首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na(2)O-K(2)O-P(2)O(5) system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The use of high-silica layers (>60 wt % SiO(2)) in contact with the alloy promotes long-term stability of the coating; glass-metal adhesion is achieved through the formation of a nanostructured Ti(5)Si(3) layer. A surface layer containing a mixture of a low-silica glass ( approximately 53 wt % SiO(2)) and synthetic hydroxyapatite particles promotes the precipitation of new apatite during tests in vitro. The in vitro behavior of the coatings in simulated body fluid depends both on the composition of the glass matrix and the CP particles, and is strongly affected by the coating design and the firing conditions.  相似文献   

2.
In order to achieve biological sealing and resist mechanical damage of load-bearing percutaneous devices, Ti with excellent mechanical properties was anodic-oxidized to be endowed with bioactivity, with plasma-sprayed hydroxyapatite coated Ti as control. Similar to previous works, hydroxyapatite coating could bond tightly with living tissues, resulting in implant stability for whole implantation periods. Meanwhile, when anodic-oxidized bioactivated Ti was implanted percutaneously in vivo, it could induce a layer of calcium phosphate at the interface of tissues/implant. This layer of Ca-P not only induced the fibrous tissue or collagen ingrowth in its structure, but also improved the osteointegration between the bone and the implant. There was no significant biological response difference for the anodic-oxidized Ti and HA coated Ti at different implantation period with histological statistical analysis (p>0.05). Accordingly, suitable bioactivated modified surface of Ti by anodic-oxidized method could not only obtain the same results as the HA coating, but also might avoid some drawbacks of plasma-sprayed HA coatings to achieve biological sealing for a long period in vivo.  相似文献   

3.
A dividable, titanium implant was inserted bilaterally in assembled form in the tibial metaphyses of adult rabbits. A titanium cathode was placed 5 mm proximal and a platinum—indium anode 5 mm distally. The chamber on one side served as a non-stimulated control: on the other side the electrodes were connected to a constant current generator. Ten animals were treated with 5 μA, ten with 20 μA and ten with 50 μA. After three weeks the implants were removed, taken apart and the bone which had grown into two central canals of the chamber was collected for macroradiographic and computer-based numerical analysis. DC-stimulation with 50 μA did not result in any measureable increase of bone formation in the test implants compared to the controls. After stimulation with 5 or 20 μA, on the other hand, there was a statistically significant increase of osteogenesis, in spite of the fact that the electrodes were situated at some distance from the implant.  相似文献   

4.
5.
Burstein GT  Liu C  Souto RM 《Biomaterials》2005,26(3):245-256
This paper describes the effect of temperature on the nucleation of corrosion pits on titanium microelectrodes in Ringer's physiological solution. The results are shown for potentials far below the pitting potential, and describe breakdown of passivity with no permanent propagation of pits. Nucleation events could be observed at all the temperatures used, although they were very rare events at 20 degrees C. The frequency of breakdown rises significantly with increase in temperature. Examples are shown of current transients due to both pit nucleation and to metastable pit propagation, the latter being rare events. Analysis shows that these events constitute a significant fraction of the passive corrosion rate of titanium.  相似文献   

6.
X-ray videodensitometry allows in vivo flow measurements from gradients in contrast agent concentration. However, the injection of contrast agent alters the flow to be measured. Here, the temporal, spatial, and inter-patient variability of the response to injection are examined. To this purpose, an injection is prescribed in the internal carotid in a 1D wave propagation model of the arterial circulation. Although the resulting effect of injection is constant over a cardiac cycle, the response does vary with the location within the cerebral circulation and the geometry of the circle of Willis. At the injection site, the injection partly suppresses the incoming blood flow, such that the distal flow is increased by approximately 10%. This corresponds to approximately 20% of the injection rate added to the blood flow during injection, depending on the vascular geometry. In the communicating arteries, the flow direction is reversed during injection. Since the measured flow is not equal to the physiological blood flow, the effect of injection should be taken into account when deriving the flow from travelling contrast agent.  相似文献   

7.
Rahbek O  Kold S  Zippor B  Overgaard S  Soballe K 《Biomaterials》2005,26(23):4728-4736
The aim of the present study was to compare the effect of two different porous coatings on bone ongrowth and on the peri-implant migration of polyethylene (PE) particles. Porous-coated cylindrical implants with an either plasma-sprayed closed-pore coating (Pl) or titanium fiber metal open-pore coating (Fi) were inserted intra-articular in exact fit or with a 0.75 mm peri-implant gap. A weight-loaded implant device in the distal femur was used. We used a randomized paired design in eight dogs. PE particles were injected repeatedly intra-articular in the knee until the dogs were killed after 8 weeks. Fi implants had significantly more bone ongrowth 8 (0-21)% compared with Pl implants 0 (0-0)% in gap situations and reduced the number of peri-implant PE particles significantly. Among exact-fitted implants we found that peri-implant tissue around Pl implants consisted of significantly more fibrous tissue than around Fi implants. A sealing effect against the migration of PE particles was found for both Fi and Pl implants in exact fit.  相似文献   

