首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-dependent protein kinase (DNA-PK) consists of a DNA binding subunit (Ku autoantigen), and a catalytic subunit (DNA-PKcs). In the present study, human autoantibodies that recognize novel antigenic determinants of DNA-PK were identified. One type of autoantibody stabilized the interaction of DNA-PKcs with Ku and recognized the DNA-PKcs–Ku complex, but not biochemically purified DNA-PKcs. Another type recognized purified DNA-PKcs. Autoantibodies to Ku (p70/p80 heterodimer), ‘stabilizing’ antibodies, and antibodies to DNA-PKcs comprise a linked autoantibody set, since antibodies recognizing purified DNA-PKcs were strongly associated with stabilizing antibodies, whereas stabilizing antibodies were strongly associated with anti-Ku. This hierarchical pattern of autoantibodies specific for components of DNA-PK (anti-Ku>stabilizing antibodies>anti-DNA-PKcs) may have implications for the pathogenesis of autoimmunity to DNA-PK and other chromatin particles. The data raise the possibility that altered antigen processing and/or stabilization of the DNA-PKcs–Ku complex due to autoantibody binding could play a role in spreading autoimmunity from Ku to the weakly associated antigen DNA-PKcs.  相似文献   

2.
Summary We previously mapped the putative humanHYRC (the hyper-radiosensitivity of the scid mutation, complementing gene) to human chromosome 8q11.1 by fluorescencein situ hybridization (FISH) using Alu-based PCR products from a mouse-human scid radiation cell hybrid (RD15/5) as probes. From a cosmid library constructed from RD15/5, 57 cosmid clones containing human DNA inserts were isolated, 18 of which were mapped to 8q11. Based on the sequences of plasmid subclones of the 18 cosmids, five novel sequence-tagged-sites (STSs) were made. By a screening of the CEPH-YAC library with these STSs, five yeast artificial chromosome, (YAC) clones were isolated. All these YAC clones were confirmed not to be chimeric by FISH, but two of them showed deleted human insert DNAs. Using the other 3 non-deleted YACs, we constructed a physical map covering theHYRC region. We confirmed that the recently isolated gene (the DNA-PKcs gene) which is a strong candidate forHYRC is located within the present contig and spans less than 200 kb. This map will be useful for the analysis of the genomic structure of the DNA-PKcs gene and for isolation of other complementing genes in theHYRC region.  相似文献   

3.
The process of antigen receptor gene rearrangement, V(D)J recombination, involves DNA cleavage by the RAG-1 and RAG-2 proteins. Cleavage generates covalently sealed (hairpin) DNA ends, termed coding ends, which must be opened by an endonuclease prior to joining. Resolution of these hairpin ends requires the activity of the DNA-dependent protein kinase (DNA-PK), a protein kinase whose specific role is yet undetermined. It has been suggested that phosphorylation of one or both RAG proteins by DNA-PK is required to activate or recruit the hairpin-opening nuclease. Furthermore, very recent work has shown that RAG proteins themselves can open hairpins. These data raise the possibility that DNA-PK-mediated phosphorylation of the RAG proteins could regulate the hairpin opening reaction. To test this hypothesis, we constructed mutant versions of RAG-1 and RAG-2 in which all four DNA-PK consensus phosphorylation sites were removed by site-directed mutagenesis. Our data provide conclusive evidence that phosphorylation of these conserved serine/threonine residues is not required for hairpin opening or joining of V(D)J recombination intermediates.  相似文献   

4.
Mutations in SMARCAL1 (HARP) cause Schimke immunoosseous dysplasia (SIOD). The mechanistic basis for this disease is unknown. Using functional genomic screens, we identified SMARCAL1 as a genome maintenance protein. Silencing and overexpression of SMARCAL1 leads to activation of the DNA damage response during S phase in the absence of any genotoxic agent. SMARCAL1 contains a Replication protein A (RPA)-binding motif similar to that found in the replication stress response protein TIPIN (Timeless-Interacting Protein), which is both necessary and sufficient to target SMARCAL1 to stalled replication forks. RPA binding is critical for the cellular function of SMARCAL1; however, it is not necessary for the annealing helicase activity of SMARCAL1 in vitro. An SIOD-associated SMARCAL1 mutant fails to prevent replication-associated DNA damage from accumulating in cells in which endogenous SMARCAL1 is silenced. Ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) phosphorylate SMARCAL1 in response to replication stress. Loss of SMARCAL1 activity causes increased RPA loading onto chromatin and persistent RPA phosphorylation after a transient exposure to replication stress. Furthermore, SMARCAL1-deficient cells are hypersensitive to replication stress agents. Thus, SMARCAL1 is a replication stress response protein, and the pleiotropic phenotypes of SIOD are at least partly due to defects in genome maintenance during DNA replication.  相似文献   

