首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray–white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. Received 14 April 1997; Accepted 8 August 1997  相似文献   

2.
To evaluate T2-weighted fast spin-echo (FSE) and conventional spin-echo (CSE) magnetic resonance (MR) techniques in the assessment of brain myelination, 100 consecutive pediatric patients were imaged prospectively with both CSE and FSE sequences. All patients underwent a routine MR examination that included T2-weighted CSE imaging (imaging time, 10 minutes 21 seconds) and T2-weighted FSE imaging (imaging time, 2 minutes 5 seconds). The two techniques were compared for estimating the degree of myelination (using normal anatomic landmarks) by blind review. With T2-weighted CSE images as the “gold standard” for estimation of normal myelination, FSE images were evaluated to determine if they showed the degree of myelination similarly to CSE images. There was a strong correlation (P <.01) between CSE and FSE images in the estimation of myelination over a wide range of patient ages.  相似文献   

3.
PURPOSETo compare T2-weighted conventional spin-echo (CSE), fast spin-echo (FSE), shorttau inversion recovery (STIR) FSE, and fluid-attenuated inversion recovery (FLAIR) FSE sequences in the assessment of cervical multiple sclerosis plaques.METHODSTwenty patients with clinically confirmed multiple sclerosis and signs of cervical cord involvement were examined on a 1.5-T MR system. Sagittal images of T2-weighted and proton density-weighted CSE sequences, T2-weighted FSE sequences with two different sets of sequence parameters, STIR-FSE sequences, and FLAIR-FSE sequences were compared by two independent observers. In addition, contrast-to-noise measurements were obtained.RESULTSSpinal multiple sclerosis plaques were seen best on STIR-FSE images, which yielded the highest lesion contrast. Among the T2-weighted sequences, the FSE technique provided better image quality than did the CSE technique, but lesion visibility was improved only with a repetition time/echo time of 2500/90; parameters of 3000/150 provided poor lesion contrast but the best myelographic effect and overall image quality. CSE images were degraded by prominent image noise; FLAIR-FSE images showed poor lesion contrast and strong cerebrospinal fluid pulsation artifacts.CONCLUSIONSThe STIR-FSE sequence is the best choice for assessment of spinal multiple sclerosis plaques. For T2-weighted FSE sequences, shorter echo times are advantageous for spinal cord imaging, long echo times are superior for extramedullary and extradural disease. FLAIR-FSE sequences do not contribute much to spinal imaging for multiple sclerosis detection.  相似文献   

4.
Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging   总被引:24,自引:0,他引:24  
PURPOSE: To determine the clinical utility of gadolinium-enhanced fluid-attenuated inversion-recovery (FLAIR) magnetic resonance (MR) imaging of the brain by comparing results with those at gadolinium-enhanced T1-weighted MR imaging with magnetization transfer (MT) saturation. MATERIALS AND METHODS: In 105 consecutive patients referred for gadolinium-enhanced brain imaging, FLAIR and T1-weighted MR imaging with MT saturation were performed before and after administration of gadopentetate dimeglumine (0.1 mmol per kilogram of body weight). Pre- and postcontrast images were evaluated to determine the presence of abnormal contrast enhancement and whether enhancement was more conspicuous with the FLAIR or T1-weighted sequences. RESULTS: Thirty-nine studies showed intracranial contrast enhancement. Postcontrast T1-weighted images with MT saturation showed superior enhancement in 14 studies, whereas postcontrast fast FLAIR images showed superior enhancement in 15 studies. Four cases demonstrated approximately equal contrast enhancement with both sequences. Six cases showed some areas of enhancement better with T1-weighted imaging with MT saturation and other areas better with postcontrast fast FLAIR imaging. Superficial enhancement was typically better seen with postcontrast fast FLAIR imaging. CONCLUSION: Fast FLAIR images have noticeable T1 contrast making gadolinium-induced enhancement visible. Gadolinium enhancement in lesions that are hyperintense on precontrast FLAIR images, such as intraparenchymal tumors, may be better seen on T1-weighted images than on postcontrast fast FLAIR images. However, postcontrast fast FLAIR images may be useful for detecting superficial abnormalities, such as meningeal disease, because they do not demonstrate contrast enhancement of vessels with slow flow as do T1-weighted images.  相似文献   

