首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined whether a competitive AMPA receptor antagonist, NBQX, attenuates mechanical allodynia and hyperexcitability of spinal neurons in remote, caudal regions in persistent central neuropathic pain following spinal cord injury in rats. Spinal cord injury was produced by unilateral T13 transverse spinal hemisection, from dorsal to ventral, in male Sprague Dawley rats (200-250 g). Mechanical thresholds were measured behaviorally, and the excitability of wide-dynamic-range (WDR) dorsal horn neurons in the lumbar cord (L4-L5) was measured to assess central neuropathicpain. On postoperation day (POD) 28 after spinalhemisection, mechanical thresholds were significantly decreased in both injured (ipsilateral) and noninjured (contralateral) hindpaws compared with preinjury and sham control, respectively (P < 0.05). Intrathecal administration of NBQX (0.25, 0.5, 1 mM) significantly reversed the decreased mechanical thresholds in both hindpaws, dose dependently (P < 0.05). The excitability of WDR neurons was significantly enhanced on both sides of the lumbar dorsal horn 28 days following spinal hemisection (P < 0.05). The hyperexcitability of WDR neurons was attenuated by topical administration of NBQX (0.125, 0.25, 0.5, 1 mM), dose dependently (P < 0.05). Regression analysis indicated that at least three molecules of NBQX bond per receptor complex, and are needed to achieve inhibition of WDR hyperexcitability. In conclusion, our study demonstrates that the AMPA receptor plays an important role in behaviors related to the maintenance of central neuropathic pain below the level of spinal cord injury.  相似文献   

2.
As a sequel of complete spinal cord injury (SCI), patients often develop chronic pain which is perceived at or just below the level of the lesion. Likewise, in animal models of SCI, spontaneous and evoked pain-related behaviour can be observed. In the present study, the hypothesis was tested that pain related behaviour after SCI in animals is at least partly due to neuronal hyperactivity in spinal segments rostral to the site of injury. In rats with a chronic transected spinal cord, the impulse activity of single dorsal horn neurones was recorded in two locations: (1) directly rostrally adjacent to the lesion, and (2) 2-3 segments more rostrally. Cord transections were made either at the thoracic or at the lumbar level. Sham-operated rats and rats which underwent no surgical interventions served as controls. Compared with both controls, in SCI animals the background activity of the neurones had a significantly higher level in both series. Often the activity showed a pathophysiological altered discharge pattern. Following SCI, there was a general increase in the mechanical responsiveness of neurones that were recorded 2-3 segments rostrally to the lesion. The results suggest that neuronal hyperactivity in spinal segments just rostral to the lesion may contribute to chronic spontaneous SCI pain. Further, there is some indication that the allodynia perceived in body regions near and above the level of the SCI may be due to increased responsiveness to weak stimuli of neurones located more rostrally to the lesion.  相似文献   

3.
Research focused on improving recovery of function, including the reduction of central neuropathic pain (CNP) after spinal cord injury (SCI) is essential. After SCI, regional neuropathic pain syndromes above, at and below the level or spinal injury develop and are thought to have different mechanisms, but may share common dysfunctional glial mechanisms. Detloff et al., [Detloff, M.R., Fisher, L.C., McGaughy, V., Longbrake, E.E., Popovich, P.G., Basso, D.M., Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp. Neurol. (2008), doi: 10.1016/j.expneurol.2008.04.009.] describe events in the lumbar region of the spinal cord after a midthoracic SCI injury, the so called “below-level” pain and compares the findings to peripheral nerve lesion findings. This commentary briefly reviews glial contributions and intracellular signaling mechanisms, both neuronal and glial, that provide the substrate for CNP after SCI, including the persistent glial production of factors that can maintain sensitization of dorsal horn neurons in segments remote from the spinal injury; ie. dorsal horn hyperexcitability to formerly non noxious stimuli that become noxious after SCI resulting in allodynia. The term “gliopathy” is proposed to describe the dysfunctional and maladaptive response of glial cells, specifically astrocytes and microglia, to neural injury that is initiated by the sudden injury induced increase in extracellular concentrations of glutamate and concomitant production of several proinflammatory molecules. It is important to understand the roles that different glia play in “gliopathy”, a condition that appears to persist after SCI. Furthermore, targeted treatment of gliopathy will attenuate mechanical allodynia in both central and peripheral neuropathic pain syndromes.  相似文献   