5.
The initiation of DNA synthesis is an important cell cycle event that defines the beginning of S phase. This critical event involves the participation of proteins whose functions are regulated by cyclin dependent protein kinases (Cdks). The Mcm2–7 proteins are a family of six conserved proteins that are essential for the initiation of DNA synthesis in all eukaryotes. In Saccharomyces cerevisiae, members of the Mcm2–7 family undergo cell cycle-specific phosphorylation. Phosphorylation of Mcm proteins at the beginning of S phase coincides with the removal of these proteins from chromatin and the onset of DNA synthesis. In this study, we identified DBF4, which encodes the regulatory subunit of a Cdk-like protein kinase Cdc7–Dbf4, in a screen for second site suppressors of mcm2-1. The dbf4 suppressor mutation restores competence to initiate DNA synthesis to the mcm2-1 mutant. Cdc7–Dbf4 interacts physically with Mcm2 and phosphorylates Mcm2 and three other members of the Mcm2–7 family in vitro. Blocking the kinase activity of Cdc7–Dbf4 at the G1-to-S phase transition also blocks the phosphorylation of Mcm2 at this defined point of the cell cycle. Taken together, our data suggest that phosphorylation of Mcm2 and probably other members of the Mcm2–7 proteins by Cdc7–Dbf4 at the G1-to-S phase transition is a critical step in the initiation of DNA synthesis at replication origins.  相似文献   

6.
The EUO gene (for early upstream open reading frame) of Chlamydia psittaci was previously found to be transcribed better at 1 than at 24 h postinfection. We found that the EUO gene encodes a minor protein that is expressed within 1 h of infection of host cells with C. psittaci 6BC but that protein quantity peaks during the logarithmic growth phase of reticulate bodies (RBs), declines late in the infection (after 20 h) when RBs reorganize into elementary bodies (EBs), and is absent in infectious EBs. EUO protein lacks homology to known proteins but does contain a putative helix-turn-helix motif. We found that recombinant EUO binds to DNA in vitro with a relatively broad specificity. Using the bp −200 to +67 promoter region of the cysteine-rich envelope protein (crp) operon as a model, we show that EUO protein preferentially binds to AT-rich sequences and protects crp DNA from DNase I from approximately bp −60 to −9. We also found that native EUO protein in extracts of RBs binds to the promoter region of the crp operon, demonstrating that the DNA binding property of EUO protein is not an artifact of recombinant methods. Although EUO protein appears to bind to the crp operon with high affinity in vitro (Kd of about 15 nM), it is not known whether the protein binds the crp DNA in vivo.  相似文献   

7.
The majority of antigen receptor diversity in mammals is generated by V(D)J recombination. During this process DNA double strand breaks are introduced at recombination signals by lymphoid specific RAG1/2 proteins generating blunt ended signal ends and hairpinned coding ends. Rejoining of all DNA ends requires ubiquitously expressed DNA repair proteins, such as Ku70/86 and DNA ligase IV/XRCC4. In addition, the formation of coding joints depends on the function of the scid gene encoding the catalytic subunit of DNA-dependent protein kinase, DNA-PK(CS), that is somehow required for processing of coding end hairpins. Recently, it was shown that purified RAG1/2 proteins can cleave DNA hairpins in vitro, but the same activity was also described for a protein complex of the DNA repair proteins Nbs1/Mre11/Rad50. This leaves the possibility that either protein complex might be involved in coding end processing in V(D)J recombination. We have therefore analyzed V(D)J recombination in cells from patients with Nijmegen breakage syndrome, carrying a mutation in the nbs1 gene. We find that V(D)J recombination frequencies and the quality of signal and coding joining are comparable to wild-type controls, as analyzed by a cellular V(D)J recombination assay. In addition, we did not detect significant differences in CDR3 sequences of endogenous Ig lambdaL and kappaL chain gene loci cloned from peripheral blood lymphocytes of an NBS patient and of healthy individuals. These findings suggest that the Nbs1/Mre11/Rad50 complex is not involved in coding end processing of V(D)J recombination.  相似文献   