8.
This study describes the finding and performance of mechanical strength and corrosion testing procedures for comparative examination of multiple internal transpedicular spine fixators. Seven different implant models from five different manufacturers were compared regarding their bending strength and fatigue resistance. Because of the unacceptably high levels of time and material that they require, ISO and ASTM testing standards are not applicable to comparative testing. In addition, there is a lack of knowledge about clinically defined and proven strength-limit values. Therefore, actual standard testing procedures have been modified and extended to corrosion testing. Overall, the effort necessary to obtain reproducible comparative data has been reduced significantly. Although a reduced number of implants of each type were available for destructive testing, the results revealed fundamental differences in the tested implants between different materials and design features. During fatigue testing some of the implants showed poor corrosion properties. Because spinal fixation implants tend to be used as long-duration implants, corrosion testing as well as comparative strength testing with clinically successful implant models should be performed as preclinical evaluations.  相似文献   

9.
Matsuno H  Yokoyama A  Watari F  Uo M  Kawasaki T 《Biomaterials》2001,22(11):1253-1262
To evaluate the biocompatibility of refractory metals, titanium, hafnium, niobium, tantalum and rhenium were implanted in rats, and histological observation and elemental mapping were performed by X-ray scanning analytical microscope (XSAM) and electron probe microanalyzer (EPMA). The titanium, hafnium, niobium, tantalum and rhenium wires were implanted in the subcutaneous tissue of the abdominal region and in femoral bone marrow of rats for either 2 or 4 weeks. No inflammatory response was observed around the implants, and all the implants were encapsulated with thin fibrous connective tissue. No dissolution of these metals was detected by XSAM in the soft tissue. Histological examination of the hard tissue showed that the amount of new bone formation decreased slightly from the second to the fourth week after implantation, and that the percentage of bone in contact with the implant increased markedly over the same period. No dissolution of these metals was detected by EPMA in the hard tissue. The Ca and P intensities in the mapping images of newly formed bone were higher after 4 weeks than those after 2 weeks, which suggests that the newly formed bone continued to mature from 2 to 4 weeks after implantation. These results indicate that titanium, hafnium, niobium, tantalum and rhenium have good biocompatibility and osteoconductivity.  相似文献   

10.
目的 探讨大颗粒酸蚀喷砂(Sandblasted/Large-grit/Acide -tched,SLA)表面处理的种植体与SLA表面喷涂钽(Ta)形成纳米复合表面的种植体对种植体周围炎发生发展的影响。 方法 6只Beagle犬双侧前磨牙延期植入2种不同表面种植体。从左侧远中到右侧远中依次将植体记为1~6号,3、4号种植体设置非绑线的基线组,其余于基台颈部丝线结扎的方法建立犬种植体周围炎模型。分别在建模后四次对植体进行菌斑指数(plaque index, PI)、改良出血指数(modified Sulcus Bleeding Index, mSBI)、种植体周探诊深度(probing depth, PD)等临床指标测量,通过手术直观评价、显微CT扫描、组织学评价相结合观察种植体周骨缺损程度,对实验结果采用重复测量方差分析。 结果 绑线的SLA组PI、mSBI、PD、垂直缺损与水平缺损深度等指标均显著高于绑线的SLA+Ta组(P<0.05);显微CT扫描和组织学评价相结合观察可见绑线的SLA组较绑线的SLA+Ta组种植体周骨缺损明显。 结论 SLA表面喷涂钽形成纳米复合表面的种植体较SLA表面处理的种植体延缓种植体周围炎的发生发展并减轻其症状。  相似文献   

11.
12.
Cardiomyocytes (CMs) from induced pluripotent stem (iPS) cells mark an important achievement in the development of in vitro pharmacological, toxicological and developmental assays and in the establishment of protocols for cardiac cell replacement therapy. Using CMs generated from murine embryonic stem cells and iPS cells we found increased cell–matrix interaction and more matured embryoid body (EB) structures in iPS cell-derived EBs. However, neither suspension-culture in form of purified cardiac clusters nor adherence-culture on traditional cell culture plastic allowed for extended culture of CMs. CMs grown for five weeks on polystyrene exhibit signs of massive mechanical stress as indicated by α-smooth muscle actin expression and loss of sarcomere integrity. Hydrogels from polyacrylamide allow adapting of the matrix stiffness to that of cardiac tissue. We were able to eliminate the bottleneck of low cell adhesion using 2,5-Dioxopyrrolidin-1-yl-6-acrylamidohexanoate as a crosslinker to immobilize matrix proteins on the gels surface. Finally we present an easy method to generate polyacrylamide gels with a physiological Young's modulus of 55 kPa and defined surface ligand, facilitating the culture of murine and human iPS-CMs, removing excess mechanical stresses and reducing the risk of tissue culture artifacts exerted by stiff substrates.  相似文献   