4.
Unilateral T13 hemisection of the rat spinal cord produces a model of chronic spinal cord injury (SCI) that is characterized by bilateral hyperexcitability of lumbar dorsal horn neurons, and behavioral signs of central pain. While we have demonstrated that responsiveness of multireceptive (MR) dorsal horn neurons is dramatically increased at 28 days after injury, the effects of acute hemisection are unknown and predicted to be different than observed chronically. In the present study, the consequences of T13 hemisection are examined acutely at 45 min in MR neurons both ipsilateral and contralateral to the site of injury, and compared to the same class of cells at 28 days after injury (n=20 cells total per group: 2–3 cells/side of the cord from n=5 animals). Acutely, ipsilateral to the hemisection, both spontaneous and evoked activity of MR neurons were significantly increased, whereas contralaterally, only evoked activity was significantly increased. In animals 28 days after hemisection, spontaneous activity of MR neurons was comparable to intact levels ipsilaterally, and cells exhibited hyperexcitability to evoked stimuli bilaterally. Expansion of cutaneous receptive fields was observed only in hindpaws ipsilateral to the lesion, acutely. These results demonstrate dynamic plasticity in properties of dorsal horn somatosensory neurons after SCI.  相似文献   

5.
ObjectivesThe burden of pain after spinal cord injury (SCI), which may occur above, at, or below injury level, is high worldwide. Spinal cord stimulation (SCS) is an important neuromodulation pain therapy, but its efficacy in SCI pain remains unclear. In SCI rats, we tested whether conventional SCS (50 Hz, 80% motor threshold [MoT]) and 1200 Hz, low-intensity SCS (40% MoT) inhibit hind paw mechanical hypersensitivity, and whether conventional SCS attenuates evoked responses of wide-dynamic range (WDR) neurons in lumbar spinal cord.Materials and MethodsMale rats underwent a moderate contusive injury at the T9 vertebral level. Six to eight weeks later, SCS or sham stimulation (120 min, n = 10) was delivered through epidural miniature electrodes placed at upper-lumbar spinal cord, with using a crossover design. Mechanical hypersensitivity was examined in awake rats by measuring paw withdrawal threshold (PWT) to stimulation with von Frey filaments. WDR neurons were recorded with in vivo electrophysiologic methods in a separate study of anesthetized rats.ResultsBoth conventional SCS and 1200 Hz SCS increased PWTs from prestimulation level in SCI rats, but the effects were modest and short-lived. Sham SCS was not effective. Conventional SCS (10 min) at an intensity that evokes the peak Aα/β waveform of sciatic compound action potential did not inhibit WDR neuronal responses (n = 19) to graded or repeated electrical stimulation that induces windup.ConclusionsConventional SCS and 1200 Hz, low-intensity SCS modestly attenuated below-level mechanical hypersensitivity after SCI. Inhibition of WDR neurons was not associated with pain inhibition from conventional SCS.  相似文献   

6.
In this study, we examined whether topical treatment of glutamate receptor antagonists attenuate hyperexcitability of lumbar spinal dorsal horn neurons following low thoracic hemisection spinal cord injury in rats. Four weeks after spinal hemisection, neuronal activity in response to mechanical stimuli applied on the peripheral receptive field was significantly increased in three different phenotypes of lumbar spinal dorsal horn neurons: wide dynamic range (WDR), low threshold (LT) and high threshold (HT). Topical application of MK-801 (NMDA receptor antagonist, 50 µg) significantly attenuated the activity of WDR, but not LT and HT neurons; whereas, NBQX (AMPA receptor antagonist, 0.5 and 1 µg) significantly attenuated neuronal activity in all three phenotypes of neurons (*p < 0.05). However, MCPG (group I/II metabotropic glutamate receptor antagonist, 100 µg) had no effect. The present study, in the context of previous work, suggests that ionotropic glutamate receptor activation play critical roles in the maintenance of neuronal hyperexcitability and neuropathic “below-level” pain behavior following spinal hemisection injury.  相似文献   