8.
C.L. Hsiao  L.W. Black 《Virology》1978,91(1):26-38
The product of gene 20 plays two important roles in bacteriophage T4 head formation: first, in the formation of the prehead assembly initiation complex, second, in the packaging of DNA into the cleaved head. The second function was revealed after the isolation of a cold-sensitive (cs) mutant of gene 20. Empty, fully cleaved heads accumulating in 20cs-infected cells can be packaged with DNA to form mature phage after shift up to 42°. The accumulation of 200 S DNA and the formation of empty phages (ghosts) in the 20cs-infected cells suggest that 20cs empty heads are not attached to concatemeric DNA inside the cell. The phenotype of the 20cs mutation resembles that of 17ts or 17am mutations and a second site suppressor mutation in gene 17 was found which overcomes the 20cs mutation. These results suggest an intimate relationship between these two gene products which probably interact directly during DNA packaging. Both p17 and p20 also appear to be involved in collar and whisker assembly, suggesting location of p20 at the head-tail juuction.  相似文献   

9.
SKI-1 is a 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-resistant glioma cell line and SK-MG-1 is a BCNU-sensitive glioma cell line. Both cell lines do not express O6-methylguanine-DNA methyl transferase (MGMT) and exhibit comparable levels of 3-methyladenine DNA glycosylase. In order to detect DNA binding proteins involved in alternative DNA repair mechanisms of BCNU damage, we performed Southwestern analysis using a DNA proble damaged with BCNU and nuclear protein extracts from SKI-1 and SK-MG-1 cell lines. Both cell lines express a protein of Mr 116 000 that is able to bind to BCNU-damaged DNA with higher specificity than to undamaged DNA. This protein was identified as poly(ADP-ribose) polymerase (PARP). Using glioma extracts depleted of PARP or using antibody to block the DNA binding domain of PARP no other protein binding to BCNU-treated probe was observed. Addition of methoxyamine, an inhibitor of DNA strand breaks, led to a significant reduction of PARP binding to BCNU-treated DNA. BCNU treatment of both glioma cell lines led to reduced nicotinamide adenine dinucleotide levels, indicating activation of PARP. Thus, the recognition and binding of PARP to BCNU-induced DNA nicks with concomitant PARP activation may be important processes that are involved in the initial stage of DNA repair of BCNU lesions in glial cells.  相似文献   

10.
Voltage-gated potassium (Kv) channels play an important role in the regulation of growth factor-induced cell proliferation. We have previously shown that cell cycle activation is induced in oligodendrocytes (OLGs) by complement C5b-9, but the role of Kv channels in these cells had not been investigated. Differentiated OLGs were found to express Kv1.4 channels, but little Kv1.3. Exposure of OLGs to C5b-9 modulated Kv1.3 functional channels and increased protein expression, whereas C5b6 had no effect. Pretreatment with the recombinant scorpion toxin rOsK-1, a highly selective Kv1.3 inhibitor, blocked the expression of Kv1.3 induced by C5b-9. rOsK-1 inhibited Akt phosphorylation and activation by C5b-9 but had no effect on ERK1 activation. These data strongly suggest a role for Kv1.3 in controlling the Akt activation induced by C5b-9. Since Akt plays a major role in C5b-9-induced cell cycle activation, we also investigated the effect of inhibiting Kv1.3 channels on DNA synthesis. rOsK-1 significantly inhibited the DNA synthesis induced by C5b-9 in OLG, indicating that Kv1.3 plays an important role in the C5b-9-induced cell cycle. In addition, C5b-9-mediated myelin basic protein and proteolipid protein mRNA decay was completely abrogated by inhibition of Kv1.3 expression. In the brains of multiple sclerosis patients, C5b-9 co-localized with NG2+ OLG progenitor cells that expressed Kv1.3 channels. Taken together, these data suggest that Kv1.3 channels play an important role in controlling C5b-9-induced cell cycle activation and OLG dedifferentiation, both in vitro and in vivo.  相似文献   

11.
Whitefly-transmitted Begomoviruses having circular single stranded DNA genome cause severe leaf curl diseases in the tropical and subtropical region. The majority of Old World monopartite begomoviruses with DNA A component is associated with a satellite DNA of 1.3 kb length referred to as betasatellites. The presence of betasatellite is required to express typical symptoms in the primary hosts. Increased symptom expression in betasatellite's presence is attributed to a 13–15 kDa βC1 protein encoded by the βC1 gene on complementary sense strand. The exact mechanism by which the βC1 protein contributes to the symptoms' severity and helper viral DNA's accumulation is not yet understood. Here, we studied the βC1 protein of Cotton leaf curl Multan betasatellite, associated with mono and bipartite begomoviruses. The βC1 protein was expressed in prokaryotic system as 6XHis-βC1 fusion protein and recombinant protein showed size- and sequence-specific DNA binding activity. The host proteins which may interact with βC1 were identified by binding βC1 recombinant protein with heptapeptide in phage display library. The βC1-interacting host proteins predicted belong to metabolic and defense pathways, indicating that βC1 protein has a pivotal role in viral pathogenicity.  相似文献   

