首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to validate the measurement of global and regional left ventricular cardiac function with ECG-gated fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) by comparison with the corresponding indices from X-ray left ventriculography (LVG). Twenty-six patients (23 men, 3 women, mean age 60.4 years) underwent LVG and ECG-gated (eight frames/cycle) FDG-PET within an interval of 10.2+/-6.8 days. A volumetric sampling approach was used to obtain both global (EF: ejection fraction) and regional [%WT: relative regional count increase from end-diastolic (ED) to end-systolic (ES) phase] functional parameters. The gated PET parameters were compared with the corresponding findings of LVG in seven myocardial segments. EF(gated PET) and EF(LVG) did not differ significantly (30%+/-10% vs 32%+/-10%, P=NS). The two EF values correlated significantly, showing no significant systematic measurement bias [EF(gated PET) = 2.61+0.86 x EF(LVG), R=0.84, P<0.0001]. Inter- and intra-observer reproducibility for EF were R=0.95, P<0.0001 and R=0.92, P<0.0001, respectively. Regional function was evaluated with LVG in 144 myocardial segments comprising 35 normokinetic, 70 hypokinetic and 39 a/dyskinetic segments. Visual analysis of LVG and gated PET correlated significantly (P<0.001), with an overall concordance ratio of 58% (83/144, kappa=0.35). Gated PET overestimated the regional function in 27% (39/144) and underestimated it in 15% (22/144). %WT showed significant differences between each pair of groups (a/dyskinesis, 13.2%+/-9.3%; hypokinesis, 17.1%+/-8.8%; normokinesis, 21.8%+/-10.9%). Inter- and intra-observer reproducibility was significant for %WT (R=0.77, P<0.0001 and R=0.79, P<0.0001, respectively). In conclusion, gated FDG PET permits assessment of global left ventricular cardiac function. In addition, assessment of regional function is feasible using the visual or the quantitative parameters.  相似文献   

2.
Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. METHODS: Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. RESULTS: LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. CONCLUSION: Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.  相似文献   

3.
The effect of filtering and zooming on 201TI-gated SPECT was evaluated in patients with major myocardial infarction. METHODS: Rest thallium (TI)-gated SPECT was performed with a 90 degrees dual-head camera, 4 h after injection of 185 MBq 201TI in 32 patients (mean age 61 +/- 11 y) with large myocardial infarction (33% +/- 17% defect on bull's eye). End diastolic volume (EDV), end systolic volume (ESV) and left ventricular ejection fraction (LVEF) were calculated using a commercially available semiautomatic validated software. First, images were reconstructed using a 2.5 zoom, a Butterworth filter (order = 5) and six Nyquist cutoff frequencies: 0.13 (B5.13), 0.15 (B5.15), 0.20 (B5.20), 0.25 (B5.25), 0.30 (B5.30) and 0.35 (B5.35). Second, images were reconstructed using a zoom of 1 and a Butterworth filter (order = 5) (cutoff frequency 0.20 [B5.20Z1]) (total = 32 x 7 = 224 reconstructions). LVEF was calculated in all patients using equilibrium radionuclide angiocardiography (ERNA). EDV, ESV and LVEF were measured with contrast left ventriculography (LVG). RESULTS: LVEF was 39% +/- 2% (mean +/- SEM) for ERNA and 40% +/- 13% for LVG (P = 0.51). Gated SPECT with B5.20Z2.5 simultaneously offered a mean LVEF value (39% +/- 2%) similar to ERNA (39% +/- 2%) and LVG (40% +/- 3%), optimal correlations with both ERNA (r = 0.83) and LVG (r = 0.70) and minimal differences with both ERNA (-0.9% +/- 7.5% [mean +/- SD]) and LVG (1.1% +/- 10.5%). As a function of filter and zoom choice, correlation coefficients between ERNA or LVG LVEF, and gated SPECT ranged from 0.26 to 0.88; and correlation coefficients between LVG and gated SPECT volumes ranged from 0.87 to 0.94. There was a significant effect of filtering and zooming on EDV, ESV and LVEF (P < 0.0001). Low cutoff frequency (B5.13) overestimated LVEF (P < 0.0001 versus ERNA and LVG). Gated SPECT with 2.5 zoom and high cutoff frequencies (B5.15, B5.20, B5.25, B5.30 and B5.35) overestimated EDV and ESV (P < 0.04) compared with LVG. This volume overestimation with TI-gated SPECT in patients with large myocardial infarction was correlated to the infarct size. A zoom of 1 underestimated EDV, ESV and LVEF compared with a 2.5 zoom (P < 0.02). CONCLUSION: Accurate LVEF measurement is possible with TI-gated SPECT in patients with major myocardial infarction. However, filtering and zooming greatly influence EDV, ESV and LVEF measurements, and TI-gated SPECT overestimates left ventricular volumes, particularly when the infarct size increases.  相似文献   