7.
Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Previously, we have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury.  相似文献   

8.
In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors and channels that, in turn, contribute to neuronal-neuronal and neuronal-glial interaction as well as microglia-astrocytic interactions. However, a systematic review of temporal and spatial glial activation following SCI has not been done. In this review, we describe time and regional dependence of glial activation and describe activation mechanisms in various SCI models in rats. These data are placed in the broader context of glial activation mechanisms and chronic pain states. Our work in the context of work by others in SCI models demonstrates that dysfunctional glia, a condition called "gliopathy", is a key contributor in the underlying cellular mechanisms contributing to neuropathic pain.  相似文献   

9.
Chronic tactile allodynia and hyperalgesia are frequent complications of spinal cord injury (SCI) with poorly understood mechanisms. Possible causes are plastic changes in the central arbors of nociceptive and nonnociceptive primary sensory neurons and changes in descending modulatory serotonergic pathways. A clinically relevant clip-compression model of SCI in the rat was used to investigate putative mechanisms of chronic pain. Behavioral testing (n = 18 rats) demonstrated that moderate (35 g) or severe (50 g) SCI at the 12th thoracic spinal segment (T-12) reliably produces chronic tactile allodynia and hyperalgesia that can be evoked from the hindpaws and back. Quantitative morphometry (n = 37) revealed no changes after SCI in the density or distribution of Abeta-, Adelta-, and C-fiber central arbors of primary sensory neurons within the thoracolumbar segments T-6 to L-4. This observation rules out a mandatory relationship between pain-related behaviors and changes in the distribution or density of central afferent arbors. The area of serotonin immunoreactivity in the dorsal horn (n = 12) decreased caudal to the injury site (L1-4) and increased threefold rostral to it (T9-11). The decreased serotonin and presence of tactile allodynia and hyperalgesia caudal to the injury are consistent with disruption of descending antinociceptive serotonergic tracts that modulate pain transmission. The functional significance of the increased serotonin in rostral segments may relate to the development of tactile allodynia as serotonin also has known pronociceptive actions. Changes in the descending serotonergic pathway require further investigation, as a disruption of the balance of serotonergic input rostral and caudal to the injury site may contribute to the etiology of chronic pain after SCI.  相似文献   

10.
The mechanisms underlying central pain following spinal cord injury (SCI) are unsettled. The purpose of the present study was to examine differences in spinothalamic tract function below injury level and evoked pain in incomplete SCI patients with neuropathic pain below injury level (central pain) versus those without such pain. A clinical examination, quantitative sensory testing and magnetic resonance imaging (MRI) were performed in 10 SCI patients with below-level pain and in 11 SCI patients without neuropathic pain. Patients with and without pain had similar reductions of mechanical and thermal detection thresholds below injury level. SCI patients with central pain had sensory hypersensitivity in dermatomes corresponding to the lesion level more frequently than SCI patients without pain, but this may in part be explained by the exclusion of at-level spontaneous pain in the pain-free group. The rostral-caudal extent of the lesion measured by MRI did not differ between the two patient groups, and there were no statistically significant differences in any of the predefined areas of interest on the axial plane images. This study suggests that neuronal hyperexcitability plays a key role in central SCI pain and furthermore - in contrast to previous findings - that loss of spinothalamic functions does not appear to be a predictor for central neuropathic pain in spinal cord injury.  相似文献   