5.
PURPOSE: To compare breath-hold fast-recovery fast spin echo (FR-FSE) and non-breath-hold fast spin echo (FSE) T2-weighted sequences for hepatic lesion conspicuity and image quality at MR imaging. MATERIALS AND METHODS: Fifty-nine patients with known or suspected liver lesions underwent hepatic MR imaging by using a breath-hold FR-FSE T2-weighted sequence with and without fat suppression and a non-breath-hold FSE T2-weighted sequence with and without fat suppression. Quantitative analysis was made with measurements of the signal intensity of the liver, spleen, background noise, and up to three liver lesions, as well as calculations of the liver signal-to-noise ratio (SNR) and the liver-to-lesion contrast-to-noise ratio (CNR) for each sequence. Qualitative analysis was made for image quality and the number of lesions identified. Statistical analysis was performed by using a single-tailed paired Student's t test with a 95% confidence interval. RESULTS: SNR and CNR were significantly higher (P<.05) for FSE with fat suppression than for FR-FSE with fat suppression. No statistically significant difference was seen in terms of SNR and CNR between non-fat-suppressed FSE and FR-FSE sequences. Lesion conspicuity, liver edge sharpness, and clarity of vessels were superior and ghosting was less with the FR-FSE sequences compared with the FSE sequences. CONCLUSION: Breath-hold FR-FSE technique is a reasonable alternative in T2-weighted imaging of the liver.  相似文献   

6.
OBJECTIVE: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. MATERIALS AND METHODS: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. RESULTS: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). CONCLUSION: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.  相似文献   

7.
In this prospective study, axial and sagittal magnetic resonance (MR) images were obtained with T2-weighted conventional spin-echo (CSE) and fast spin-echo (FSE) sequences in 34 consecutive female patients who underwent clinical pelvic MR examination at 1.5 T. The MR images from each patient were compared side by side, blindly and independently, by two radiologists experienced in MR imaging who used a standardized score sheet for anatomic and pathologic findings. The FSE sequences were rated superior significantly more often than the CSE sequences in most categories of findings (P less than .05), including overall image quality and reduction of motion artifact. The examination time for the FSE sequences was 1 minute 46 seconds versus an examination time of 9 minutes 14 seconds for the CSE sequences. (Both CSE and FSE sequences provided 18 sections.) It is concluded that the FSE sequence provides T2-weighted anatomic and pathologic information superior to that provided by the CSE sequence and requires substantially less imaging time.  相似文献   

8.
The article reviews the current MR imaging techniques commonly utilized for imaging liver tumors. Breath-hold T1-weighted GRE sequences, FSE T2-weighted sequences, and properly timed contrast-enhanced 3D SGE are important for lesion characterization. New liver-specific contrast agents improve lesion detection and are useful in lesion characterization.  相似文献   

9.
PURPOSE: To test the hypothesis that the accuracy of gadolinium- and ferumoxides-enhanced magnetic resonance (MR) imaging is different in small (< or =1.5-cm) and large (>1.5-cm) hepatocellular carcinomas (HCCs). MATERIALS AND METHODS: Forty-three consecutive patients with chronic liver disease were enrolled in this study. The imaging protocol included unenhanced breath-hold T1-weighted fast field-echo sequences, unenhanced respiratory-triggered T2-weighted turbo spin-echo (SE) sequences, dynamic gadolinium-enhanced T1-weighted three-dimensional turbo field-echo sequences, and ferumoxides-enhanced T2-weighted turbo SE sequences. Images of each sequence and two sets of sequences (ferumoxides set and gadolinium set) were reviewed by four observers. The ferumoxides set included unenhanced T1- and T2-weighted images and ferumoxides-enhanced T2-weighted turbo SE MR images. The gadolinium set included unenhanced T1- and T2-weighted images and dynamic gadolinium-enhanced three-dimensional turbo field-echo MR images. In receiver operating characteristic (ROC) curve analysis, the sensitivity and accuracy of the sequences were compared in regard to the detection of all, small, and large HCCs. RESULTS: Imaging performance was different with gadolinium- and ferumoxides-enhanced images in the detection of small and large HCCs. For detection of small HCCs, the sensitivity and accuracy with unenhanced and gadolinium-enhanced imaging (gadolinium set) were significantly (P =.017) superior to those with unenhanced and ferumoxides-enhanced imaging (ferumoxides set). The area under the composite ROC curves, or A(z), for the gadolinium set and the ferumoxides set was 0.97 and 0.81, respectively. For large HCC, the ferumoxides set was superior compared with the gadolinium set, but this difference was not statistically significant. Analysis of all HCCs demonstrated no significant differences for gadolinium- and ferumoxides-enhanced imaging. CONCLUSION: For the detection of early HCC, gadolinium-enhanced MR imaging is preferred to ferumoxides-enhanced MR imaging because the former demonstrated significantly greater accuracy in the detection of small HCCs.  相似文献   