4.
BACKGROUND: Cardiac gating is not routinely used in cardiac positron emission tomography (PET). The aim of this study was to determine the feasibility of assessing regional wall motion, ejection fraction (EF), cardiac volumes, and mass with nitrogen-13 ammonia (N-13 ammonia) at the time of PET myocardial perfusion imaging. METHODS: We studied 12 healthy volunteers (mean age, 28 +/- 8 years) and 53 patients with documented coronary artery disease (CAD) (mean age, 59 +/- 11 years). All subjects received a single administration of approximately 600 MBq (16 mCi) of N-13 ammonia intravenously. A 6-minute dynamic scan was performed for quantitative assessment of myocardial perfusion at rest, followed by a separate, 13-minute static scan acquired in the gated mode (8 equal bins). Gated data was imported into the Emory Toolbox. Wall motion was evaluated by dividing the myocardium into 9 anatomic regions graded semiquantitatively. RESULTS: Healthy volunteers had a normal EF (61 +/- 6), end systolic volume (ESV) (37 +/- 15 mL), end diastolic volume (EDV) (89 +/- 25 mL), and cardiac mass (116 +/- 18 g). In contrast, patients with CAD showed reduced EF (32 +/- 13%) and increased ESV (129 +/- 56 mL), EDV (188 +/- 68 mL), and cardiac mass (173 +/- 45 g) (P < 0.001 for each). In patients with CAD, EF measured by gated PET correlated significantly to independent measurements of EF (P < 0.001). CONCLUSIONS: Gating of cardiac perfusion images obtained after administration of N-13 ammonia is feasible and appears to be an accurate means of evaluating regional and global cardiac function. Gating can provide important additional diagnostic and prognostic information.  相似文献   

5.
The purpose of this study was to validate the measurement of global and regional left ventricular cardiac function with ECG-gated fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) by comparison with the corresponding indices from X-ray left ventriculography (LVG). Twenty-six patients (23 men, 3 women, mean age 60.4 years) underwent LVG and ECG-gated (eight frames/cycle) FDG-PET within an interval of 10.2Lj.8 days. A volumetric sampling approach was used to obtain both global (EF: ejection fraction) and regional [%WT: relative regional count increase from end-diastolic (ED) to end-systolic (ES) phase] functional parameters. The gated PET parameters were compared with the corresponding findings of LVG in seven myocardial segments. EF(gated PET) and EF(LVG) did not differ significantly (30%ᆞ% vs 32%ᆞ%, P=NS). The two EF values correlated significantly, showing no significant systematic measurement bias [EF(gated PET) = 2.61+0.86 2 EF(LVG), R=0.84, P<0.0001]. Inter- and intra-observer reproducibility for EF were R=0.95, P<0.0001 and R=0.92, P<0.0001, respectively. Regional function was evaluated with LVG in 144 myocardial segments comprising 35 normokinetic, 70 hypokinetic and 39 a/dyskinetic segments. Visual analysis of LVG and gated PET correlated significantly (P<0.001), with an overall concordance ratio of 58% (83/144, kappa=0.35). Gated PET overestimated the regional function in 27% (39/144) and underestimated it in 15% (22/144). %WT showed significant differences between each pair of groups (a/dyskinesis, 13.2%Nj.3%; hypokinesis, 17.1%NJ.8%; normokinesis, 21.8%ᆞ.9%). Inter- and intra-observer reproducibility was significant for %WT (R=0.77, P<0.0001 and R=0.79, P<0.0001, respectively). In conclusion, gated FDG PET permits assessment of global left ventricular cardiac function. In addition, assessment of regional function is feasible using the visual or the quantitative parameters.  相似文献   