11.
Regeneration by chronically injured supraspinal neurons is enhanced by treatment of a spinal cord lesion site with a variety of neurotrophic and growth factors. The removal of scar tissue, with subsequent reinjury of the spinal cord, is necessary for injured axons to access tissue transplants placed into the lesion to support axon regrowth. The present study examined chronically injured and reinjured rubrospinal tract (RST) neurons to determine if changes in gene expression could explain the failure of these neurons to regenerate without exogenous trophic factor support. Adult female rats were subjected to a right full hemisection lesion via aspiration of the cervical level 3 spinal cord. Using radioactive cDNA probes and in situ hybridization, RST neurons in the contralateral red nucleus were examined for changes in mRNA levels of betaII-tubulin and GAP 43 in an acute injury period (6 h-3 days), a chronic injury period (28 days after spinal cord injury (SCI)) and following a second lesion of the chronic injury site (6 h-7 days). Based upon the analysis of gene expression in single cells, GAP-43 mRNA levels were increased as early as 1 day following the initial SCI, but were no different than uninjured control levels at 28 days postoperative (dpo). The response to relesion was more rapid and higher than that detected after the initial injury with a significant increase in GAP 43 mRNA at 6 h that was maintained for at least 7 days. betaII-tubulin mRNA levels remained unchanged until 3 days after an acute injury followed by a decrease in expression to 30% below uninjured control values at 28 dpo. The expression of betaII-tubulin mRNA was significantly higher within 6 h after a second injury, where it remained stable for 5 days before a second increase occurred at 7 days after reinjury of the spinal cord. Thus, neurons in a chronic injury state retain the ability to respond to a traumatic injury and, in fact, neurons subjected to a second injury exhibit a significantly heightened expression of regeneration-associated genes.  相似文献   

12.
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.  相似文献   

13.
We examined the influence of lumbosacral glycinergic neurons on the spinobulbospinal and spinal micturition reflexes. Female rats were divided into intact rats, rats with acute injury to the lower thoracic spinal cord (SCI), and rats with chronic SCI. Under urethane anesthesia, isovolumetric cystometry was performed in each group before and after intrathecal (IT) injection of glycine or strychnine into the lumbosacral cord level. The glutamate and glycine levels of the lumbosacral cord were measured after injection of glycine or strychnine in intact and chronic SCI rats. Expression of strychnine-sensitive glycine receptor alpha-1 (GlyR alpha1) mRNA in the lumbosacral cord was also assessed in both rats. In chronic SCI rats, the interval and amplitude of bladder contractions were shorter and smaller when compared with intact rats. IT glycine (0.1-100 microg) prolonged the interval and decreased the amplitude of bladder contractions in both intact rats and chronic SCI rats. IT strychnine (0.01-10 microg) elevated the baseline pressure in intact rats and induced bladder contraction in acute SCI rats. On amino acid analysis, IT glycine (0.01-100 microg) decreased the glutamate level of the lumbosacral cord in intact rats, but not in chronic SCI rats. The glycine level of the lumbosacral cord was 54% lower in chronic SCI rats when compared with intact rats, while the GlyR alpha1 mRNA level did not change after SCI. These results suggest that glycinergic neurons may have an important inhibitory effect on the spinobulbospinal and spinal micturition reflexes at the level of the lumbosacral cord.  相似文献   

14.
NGF message and protein distribution in the injured rat spinal cord   总被引:22,自引:0,他引:22  
Nerve growth factor (NGF) content of the spinal cord is increased after cord injury. NGF can cause central sprouting of sensory fibers after spinal cord injury (SCI), leading to autonomic dysfunction and pain. NGF also can promote the death of oligodendroglia after SCI. Knowing the source of intraspinal NGF would benefit strategies for minimizing abnormal plasticity and cell death after SCI. We identified these sources, using RNA in situ hybridization to detect NGF mRNA and double-labeling immunocytochemistry for NGF and cell-marking antigens. In uninjured and sham-injured rats, we identified NGF mRNA in leptomeningeal cells and in neurons in the intermediate grey matter, whereas NGF protein was observed only in leptomeningeal cells. At 3-7 days after transection or clip-compression SCI, NGF mRNA and protein were expressed in the lesion and throughout the intermediate grey matter and white matter rostral and caudal to the injury site. Transection-SCI was used to permit comparisons to previous studies; clip-compression injury was used as a more clinically relevant model. mRNA and protein in adjacent sections were expressed in ramified microglia, astrocytes, intermediate grey neurons, pial cells, and leptomeningeal and Schwann cells in the lateral white matter and the lesion site. Rounded macrophages in the lesion were immunoreactive (Ir) for NGF, but the cells expressing NGF mRNA were not in the same areas of the lesion and were not stained by a macrophage marker. Our data demonstrate that glia, neurons, meningeal cells and Schwann cells but not macrophages contribute to the increased intraspinal NGF after SCI.  相似文献   