13.
Six female subjects, aged 24-34 years, performed shoulder-neck exercise for 1 h or until they were exhausted by holding out their arms horizontally at 60° to the sagittal plane. One continuous and six intermittent protocols were applied, all with a mean load corresponding to the torque of the arms, i.e. about 15% maximal voluntary contraction (MVC). The intermittent protocols varied according to cycle time (10 s, 60 s, 360 s) and duty cycle (0.33, 0.50, 0.67, 0.83). Electromyogram (EMG), mean arterial blood pressure ( a), heart rate (f c) and perceived fatigue were monitored at regular intervals during exercise. Blood concentrations of potassium, lactate and ammonia were determined in pre- and postexercise samples of venous blood. Before and up to 4 h after exercise, measurements were made of MVC, pressure pain threshold, proprioceptive performance, and of EMG, a and f c during 1-min arm-holding at 25% MVC. Endurance times ranged from about 10 min to more than 1 h, significantly relating to both cycle time and duty cycle. The a, f c EMG amplitude and perceived fatigue increased early during all protocols and continued to increase throughout the exercise period. Duty cycle influenced all of these variables, while only a and fatigue perception were related to cycle time. Cardiovascular and neuromuscular recovery was incomplete for hours after several of the protocols, as indicated for example by a sensitizised response to the 1-min armholding. The protocols differed substantially as regards the relationship between different responses. Thus, ranking of the protocols in terms of physiological strain was different, depending on the criterion variable. The result stresses the relevance of applying a comprehensive selection of variables when evaluating the responses to intermittent shoulder-neck exercise.  相似文献   

14.
The corrosion susceptibility of Ti, Ti-6A1-4V and Ti-45Ni was studied in a buffered saline solution using anodic polarisation and electrochemical impedance measurements. Pitting potentials as low as + 250 mV(SCE) were recorded for Ti-45Ni and once initiated pits continued to propagate at potentials as low as -150 mV(SCE). It was possible to increase the pitting potential of Ti-45Ni to values greater than +800 mV(SCE) using a H2O2 surface treatment procedure; however, this surface modification process had no beneficial effect on the rate of pit repassivation. Impedance spectra, recorded under open-circuit conditions, were modelled using a dual oxide film model; a porous outer layer and an inner barrier oxide layer. The nature of this porous outer layer was found to depend on the nature of the electrode material and the presence of phosphate anions in the saline-buffered solution. The porous layers formed on Ti-45Ni and Ti-6Al-4V in the presence of phosphate anions had low resistances typically between 10 and 70 ohm cm2. Much higher porous layer resistances were recorded for Ti and also for Ti-45Ni and Ti-6Al-4V in the absence of the phosphate anions.  相似文献   

15.
This study evaluates the potential of titanium oxide coatings for short-term delivery of vanadium for improved wound healing around implants. Titanium and vanadium oxides are bioactive agents that elicit different bioresponses in cells, ranging from implant integration and reduction of inflammation to modulation of cell proliferation and morphology. These oxides were combined in biomaterial coatings using metal-organic precursors and rapidly screened in cell-culture microplates to establish how vanadium-loading influences cell proliferation and morphology. Twenty-eight-day elution studies indicated that there was a controlled release of vanadium from stable titanium oxide matrices. Elution profiles were mathematically modeled for vanadium loading of 20-1.25% up to a period of 28 days. Scanning electron microscopy and energy dispersive spectroscopy of the coatings indicated that the vanadium was present as a nanoscale dispersion and not segregated micron-scale islands. The study confirmed that the observed bioresponse of cells was modulated by the soluble release of vanadium into the surrounding medium. Controlled release of vanadium from titania coatings may be used to influence soft-tissue integration of implants by modulating cell proliferation, attachment, inflammation, and wound healing dynamics.  相似文献   