6.
BACKGROUND: Positron emission tomography (PET) with inhaled oxygen 15-labeled carbon monoxide (CO) is used as a marker of myocardial blood pool. Only a limited number of studies with small numbers of patients have reported on the assessment of left ventricular (LV) volumes by use of O-15-labeled CO. The aim of this study was to compare LV volumes and function as measured by routinely acquired blood pool images by use of gated O-15-labeled CO PET with the reference technique, cardiovascular magnetic resonance imaging (MRI). METHODS AND RESULTS: Thirty-four subjects with a varying degree of LV function were studied. LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), and LV ejection fraction (LVEF) were determined by both MRI and gated PET by use of O-15-labeled CO. Volumes were comparable with respect to LVEDV (196 +/- 83 and 192 +/- 91 mL, respectively; P = not significant). LVESV, however, was slightly overestimated by PET (119 +/- 85 and 136 +/- 94 mL, respectively; P < .05), resulting in a significant underestimation of LVEF (44% +/- 19% and 35% +/- 18%, respectively; P < .05). Observed correlations for LVEDV, LVESV, and LVEF were 0.90, 0.96, and 0.86, respectively (all P < .01). CONCLUSIONS: Gated O-15-labeled CO PET measurements of LVEDV, LVESV, and LVEF show good correlation with MRI over a wide range of LV volumes during routinely acquired blood pool images. LVEF, however, may be underestimated compared with MRI.  相似文献   

7.
PET absolute myocardial blood flow (MBF) with H(2)15O and 13NH3 are widely used in clinical and research settings. However, their reproducibility with a 16-myocardial segment model has not been examined in chronic coronary artery disease (CAD). We examined the short-term reproducibility of PET H(2)15O MBF and PET 13NH3 MBF in an animal model of chronic CAD. METHODS: Twelve swine (mean weight +/- SD, 38 +/- 5 kg) underwent percutaneous placement of a copper stent in the mid circumflex coronary artery, resulting in an intense inflammatory fibrotic reaction with luminal stenosis at 4 wk. Each animal underwent repeated resting MBF measurements by PET H(2)15O and PET 13NH3. Attenuation-corrected images were analyzed using commercial software to yield absolute MBF (mL/min/g) in 16 myocardial segments. MBF was also normalized to the rate.pressure product (RPP). RESULTS: By Bland-Altman reproducibility plots, the mean difference was 0.01 +/- 0.18 mL/min/g and 0.01 +/- 0.11 mL/min/g, with confidence limits of +/-0.36 and +/-0.22 mL/min/g for uncorrected regional PET H(2)15O MBF and for uncorrected regional PET 13NH3 MBF, respectively. The repeatability coefficient ranged from 0.09 to 0.43 mL/min/g for H(2)15O and from 0.09 to 0.18 mL/min/g for 13NH3 regional MBF. RPP correction did not improve reproducibility for either PET H(2)15O or PET 13NH3 MBF. The mean difference in PET H(2)15O MBF was 0.03 +/- 0.14 mL/min/g and 0.02 +/- 0.19 mL/min/g for infarcted and remote regions, respectively, and in PET 13NH3 MBF was 0.03 +/- 0.11 mL/min/g and 0.00 +/- 0.09 mL/min/g for infarcted and remote regions, respectively. CONCLUSION: PET H(2)15O and PET 13NH3 resting MBF showed excellent reproducibility in a closed-chest animal model of chronic CAD. Resting PET 13NH3 MBF was more reproducible than resting PET H(2)15O MBF. A high level of reproducibility was maintained in areas of lower flow with infarction for both isotopes.  相似文献   

8.
OBJECTIVE: We hypothesize that ECG-gated positron emission tomography (PET) using Fluorodeoxyglucose F-18 (FDG) alone can determine myocardial viability by identifying dysfunctional myocardium with preserved glucose metabolism. We compared the contraction-metabolism pattern of gated FDG PET with the perfusion-metabolism pattern of conventional PET using N-13 ammonia (NH(3)) as a perfusion agent and FDG as a glucose metabolism agent in 21 consecutive patients with chronic coronary artery disease with left ventricular dysfunction (mean ejection fraction 23.6 +/- 7.7%).METHODS: The left ventricle was divided into 17 segments. Uptakes of NH(3) and FDG were scored from absent (0) to normal (4), and wall motion was scored from dyskinesia (-1) to normal (3). Scores were determined by the visual interpretation of the majority of 3 blinded expert readers. Viable myocardium was defined by normal or mildly reduced uptakes of both NH(3) and FDG, perfusion-metabolism mismatch on NH(3)-FDG PET, or normal to mildly reduced uptake of FDG with regional dysfunction on gated FDG PET.RESULTS: Gated FDG PET identified 184 segments as viable, all of which were determined as viable by NH(3)-FDG PET. Among 125 segments identified as nonviable by NH(3)-FDG PET, 76 segments were determined as nonviable by NH(3)-FDG PET. The results provided a positive and negative predictive value of gated FDG PET for the determination of myocardial viability to be 100% and 60.8%, respectively.CONCLUSIONS: Gated FDG PET has a high positive predictive value (100%) for the identification of viable myocardium.  相似文献   

