in the regulation of cPLA2 by P2U receptors. Differential effects of GF109203X on cPLA2-mediated AA release and MAP kinase activation, however, were observed: at low concentrations, GF109203X inhibited AA release promoted by ATP, UTP, or PMA without affecting MAP kinase activation. Since GF109203X is more selective for PKCalpha, PKCalpha may act independently of MAP kinase to regulate cPLA2 in MDCK-D1 cells. This conclusion is further supported by data showing that PMA-promoted AA release, but not MAP kinase activation, was suppressed in cells in which PKCalpha expression was decreased by antisense transfection. Based on these data, we propose a model whereby both MAP kinase and PKC are required for cPLA2-mediated AA release by P2U receptors in MDCK-D1 cells. PKC plays a dual role in this process through the utilization of different isoforms: PKCalpha regulates cPLA2-mediated AA release independently of MAP kinase, while other PKC isoforms act through MAP kinase activation. This model contrasts with our recently demonstrated mechanism (J. Clin. Invest. 99:1302-1310.) whereby alpha1-adrenergic receptors in the same cell type regulate cPLA2-mediated AA release only through sequential activation of PKC and MAP kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号