10.
MR gradient systems with higher slew rates and gradient amplitude enable certain forms of imaging that are not practical with older gradient systems. These newer pulse sequences include single shot half-Fourier T2-weighted images and echo planar imaging. More important in MR imaging of the pelvis, these gradient systems benefit more conventional imaging methods such as gadolinium-enhanced 3D MR angiography, dynamic gradient echo contrast-enhanced images, and T2-weighted fast spin echo images, by shortening echo times. For most MR imaging of the pelvis, spatial resolution is paramount, and therefore sequences such as half-Fourier acquisition Turbo spin echo (HASTE) and 3D gadolinium-enhanced dynamic imaging play a less important role than in the upper abdomen. The potential of these techniques for diffusion or perfusion studies in the pelvis has not been explored.  相似文献   

11.
PURPOSETo compare six MR sequences (plain and gadolinium-enhanced fat suppressed T1-weighted spin echo, T2-weighted standard spin echo, fat-suppressed and non-fat-suppressed T2-weighted fast spin echo, and inversion-recovery T2-weighted fast spin echo) in their ability to detect, delineate, and characterize lesions of the parotid gland.METHODSFifty-eight parotid gland lesions imaged on 47 examinations were retrospectively evaluated by three blinded observers. Several outcome-related variables were compared by the above six sequences: imaging time, image quality, anatomic sharpness of parotid space, subjective lesion conspicuity, detected abnormality volume, number of individual lesions or discrete lobulations, conspicuity of invasion into adjacent boundaries and structures, and overall diagnostic value.RESULTSDifferences in the above outcome variables between sequences did not correlate with MR scanner software upgrade level, coil type, or lesion-dependent characteristics. Fat-suppressed fast spin-echo T2-weighted and inversion-recovery fast spin-echo T2-weighted sequences resulted in significantly higher scores for lesion conspicuity, detected abnormality volume, and overall diagnostic value. T1-weighted images resulted in the next highest scores, whereas gadolinium-enhanced T1-weighted and standard spin-echo T2-weighted sequences performed poorly for most parotid lesions.CONCLUSIONMR imaging of the parotid gland should include fat-suppressed, long-repetition-time, fast spin-echo T2-weighted, and T1-weighted sequences. Gadolinium-enhanced images need not be obtained routinely.  相似文献   

12.

Objective

To identify the optimal pulse sequence for ferumoxides-enhanced magnetic resonance (MR) imaging in the detection of hepatocelluar carcinomas (HCCs).

Materials and Methods

Sixteen patients with 25 HCCs underwent MR imaging following intravenous infusion of ferumoxides. All MR studies were performed on a 1.5-T MR system, using a phased-array coil. Ferumoxides (Feridex IV) at a dose of 15 µmol/Kg was slowly infused intravenously, and axial images of seven sequences were obtained 30 minutes after the end of infusion. The MR protocol included fast spin-echo (FSE) with two echo times (TR3333 8571/TE18 and 90-117), singleshot FSE (SSFSE) with two echo times (TR∞/TE39 and 98), T2*-weighted gradient-recalled acquisition in the steady state (GRASS) (TR216/TE20), T2*-weighted fast multiplanar GRASS (FMPGR) (TR130/TE8.4-9.5), and T2*-weighted fast multiplanar spoiled GRASS (FMPSPGR) (TR130/TE8.4-9.5). Contrast-to-noise ratios (CNRs) of HCCs determined during the imaging sequences formed the basis of quantitative analysis, and images were qualitatively assessed in terms of lesion conspicuity and image artifacts. The diagnostic accuracy of all sequences was assessed using receiver operating characteristic (ROC) analysis.