9.
BACKGROUND: Left ventricular ejection fraction (EF) is a major determinant of survival in patients with coronary artery disease (CAD). Comparative accuracy of numerous modalities in calculating EF is not well investigated. METHOD: We compared EF as calculated by rest and post-stress Cedars automated quantitative gated SPECT (AQGS), rest and post-stress semi-automatically processed gated SPECT (MQGS), echocardiography and contrast ventriculography (LVG) to those determined by rest and post-stress cavity-to-myocardium ratio (CMR) in 109 patients. Gated SPECT was performed based on a 2-day protocol using Tc-MIBI. RESULTS: Mean EF in LVG, echo, post-stress CMR, rest CMR, post-stress AQGS, rest AQGS, post-stress MQGS and rest MQGS were 41.8%+/-12.1, 44.8%+/-11.8, 38.1%+/-10.7, 35.7%+/-12.1, 44.5%+/-15.1, 46.9%+/-14.7, 40.1%+/-14.3 and 43.5%+/-14.3 respectively. Although significant differences were observed between some of these methods, good and excellent linear correlations were present among values (all Pearson correlations >0.63). Considering LVG as the 'gold standard', we defined two groups: EF <35% (class 1) and >35% (class 2). Discriminant analysis showed that SPECT has the ability to predict patients' classes. In 4/18 of patients with normal SPECT (on both visual and quantitative analyses, SSS <4), EF on QGS showed a significant decrease on post-stress compared with rest. CONCLUSION: There is a good correlation in calculating EF by LVG, QGS and echocardiography, regardless of EF value. Whenever QGS is impossible, CMR is a reliable indirect indicator of EF. Gating of both phases (and when impossible, CMR of both phases) has an additional value in diagnosis of CAD.  相似文献   

10.
Gated myocardial perfusion SPECT has been used to calculate ejection fraction (EF) and end-diastolic volume (EDV) and has correlated well with conventional methods. However, the comparative accuracy of and correlations across various types of gated SPECT software are not well understood. METHODS: Mathematic phantoms of cylindric-hemispheric hybrid models, ranging in volume from 34 to 266 mL, were generated. The clinical cases consisted of 30 patients who participated in a radionuclide angiography and gated blood-pool (GBP) study in addition to undergoing (99m)Tc-sestamibi gated SPECT. Four kinds of software, Quantitative Gated SPECT (QGS), the Emory Cardiac Toolbox (ECT), 4D-MSPECT, and Perfusion and Functional Analysis for Gated SPECT (pFAST) were used to compute EF and EDV, and the results were analyzed by multiple comparisons tests. Patients were classified into 4 groups (i.e., no defect, small defect, large defect, and small heart) so that factors affecting variation could be analyzed. RESULTS: In mathematic models > or = 74 mL, volume error was within +/-15%, whereas for a small volume (34 mL), QGS and 4D-MSPECT underestimated the volume and pFAST overestimated it. The respective intra- and interobserver reproducibility of the results was good for QGS (r = 0.99 and 1.00), ECT (r = 0.98 and 0.98), and 4D-MSPECT (r = 0.98 and 0.98) and fair for pFAST (r = 0.88 and 0.85). The correlation coefficient for EF between gated SPECT and the GBP study was 0.82, 0.78, 0.69, and 0.84 for QGS, ECT, 4D-MSPECT, and pFAST, respectively. The correlation coefficient for EDV between gated SPECT and the GBP study was 0.88, 0.89, 0.85, and 0.90, respectively. Although good correlation was observed among the 4 software packages, QGS, ECT, and 4D-MSPECT overestimated EF in patients with small hearts, and pFAST overestimated the true volume in patients with large perfusion defects. Correlation coefficients among the 4 kinds of software were 0.80-0.95 for EF and 0.89-0.98 for EDV. CONCLUSION: All 4 software programs showed good correlation between EF or EDV and the GBP study. Good correlation was observed also between each pair of quantification methods. However, because each method has unique characteristics that depend on its specific algorithm and thus behaves differently in the various patient subgroups, the methods should not be used interchangeably.  相似文献   