16.
The aim of this study was to examine the influence of the Young's modulus of the implant material on the bone remodeling in a loaded condition. A combined animal experimental and computational study was set up. The animal experimental group comprised of 16 Saanen goats, each receiving one titanium implant (Young's modulus 110 GPa) and one high-density polyethylene (HDPE) implant (Young's modulus 1 GPa) in the left femoral condyle. Both types of implants received a titanium coating of 100 nm thickness. The implants protruded in the knee joint space and were directly weight bearing. The first group of eight goats was sacrificed after 6 weeks of loading and the second group of eight goats after 6 months of loading. The 16 femoral condyles with the 32 implants were prepared for microfocus computed tomography (micro-CT) scanning and histological sectioning. Three-dimensional trabecular bone parameters were calculated on the micro-CT images for the zones neck, middle, and apex of the implant. The percent of bone contact with the implant was measured on longitudinal histological sections. An axisymmetric finite element (FE) model was created to compare peri-implant bone strains and relative motion between a titanium and a HDPE implant for the experimental loading condition, and to assess the influence of different bone-implant interface (contact) conditions. From the statistical analysis of the 3D bone parameters, the difference between the titanium and HDPE implants was not significantly different (p > 0.05) between the zones (neck, middle, and apex) for both groups of goats. The implants could be considered in their entirety. After 6 weeks of loading, the PE implant presented lower connectivity and smaller marrow spaces in the circular region of 0-500 microm. In the region 500-1500 microm more bone volume was present for the PE implant. After 6 months, the PE implants showed more bone volume and thicker trabeculae than the titanium implants for the entire length of the implant. This effect was already present in the smallest region of interest, 0-500 microm. After 6 months more fibrous encapsulation was found around titanium implants. FE results demonstrated a substantial influence of the interface conditions on peri-implant strains and relative motion. For interface conditions that were representative for the early postoperative situation (involving press-fit and friction), differences in peri-implant bone strain distributions between titanium and HDPE could be related to the experimentally observed differences in amounts of bone and fibrous encapsulation. In contrast, differences in relative motion did not seem to play a role. Both the experimental and computational results suggest that implant stiffness can affect the peri-implant tissue response, which may be related to differences in peri-implant strains.  相似文献   

17.
The effect of diffusion coating of Nd on the corrosion performance of Mg–1.2%Nd–0.5%Y–0.5%Zr–0.4%Ca alloy (EW10X04) used as a new structural material for biodegradable implants was evaluated in a simulated physiological electrolyte. The initial Nd layer with a thickness of 1 μm was obtained by a physical vapor deposition process in an electron gun evaporator. This was followed by a diffusion coating process carried out at high temperature in a protective atmosphere. The microstructure of the diffusion coating system was examined using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. The corrosion resistance was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated physiological electrolyte in the form of 0.9% NaCl solution saturated with Mg(OH)2. The results of the corrosion tests clearly demonstrated that the corrosion resistance of the alloy with the diffusion coating layer was significantly improved compared to the base alloy. This was mainly due to the relatively continuous network of the secondary passive phase Mg41Nd5 that acts as an effective corrosion barrier and the beneficial effect of enriching the oxide film with Nd and Nd oxides such as Nd2O3 and Nd6O11.  相似文献   

18.
Wear behavior of plasma-sprayed carbon nanotube (CNT)-reinforced hydroxyapatite (HA) coating is evaluated in the simulated body fluid environment. Apart from enhancing the fracture toughness and providing biocompatibility, CNT-reinforced HA coating demonstrated superior wear resistance compared with that of hydroxyapatite coating without CNT. Initiation and propagation of microcracks during abrasive wear of plasma-sprayed hydroxyapatite coatings was suppressed by CNT reinforcement. Surface characterization and wear studies have shown that in addition to acting as underprop lubricant, CNTs provide reinforcement via stretching and splat-bridging for enhanced abrasion resistance in vitro.  相似文献   

19.
Dental implants have been used and studied for the replacement of missing teeth for many years. Finite element stress analysis (FESA) has previously been used in their evaluation to study the effect of various design parameters on induced stresses. A twodimensional FESA was used to evaluate the effect that the implant-bone interface elastic modulus has on the stress distribution around LTI carbon and aluminum oxide dental implants. The results of this investigation indicate that a soft tissue interface between implants and bone negates the effect of implant elastic modulus and results in stress profiles that were almost identical for the LTI carbon and aluminum oxide implants. This research was supported by NIH Grants DE 04653, DE 0041, and AM 0022, and VA Grant V629P-713.  相似文献   

20.
The passive film formed by electrochemical oxidation on two different stainless steels differing in molybdenum (Mo) content in physiological solution with and without the addition of complexing agent, i.e., citrate, was studied using X-ray photoelectron spectroscopy. The alloys were polarized at different oxidation potentials in the electrochemical chamber attached to the spectrometer. Thus, the composition of the film formed by oxidation was analyzed by X-ray photoelectron spectroscopy without prior exposure to air (quasi in situ). The passive film formed in physiological solution consists of two predominant oxides, i.e., chromium and iron oxides. Oxides of alloying elements nickel and Mo are also detected in the film. It seems that the strong enrichment of oxidized chromium and Mo in the passive layer, and strong enrichment of Mo and depletion of iron at the metal surface underneath the passive layer, are responsible for the outstanding corrosion resistance of orthopedic stainless steel in physiological solution. Commercial AISI 304 is not suitable for orthopedic applications. The addition of complexing agent affects significantly the passivation behavior of orthopedic stainless steel, because it changes the distribution of the elements within the passive layer and at the metal surface underneath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号