Results

Quantitative analysis revealed that the CNRs of T2*-weighted FMPGR and T2*-weighted FMPSPGR were significantly higher than those of the other sequences, while qualitative analysis showed that image artifacts were prominent at T2*-weighted GRASS imaging. Lesion conspicuity was statistically significantly less clear at SSFSE imaging. In term of lesion detection, T2*-weighted FMPGR, T2*-weighted FMPSPGR, and proton density FSE imaging were statistically superior to the others.

Conclusion

T2*-weighted FMPGR, T2*-weighted FMPSPGR, and proton density FSE appear to be the optimal pulse sequences for ferumoxides-enhanced MR imaging in the detection of HCCs.  相似文献   

13.
The objective of this study was to compare the accuracy of T2-weighted fast-spin-echo (FSE) and intermediate-weighted spin-echo (SE) MR imaging in the detection of meniscal tears. Seventy-six patients (152 menisci) who had arthroscopic surgery after MR imaging of the knee were studied. MR imaging included intermediate-weighted SE and T2-weighted FSE sequences. The use of intermediate-weighted conventional SE images, T2-weighted FSE images, and a combination of both sequences were evaluated in the detection of meniscal tears. T2-weighted FSE imaging was slightly less accurate than intermediate-weighted SE imaging in the diagnosis of meniscal tears. Interpretation of the menisci using both intermediate-weighted SE and T2-weighted FSE imaging did not improve the accuracy over intermediate-weighted imaging evaluated in isolation.  相似文献   

14.
The purpose of this study was to compare short inversion time inversion recovery (STIR) fast spin-echo (FSE), and fat-saturated T2-weighted FSE sequences in terms of uniformity of fat suppression and lesion conspicuity for magnetic resonance (MR) imaging of the neck and thorax. STIR FSE and fat-saturated T2-weighted FSE images were scored for uniformity of fat suppression (n = 40) and lesion conspicuity (n = 35). Five-point rank score analyses were utilized by three experienced radiologists. The mean scores of STIR and fat-saturated FSE techniques for uniformity of fat suppression were 4.3 and 2.3, respectively (P < 0.0001). The mean scores of STIR and fat-saturated FSE techniques for lesion conspicuity were 4.2 and 3.5, respectively (P < 0.0001). Insufficient fat suppression was prominent in the mandible, supraclavicular region, anterior mediastinum, epipericardial fat, and subdiaphragmatic fat. In addition, fat-saturated T2-weighted FSE showed inadvertent water suppression in 25%. The STIR FSE technique was superior to the fat-saturated FSE technique for cervical and thoracic MR imaging.  相似文献   

15.
The purpose of this study was to evaluate the usefulness of multishot echo-planar imaging in detecting liver tumors in comparison with respiratory triggered T2-weighted fast-spin-echo (FSE) imaging. Thirty-two patients with 70 focal liver lesions were imaged using a 1.5-T high speed MR imager. Eight-shot echo-planar images covering the whole liver were acquired during a single breath-hold period. FSE images were acquired with respiratory triggering in approximately 4 minutes. Lesion detectability and image quality of the two pulse sequences were analyzed qualitatively. Quantitative analysis was performed by means of signal-to-noise and tumor-liver contrast-to-noise analysis. Lesion detectability was comparable in both solid (86.3% vs 90.2%: .3 < P < .5) and nonsolid lesions (89.5% vs 100%: .3 < P < .5) between echo-planar and FSE images. Echo-planar imaging provided significantly reduced image artifact, better lesion conspicuity, and anatomic detail compared with FSE imaging. The signal-to-noise and contrast-to-noise ratios of echo-planar images were significantly higher than those of FSE images. Breath-hold eight-shot echo-planar imaging can be an alternative to T2-weighted FSE imaging because it can provide comparable image quality in a substantially decreased acquisition time.  相似文献   