11.
The aim of this study was to validate the estimation of left ventricular end-diastolic and end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) as well as wall motion analysis from gated fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in patients with severe coronary artery disease (CAD) using software originally designed for gated single-photon emission tomography (SPET). Thirty patients with severe CAD referred for myocardial viability diagnostics were investigated using a standard FDG PET protocol enhanced with gated acquisition (8 gates per cardiac cycle). EDV, ESV and LVEF were calculated using standard software designed for gated SPET (QGS). Wall motion was analysed using a visual four-point wall motion score on a 17-segment model. As a reference, all patients were also examined within a median of 3 days with cardiovascular cine magnetic resonance imaging (cMRI) (20 gates per cardiac cycle). Furthermore, all gated FDG PET data sets were reoriented in a second run with deliberately misaligned axes to test the quantification procedure for robustness. Correlation between the results of gated FDG PET and cMRI was very high for EDV and ESV ( R=0.96 and R=0.97) and for LVEF ( R=0.95). With gated FDG PET, there was a non-significant tendency to underestimate EDV (174+/-61 ml vs 179+/-59 ml, P=0.21) and to overestimate ESV (124+/-58 ml vs 122+/-60 ml, P=0.65), resulting in underestimated LVEF values (31.5%+/-9.4% vs 34.2%+/-12.4%, P<0.003). The results of reorientations 1 and 2 showed very high correlations (for all R>/=0.99). Segmental wall motion analysis revealed good agreement between gated FDG PET data and cMRI (kappa =0.62+/-0.03). In conclusion, despite small systematic differences which contributed mainly to the lower temporal resolution of gated FDG PET, agreement between gated FDG PET and cMRI was good across a wide range of volumes and LVEF values as well as for wall motion analysis. Therefore, gated FDG PET provides clinically relevant information on function and volumes, using the commercially available software package QGS.  相似文献   

12.
All previous validation studies of quantitative gated single-photon emission tomography (QGS) have examined relatively few patients, and the accuracy of QGS thus remains uncertain. We performed a meta-analysis of data from 301 participants in ten studies that compared QGS using technetium-99m-labelled tracers with contrast left ventriculography (LVG), and from 112 participants in six studies that compared QGS with magnetic resonance imaging (MRI). Linear regression and Bland-Altman analyses were used to evaluate pooled data from individuals across the studies. The correlation between QGS and LVG for end-diastolic volume (EDV) (r=0.81, SEE=27 ml), end-systolic volume (ESV) (r=0.83, SEE=18 ml) and ejection fraction (EF) (r=0.79, SEE=8.3%) was good, as was that between QGS and MRI for EDV (r=0.87, SEE=34 ml), ESV (r=0.89, SEE=27 ml) and EF (r=0.88, SEE=7.2%). However, Bland-Altman plots indicated that LVG minus QGS differences for EDV generated a systematic and random error of 32+/-58 ml (mean+/-2SD), and that MRI minus QGS generated an error of 13+/-73 ml. In the subgroup of patients in whom ECG gating was set at eight intervals, QGS significantly underestimated EF by 7.6%+/-17.4% (mean+/-2SD) compared with LVG and by 6.3%+/-14.6% compared with MRI; no such underestimation was observed in the subgroup in whom ECG gating was set at 16 intervals. We conclude that in patients with ECG gating set at eight intervals, QGS systematically underestimates LV volumes and EF compared with both LVG and MRI. Since QGS also shows considerable variations around the systematic deviations, there remains uncertainty over whether an individual value determined with QGS approximates the true LV volumes and EF.  相似文献   