15.
Axon regeneration after experimental spinal cord injury (SCI) can be promoted by combinatorial treatments that increase the intrinsic growth capacity of the damaged neurons and reduce environmental factors that inhibit axon growth. A prior peripheral nerve conditioning lesion is a well-established means of increasing the intrinsic growth state of sensory neurons whose axons project within the dorsal columns of the spinal cord. Combining such a prior peripheral nerve conditioning lesion with the infusion of antibodies that neutralize the growth inhibitory effects of the NG2 chondroitin sulfate proteoglycan promotes sensory axon growth through the glial scar and into the white matter of the dorsal columns. The physiological properties of these regenerated axons, particularly in the chronic SCI phase, have not been established. Here we examined the functional status of regenerated sensory afferents in the dorsal columns after SCI. Six months post-injury, we located and electrically mapped functional sensory axons that had regenerated beyond the injury site. The regenerated axons had reduced conduction velocity, decreased frequency-following ability, and increasing latency to repetitive stimuli. Many of the axons that had regenerated into the dorsal columns rostral to the injury site were chronically demyelinated. These results demonstrate that regenerated sensory axons remain in a chronic pathophysiological state and emphasize the need to restore normal conduction properties to regenerated axons after spinal cord injury.  相似文献   

16.
Spontaneous potentials in skeletal muscle distal to human spinal cord injury (SCI) have been reported in the literature. Two animal models of SCI were studied for the presence of similar potentials. Six rats and two cats with surgical transections of the thoracic spinal cord were followed for 4-6 weeks with serial electromyography. As a control for the effects of anesthesia and serial testing, three intact rats were anesthetized and tested weekly for 4 weeks. In rats with spinal cord transection, spontaneous potentials emerged 4-7 days after surgery and persisted for the duration of the study (28-32 days). Spontaneous potentials were absent in controls at all timepoints. In cats, spontaneous potentials were observed 8 days postinjury and gradually diminished, starting at 2 weeks. Spontaneous potentials therefore occur after SCI in animals as well as in humans. The utilization of animal models will facilitate the understanding of alterations that occur distal to spinal cord lesions and affect the function of lower motor neurons, leading to peripheral denervation after SCI.  相似文献   

17.
McKay SM  McLachlan EM 《Neuroreport》2004,15(11):1783-1786
Macrophages and T-lymphocytes invade the spinal cord in and around a lesion and spinal microglia are converted into macrophages. After spinal transection at T8 in rats, T-lymphocyte and major histocompatibility complex II+ (MHC II+) macrophage numbers were increased within dorsal root ganglia (DRGs) below the lesion. Inflammation was greater in DRGs closer to the site of transection. After 8 weeks, MHC II+cell density had fallen by 30% but T-lymphocyte numbers were undiminished. In lumbosacral DRGs, inflammation preceded inflammation within the spinal cord. The responses in distant DRGs are hard to reconcile with the limited damage to sensory neurons produced by the lesion. Inflammation of DRGs after spinal injury may contribute to hyper-reflexia and pain.  相似文献   