16.
OBJECTIVE: To estimate the accuracy, sensitivity, and specificity of 3 ferucarbotran-enhanced magnetic resonance (MR) imaging sequences prospectively for the detection of nontumoral portal perfusion abnormalities. METHODS: Thirty-nine noncirrhotic patients with liver metastases underwent computed tomography during arterial portography (CTAP) and MR imaging comprising T1-weighted gradient recalled echo (GRE), T2-weighted fast spin echo (FSE), and T2*-weighted GRE sequences with and without ferucarbotran. Magnetic resonance images were reviewed by 4 blinded observers for rating based on the confidence scale. The accuracy, sensitivity, and specificity for each sequence were measured by receiver operating characteristic analysis. Contrast-to-noise ratio (CNR) and relative signal-to-noise ratio changes were statistically compared. RESULTS: Thirty-nine nontumoral perfusion defects were observed in 22 patients by CTAP. Receiver operating characteristic analysis showed the accuracy was higher for T2*-weighted GRE (0.884) than for T1-weighted GRE (0.572) and T2-weighted FSE (0.597). T2*-weighted imaging achieved the highest sensitivity (81.4%) and the lowest specificity (86.6%). Postenhanced T2*-weighted imaging achieved the highest CNR (19.3 +/- 9.2). CONCLUSIONS: T2*-weighted imaging was the most accurate and sensitive method for detecting portal perfusion abnormalities compared with T1- or T2-weighted imaging, whereas T1- or T2-weighted imaging is superior in specificity to T2*-weighted imaging during ferucarbotran-enhanced MR imaging.  相似文献   

17.
The purpose of our study was to compare observer performance in the detection of malignant hepatic tumors with ferumoxides-enhanced magnetic resonance (MR) images obtained with proton density-weighted spin-echo (SE), T2-weighted fast SE, T2*-weighted gradient-recalled-echo (GRE), and proton density-weighted echo-planar (EP) sequences. Ferumoxides-enhanced MR images obtained with the four sequences in 50 patients with 92 solid malignant and 64 nonsolid benign lesions were retrospectively analyzed. Image review was conducted on a segment-by-segment basis; a total of 397 liver segments was reviewed separately for solid and nonsolid lesions by three independent readers. Observer performance was evaluated with receiver operating characteristic analysis. Lesion-to-liver contrast-to-noise ratio was higher with SE and EP than with GRE and fast SE images for solid lesions (P < 0.05), and higher with fast SE and SE than with GRE images for nonsolid lesions (P < 0.01). Proton density-weighted SE and T2-weighted fast-SE images were superior to T2*-weighted GRE and proton density-weighted EP images for detection of malignant hepatic tumors. T2-weighted fast SE images were the best for detection of nonsolid lesions. T2-weighted fast SE images that were comparable to proton density-weighted SE images for solid tumor detection, that were the best for nonsolid lesion detection, and that had an acquisition time of one third to half of that of SE imaging may be able to replace SE images for ferumoxides-enhanced liver imaging.  相似文献   