13.
The purpose of this study was to evaluate myocardial electrocardiography (ECG)-gated 13N-ammonia (13N-NH3) PET for the assessment of cardiac end-diastolic volume (EDV), cardiac end-systolic volume (ESV), left ventricular (LV) myocardial mass (LVMM), and LV ejection fraction (LVEF) with gated 18F-FDG PET as a reference method. METHODS: ECG-gated 13N-NH3 and 18F-FDG scans were performed for 27 patients (23 men and 4 women; mean+/-SD age, 55+/-15 y) for the evaluation of myocardial perfusion and viability. For both 13N-NH3 and 18F-FDG studies, a model-based image analysis tool was used to estimate endocardial and epicardial borders of the left ventricle on a set of short-axis images and to calculate values for EDV, ESV, LVEF, and LVMM. RESULTS: The LV volumes determined by 13N-NH3 and 18F-FDG were 108+/-60 mL and 106+/-63 mL for ESV and 175+/-71 mL and 169+/-73 mL for EDV, respectively. The LVEFs determined by 13N-NH3 and 18F-FDG were 42%+/-13% and 41%+/-13%, respectively. The LVMMs determined by 13N-NH3 and 18F-FDG were 179+/-40 g and 183+/-43 g, respectively. All P values were not significant, as determined by paired t tests. A significant correlation was observed between 13N-NH3 imaging and 18F-FDG imaging for the calculation of ESV (r=0.97, SEE=14.1, P<0.0001), EDV (r=0.98, SEE=15.4, P<0.0001), LVEF (r=0.9, SEE=5.6, P<0.0001), and LVMM (r=0.93, SEE=15.5, P<0.0001). CONCLUSION: Model-based analysis of ECG-gated 13N-NH3 PET images is accurate in determining LV volumes, LVMM, and LVEF. Therefore, ECG-gated 13N-NH3 can be used for the simultaneous assessment of myocardial perfusion, LV geometry, and contractile function.  相似文献   

14.
Metaiodobenzylguanidine (MIBG) is a norepinephrine analog that can be used to study cardiac sympathetic innervation. Most of the kinetic data on MIBG, however, have been obtained in vitro from adrenal chromaffin cells. To elucidate MIBG cardiac kinetics in vivo, we measured the first-pass extraction fraction (EF) of MIBG in pig heart and lungs and determined the relationship between the cardiac EF and myocardial blood flow (MBF) before and after dipyridamole, cocaine and imipramine. The first-pass lung EF was 24% +/- 0.80% (mean +/- s.e.). The baseline cardiac EF of MIBG was 79% +/- 1.6%. With dipyridamole, MBF increase significantly and the EF fell (82% +/- 2.5% to 71% +/- 3.5% baseline compared to 0.03 mg/kg/min dipyridamole, p less than 0.001), indicating that the cardiac EF of MIBG is dependent on MBF. Cocaine infusion had no effect on MBF or EF. Imipramine caused a significant increase in the EF (72% +/- 3.5% versus 77% +/- 2.5%, baseline versus imipramine p = 0.032) without a change in MBF. In adrenal chromaffin cells, cocaine and imipramine decrease MIBG uptake, suggesting that adrenal chromaffin cells may be an inappropriate model for studying MIBG kinetics in cardiac sympathetic neurons.  相似文献   

15.
The aim of this study was to validate Quantitative Gated SPECT (QGS) and 4D-MSPECT for assessing left ventricular end-diastolic and systolic volumes (EDV and ESV, respectively) and left ventricular ejection fraction (LVEF) from gated (18)F-FDG PET. METHODS: Forty-four patients with severe coronary artery disease were examined with gated (18)F-FDG PET (8 gates per cardiac cycle). EDV, ESV, and LVEF were calculated from gated (18)F-FDG PET using QGS and 4D-MSPECT. Within 2 d (median), cardiovascular cine MRI (cMRI) (20 gates per cardiac cycle) was done as a reference. RESULTS: QGS failed to accurately detect myocardial borders in 1 patient; 4D-MSPECT, in 2 patients. For the remaining 42 patients, correlation between the results of gated (18)F-FDG PET and cMRI was high for EDV (R = 0.94 for QGS and 0.94 for 4D-MSPECT), ESV (R = 0.95 for QGS and 0.95 for 4D-MSPECT), and LVEF (R = 0.94 for QGS and 0.90 for 4D-MSPECT). QGS significantly (P < 0.0001) underestimated LVEF, whereas no other parameter differed significantly between gated (18)F-FDG PET and cMRI for either algorithm. CONCLUSION: Despite small systematic differences that, among other aspects, limit interchangeability, agreement between gated (18)F-FDG PET and cMRI is good across a wide range of clinically relevant volumes and LVEF values assessed by QGS and 4D-MSPECT.  相似文献   