18.
Sensory disturbances following spinal cord injury (SCI) include chronic pain, which is often localized at spinal levels just rostral to the lesion (referred to as at-level neuropathic pain) and not effectively relieved by traditional treatments. In the present study, a clinically relevant spinal contusion injury was made at the spinal T8 level in 11 deeply anesthetized male rats. Behavioral testing just prior to terminal electrophysiological experiments (done at 30 days post-injury) demonstrated at-level sensitivity to touching the trunk (i.e., allodynia) in 64% of the animals. Electrophysiological data (urethane anesthesia) were obtained for 218 single somatovisceral convergent neurons that were located throughout 12 subregions of the thalamus. In total, 90% (197 of 218) responded to noxious at-level pinch, compared to 52% for pinching the dorsal trunk at the same level in uninjured controls (our previously published data--recorded from 133 total neurons). In addition, 33% of the total neurons tested also responded to gentle touch (dorsal trunk) versus 9% in controls. A comparison of electrophysiological and behavioral data for each individual animal reveals novel tactile neuronal responses within ventral and posterior thalamic subnuclei for those rats showing signs of at-level allodynia. These data suggest that neurons in specific regions of thalamus undergo significant changes in responsiveness following severe chronic SCI. The observed plasticity and ensuing hypersensitivity are likely part of the central reorganization producing the multitude of sensory disturbances that surface following SCI.  相似文献   

19.
Spinal cord injury (SCI) severely disrupts bladder function. What mediates bladder dysfunction after SCI is currently unknown. We investigated the role that primary afferent sprouting in lumbosacral cord may play in emergence of bladder activity after complete spinal cord transection. Rats had a bladder cannula chronically implanted. They were then subjected to complete surgical spinal cord transection at T9/T10. Cystometrographic analysis (0.1 ml/min) after injury revealed that bladder activity emerged in the form of nonvoiding contractions in all rats at approximately 5 days post transection. At 10-14 days after transection nonvoiding contractions remained and voiding contractions emerged that had increased maximal pressures (12-41 vs. 24-57 cmH(2)O) but were less efficient (6-15% vs. 79-100%) when compared to control implanted rats. We looked for sprouting 3 days and 8 days post transection, timepoints preceding the emergence of nonvoiding and voiding contractions respectively. Increases in CGRP density and distribution were seen in L6 and S1 spinal cord within lamina groupings of II-IV, V and VI, as well as lamina X at 8 days post transection. This increase remained in most lamina at 21 days post transection. Colocalization with the growth cone marker Gap-43 3 days and 5 days post transection at the level of the lumbosacral preganglionic nucleus verified that CGRP positive afferents were sprouting in L6/S1 spinal cord prior to emergence in bladder activity. These data provide support for the hypothesis that primary afferent sprouting contributes to emergence of bladder activity after spinal cord transection.  相似文献   

20.
Of the glutamate receptor types, the metabotropic glutamate receptors (mGluRs) are G proteins coupled and can initiate a number of intracellular pathways leading to hyperexcitability of spinal neurons. In this study, we tested the expression of mGluRs to determine which cell types might contribute to sustained neuronal hyperexcitability in the lumbar enlargement with postoperative day (POD) 7 (early), 14 (late), and 30 (chronic phase) following spinal cord injury (SCI) by unilateral hemisection at T13 in Sprague-Dawley rats. Expression was determined by confocal analyses of immunocytochemical reaction product of neurons (NeuN positive) and astrocytes (GFAP positive) in the dorsal horn on both sides of the L4 segment. Neurons were divided into two sizes: small (<20 microm) and large (>35 microm), for physiological reasons. We report a significant increase of mGluR(1) expression in large and small neurons of the dorsal horn on both sides of the cord in late and chronic phases when compared to control sham groups. Expression of mGluR(2/3) significantly increased in large neurons on the ipsilateral (hemisected) side in the late phase. Expression of mGluR(5) significantly increased in large neurons in early, late, and chronic phases. In addition, mGluR(1) and mGluR(5) expression after hemisection was significantly increased in astrocytes in early, late, and chronic phases; whereas mGluR(2/3) did not display any significant changes. In conclusion, our data demonstrate long-term changes in expression levels of Group I mGluRs (mGluR(1) and mGluR(5)) in both neurons and astrocytes in segments below a unilateral SCI. Thus, permanent alterations in dorsal horn receptor expression may play important roles in transmission of nociceptive responses in the spinal cord following SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号