18.
PURPOSE: To evaluate the diagnostic capability of breath-hold, multisection fluid-attenuated inversion-recovery (FLAIR) imaging using a half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence in combination with T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequences for small hepatic lesions found on CT in patients with malignancy. MATERIALS AND METHODS: This study included 48 patients with extrahepatic malignancy who underwent both CT and MR examinations. There were a total of 112 small hepatic lesions (73 cysts and 39 liver metastases, <2 cm in diameter) that showed low attenuation on enhanced CT. Three radiologists independently reviewed the CT and MR (FLAIR-HASTE and T2-weighted FSE) images and assigned a confidence level to their evaluation (cyst or metastasis) on a five-point scale. RESULTS: All three reviewers were significantly better able (P < 0.05) to differentiate small hepatic cyst from liver metastasis with combined FLAIR-HASTE and T2-weighted FSE images (Az values = 0.997-0.999) than with CT (0.917-0.932). The mean values of sensitivity, specificity, and accuracy were significantly higher (P < 0.001) for T2-weighted FSE with FLAIR-HASTE (96.6%, 96.8%, and 96.7%, respectively) than for CT (76.9%, 61.6%, and 67.3%, respectively). A confident diagnosis was rendered in 12 of 112 lesions (10.7%) on the basis of CT, and this rate increased to 83 of 112 (74.1%) on the basis of T2-weighted FSE and FLAIR-HASTE imaging. CONCLUSION: FLAIR-HASTE is considered to be an effective sequence for differentiating hepatic cysts from liver metastases without the use of a contrast agent. With FLAIR-HASTE one can confidently diagnose small hepatic lesions found on CT in patients with a malignancy.  相似文献   

19.
OBJECTIVE: The purpose of this study was to determine the accuracy of a multiphasic gadolinium-enhanced three-dimensional (3D) fast spoiled gradient-recalled echo sequence alone in the detection and characterization of focal liver lesions compared with a comprehensive liver evaluation using multiphasic gadolinium-enhanced 3D fast spoiled gradient-recalled echo, T1-weighted, and fat-suppressed fast spin-echo T2-weighted sequences. MATERIALS AND METHODS:A retrospective review of abdominal MR imaging examinations in 61 patients was performed. All MR examinations included unenhanced spin-echo T1-weighted, unenhanced fat-suppressed fast spin-echo T2-weighted, and multiphasic gadolinium-enhanced 3D fast spoiled gradient-recalled echo sequences obtained during successive breath-holds. The liver was evaluated for focal lesions first with the 3D spoiled gradient-recalled echo sequences and then, during a separate sitting, with the T1- and T2-weighted sequences. The usefulness of each sequence in the detection and characterization of lesions was recorded. The gold standard for lesion detection and characterization was all three imaging sequences reviewed together. RESULTS:A total of 114 focal liver lesions were identified, 54 of which were simple cysts. The 3D spoiled gradient-recalled echo sequence alone detected 92 (81%) of the 114 lesions, and the T1- and T2-weighted sequences detected 95 (83%) of the 114 lesions. Of the 60 lesions that were not simple cysts, the 3D spoiled gradient-recalled echo sequence alone detected 58 (97%), and T1- and T2-weighted sequences detected 51 (85%). In 24% of the patients with lesions, the T1- and T2-weighted sequences were found to be helpful for the characterization of lesions. CONCLUSION:A multiphasic contrast-enhanced 3D fast spoiled gradient-recalled echo sequence alone detects most of the clinically relevant focal liver lesions. Additional liver examination using both unenhanced T1- and T2-weighted sequences is helpful for lesion characterization but increases the detection rate only minimally.  相似文献   

20.
PURPOSE: To compare high-resolution T2-weighted images of the liver with and without integrated parallel acquisition techniques (iPAT) using either breath-hold sequences in combination with prospective acquisition motion correction (PACE) or respiratory triggering. MATERIALS AND METHODS: Ten volunteers and 10 patients underwent each four different high-resolution fast spin echo (FSE) T2-weighted sequences with 5 mm slice thickness and a full 320 matrix: a multi-breath-hold FSE sequence with and without iPAT and PACE and a respiratory-triggered FSE sequence with and without iPAT. Image quality was rated with a five-point scale by two independent readers. Signal intensity measurements were performed on a water phantom. RESULTS: The sequences with iPAT required a substantially shorter acquisition time without loss of image quality. Overall image quality was rated equal for all sequences by both readers. Image time for nine slices with iPAT was 13 seconds (19 seconds without iPAT) with multi-breath-hold and on average 4:00 minutes (7:02 minutes without iPAT) with respiratory triggering. Imaging with the PACE technique resulted in more correct positioning of the image stacks. CONCLUSION: T2-weighted fast imaging with iPAT is feasible and results in high-quality images within a short acquisition time. Overall image quality is not negatively affected by iPAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号