16.
BACKGROUND: Measurement of myocardial blood flow (MBF) by dynamic nitrogen 13 ammonia (NH(3)) positron emission tomography (PET) uses tracer kinetic modeling to analyze time-activity curves. We compared 2 commonly used models with 2 compartments (2C) and 3 compartments (3C) for quantification of MBF and coronary flow reserve (CFR). METHODS AND RESULTS: Seventy-seven patients underwent NH(3) PET at rest and during hyperemia. Time-activity curves for blood pool and myocardial segments were obtained from short-axis images of dynamic sequences. Model fitting of the 2C and 3C models was performed to estimate regional MBF. MBF values calculated by 2C and 3C models were 0.98 +/- 0.31 mL.min(-1).g(-1) and 1.11 +/- 0.37 mL.min(-1).g(-1), respectively, at rest (P < .0001) and 2.79 +/- 1.18 mL.min(-1).g(-1) and 2.46 +/- 1.02 mL.min(-1).g(-1), respectively, during hyperemia (P < .01), resulting in a CFR of 3.02 +/- 1.31 and 2.39 +/- 1.15 (P < .0001), respectively. Significant correlation was observed between the 2 models for calculation of resting MBF (r = 0.78), hyperemic MBF (r = 0.68), and CFR (r = 0.68). CONCLUSION: Measurements of MBF and CFR by 2C and 3C models are significantly related. However, quantification of MBF and CFR significantly differs between the methods. This difference needs to be considered when normal values are established or when measurements obtained with different methods need to be compared.  相似文献   

17.
The goal of this study was to validate the accuracy of the Emory Cardiac Tool Box (ECTB) in assessing left ventricular end-diastolic or end-systolic volume (EDV, ESV) and ejection fraction (LVEF) from gated (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) SPECT using cardiac MRI (cMRI) as a reference. Furthermore, software-specific characteristics of ECTB were analyzed in comparison with 4D-MSPECT and Quantitative Gated SPECT (QGS) results (all relative to cMRI). METHODS: Seventy patients with suspected or known coronary artery disease were examined using gated (99m)Tc-MIBI SPECT (8 gates/cardiac cycle) 60 min after tracer injection at rest. EDV, ESV, and LVEF were calculated from gated (99m)Tc-MIBI SPECT using ECTB, 4D-MSPECT, and QGS. Directly before or after gated SPECT, cMRI (20 gates/cardiac cycle) was performed as a reference. EDV, ESV, and LVEF were calculated using Simpson's rule. RESULTS: Correlation between results of gated (99m)Tc-MIBI SPECT and cMRI was high for EDV (R = 0.90 [ECTB], R = 0.88 [4D-MSPECT], R = 0.92 [QGS]), ESV (R = 0.94 [ECTB], R = 0.96 [4D-MSPECT], R = 0.96 [QGS]), and LVEF (R = 0.85 [ECTB], R = 0.87 [4D-MSPECT], R = 0.89 [QGS]). EDV (ECTB) did not differ significantly from cMRI, whereas 4D-MSPECT and QGS underestimated EDV significantly compared with cMRI (mean +/- SD: 131 +/- 43 mL [ECTB], 127 +/- 42 mL [4D-MSPECT], 120 +/- 38 mL [QGS], 137 +/- 36 mL [cMRI]). For ESV, only ECTB yielded values that were significantly lower than cMRI. For LVEF, ECTB and 4D-MSPECT values did not differ significantly from cMRI, whereas QGS values were significantly lower than cMRI (mean +/- SD: 62.7% +/- 13.7% [ECTB], 59.0% +/- 12.7% [4DM-SPECT], 53.2% +/- 11.5% [QGS], 60.6% +/- 13.9% [cMRI]). CONCLUSION: EDV, ESV, and LVEF as determined by ECTB, 4D-MSPECT, and QGS from gated (99m)Tc-MIBI SPECT agree over a wide range of clinically relevant values with cMRI. Nevertheless, any algorithm-inherent over- or underestimation of volumes and LVEF should be accounted for and an interchangeable use of different software packages should be avoided.  相似文献   

18.
18F-FDG PET can identify areas of myocardial viability and necrosis and provide useful information on the effectiveness of experimental techniques designed to improve contractile function and myocardial vascularization in small animals. The left ventricular volume (LVV) and left ventricular ejection fraction (LVEF) in normal and diseased rats were measured in vivo using the high-resolution avalanche photodiode (APD) small-animal PET scanner of the Université de Sherbrooke. The measurements obtained by PET were compared with those obtained by high-resolution echocardiography and with known values obtained from a small, variable-volume cardiac phantom. METHODS: List-mode gated (18)F-FDG PET studies were performed using the APD PET scanner on 30 rats: 11 healthy, 4 under septic shock, and 15 with heart failure induced by ligature of the left coronary artery. PET images were resized to match human-scale pixels and analyzed using a standard clinical cardiac software program. The LVV and LVEF from the same animals were also evaluated by echocardiography. RESULTS: Agreement was excellent between the endocardial volumes determined by PET and the actual volumes of the cardiac phantom (r(2) = 0.96). Agreement between PET and echocardiography for LVV ranged from good in healthy rats (r(2) = 0.89) to fair in diseased rats (r(2) = 0.49). Agreement was fair between LVEF values measured by the 2 methods (r(2) = 0.56). Normal rats had an average LVEF of 83.2% +/- 8.0% using PET and 81.6% +/- 6.0% using echocardiography. In rats with heart failure, LVEF was 54.6% +/- 15.9% using PET and 54.2% +/- 13.3% using echocardiography. CONCLUSION: Both PET and echocardiography clearly differentiated normal rats from rats with heart failure. Echocardiography is fast and convenient, whereas list-mode PET is also able to assess defect size, myocardial viability, and metabolism.  相似文献   

19.
We compared the left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) as calculated by Cedars automated quantitative gated SPECT (QGS) to those determined by first-pass radionuclide angiography (FPRNA) and contrast left ventriculography (LVG) in a group of 21 patients (mean age 61.4 +/- 9.2 y). METHODS: A total of 740 MBq 99mTc-tetrofosmin was administered rapidly into the right cubital vein at rest, and FPRNA was performed using a multicrystal gamma camera. One hour after injection, QGS was performed with a temporal resolution of 10 frames per R-R interval. LVG was performed within 2 wk. RESULTS: The EDV, ESV and LVEF calculated by QGS were highly reproducible (intraobserver, r = 0.99, r = 0.99 and r = 0.99, respectively; interobserver, r = 0.99, r = 0.99 and r = 0.99, respectively; P < 0.01) and were more consistent than those determined by FPRNA (intraobserver, r = 0.97, r = 0.95 and r = 0.93, respectively; interobserver, r = 0.86, r = 0.96 and r = 0.91, respectively; P < 0.01). There was a good correlation between EDV, ESV and LVEF by FPRNA and those by LVG (r = 0.61, r = 0.72 and r = 0.91, respectively; P < 0.01), and there was an excellent correlation between QGS and LVG (r = 0.73, r = 0.83 and r = 0.87, respectively; P < 0.01). The mean EDV by QGS (100 +/- 11.3 mL) was significantly lower than by FPRNA (132 +/- 16.8 mL) or LVG (130 +/- 8.1 mL), and the mean ESV by QGS (53.8 +/- 9.3 mL) was lower than by FPRNA (73.0 +/- 13.3 mL). Ejection fraction values were highest by LVG (57.1% +/- 3.2%), then QGS (51.8% +/- 3.0%) and FPRNA (48.9% +/- 2.4%). CONCLUSION: QGS gave more reproducible results than FPRNA. LV volumes and LVEF calculated by QGS correlated well to those by LVG.  相似文献   

20.
The aim of this study was to determine the feasibility of assessing left ventricular systolic ejection and diastolic filling by the edge detection method with ECG-gated single-photon emission tomography (G-SPET) data. Fifty-two patients who had undergone both G-SPET and gated equilibrium blood pool scintigraphy (GBP) within an interval of 2 weeks were enrolled. For G-SPET, 740 MBq of technetium-99m methoxyisobutylisonitrile (MIBI) was injected at rest, and myocardial SPET was performed 60 min later using 360 degrees acquisition and 12 frames per cardiac cycle. In each frame, left ventricular volume was determined with automatic edge detection using a quantitative gated SPET program, and the time-volume curve was fitted by Fourier transform of the first to fourth harmonics. Ejection fraction (EF, %), peak ejection rate (PER, /s), peak filling rate (PFR, /s) and mean filling rate during the first third of diastolic time (1/3FRm, /s) were calculated from the fitted curve. These parameters were also calculated by means of GBP performed with 24 frames per cardiac cycle. Correlation coefficients in respect of EF, PER, PFR and 1/3FRm between G-SPET and GBP were 0.90 (P<0.001), 0.88 (P<0.001), 0.80 (P<0.001) and 0.82 (P<0.001), respectively. The correlations were good for EF, PER and 1/3FRm. Gated SPET dV/dt parameters were slightly lower compared with GBP values owing to the limited number of frames per cardiac cycle. It is concluded that left ventricular ejection and filling rates can be calculated using G-SPET with edge detection software, and in this study these parameters were significantly correlated with those derived using GBP. Diastolic abnormality on gated SPET study should be recognised as a positive finding, and appropriate gated SPET parameters should be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号