12.
13.
High-dose melphalan (MEL) and autologous stem cell transplantation (ASCT) is the standard of care in the treatment of multiple myeloma (MM). Resistance to MEL has been linked to increased DNA repair. Here we sought to identify whether inhibition of poly(ADP-ribose) polymerase (PARP) synergizes with MEL and can overcome resistance. We tested the synergistic cytotoxicity of 3 inhibitors of PARP (PARPi)—veliparib (VEL), olaparib (OLA), and niraparib (NIRA)—combined with MEL in RPMI8226 and U266 MM cell lines, as well as in their MEL resistance counterparts, RPMI8226-LR5 (LR5) and U266-LR6 (LR6). The addition of VEL, OLA, and NIRA to MEL reduced the half maximal inhibitory concentration (IC50) in RPMI8226 cells from 27.8 µM to 23.1 µM, 22.5 µM, and 18.0 µM, respectively. Similarly, the IC50 of MEL in U266 cells was decreased from 6.2 µM to 3.2 µM, 3.3 µM, and 3.0 µM, respectively. In LR5 and LR6 cells, PARPi did not reverse MEL resistance. We confirmed this in a NOD/SCID/gamma null xenograft mouse model with either MEL-sensitive (RPMI8226) or MEL-resistant (LR5) MM. Treatment with a MEL-VEL combination prolonged survival compared with MEL alone in RPMI8226 mice (107 days versus 67.5 days; P = .0009), but not in LR5 mice (41 versus 39 days; P = .09). We next tested whether 2 double-stranded DNA repair mechanisms, homologous recombination (HR) and nonhomologous end-joining (NHEJ), cause MEL resistance in LR5 and LR6 cells. In an HR assay, LR6 cells had a 4.5-fold greater HR capability than parent U226 cells (P = .05); however, LR5 cells had an equivalent HR ability as parent RPMI8226 cells. We hypothesized that NHEJ may be a mediator of MEL resistance in LR5 cells. Given that DNA-PK is integral to NHEJ and may be a therapeutic target, we treated LR5 cells with the DNA-PK inhibitor NU7026 in combination with MEL. Although NU7026 alone at 2.5 µM had no cytotoxicity, in combination it completely reversed resistance to MEL (MEL IC50, 46.4 µM versus 14.4 µM). We examined the clinical implications of our findings in a dataset of 414 patients treated with tandem ASCT. High PARP1 expressers had lower survival compared with patients with low expression (median 42.7 months versus median not reached; P = .003). We hypothesized that combined expression of the HR gene BRCA1, the NHEJ gene PRKDC (DNA-PK), and PARP1 may predict survival and found that overexpression of 0 (n = 101), 1 or 2 (n = 287), or all 3 (n = 26) genes had a negative impact on median survival (undefined versus 57.8 months versus 14.8 months; P < .0001). Here we demonstrate that PARPi synergized with MEL, but that resistance (which may be due to HR and NHEJ pathways) is not completely reversed by PARPi. In addition, we observed that a 3-gene analysis may be tested to identify patients resistant or sensitive to high-dose MEL.  相似文献   

14.
15.
Summary: The initiating events associated with T activation in response to stimulation of the T cell antigen receptor (TCR) and costimulatory receptors, such as CD28, are intimately associated with the enzymatically catalyzed addition of phosphate not only to key tyrosine, threonine and serine residues in proteins but also to the D3 position of the myo‐inositol ring of phosphatidylinositol (PtdIns). This latter event is catalyzed by the lipid kinase phosphoinositide 3‐kinase (PI3K). The consequent production of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 serves both to recruit signaling proteins to the plasma membrane and to induce activating conformational changes in proteins that contain specialized domains for the binding of these phospholipids. The TCR signaling proteins that are subject to regulation by PI3K include Akt, phospholipase Cγ1 (PLCγ1), protein kinase C ζ (PKC‐ζ), Itk, Tec and Vav, all of which play critical roles in T cell activation. As is the case for phosphorylation of protein substrates, the phosphorylation of PtdIns is under dynamic regulation, with the D3 phosphate being subject to hydrolysis by the 3‐phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), thereby placing PTEN in direct opposition to PI3K. In this review we consider recent data concerning how PTEN may act in regulating the process of T cell activation.  相似文献   

16.
Specific regions of eukaryotic genomic DNA that exhibit high-affinity binding to the nuclear matrix in vitro are called matrix attachment regions (MARs) and are implicated in the loop domain organization of chromatin. Small regions possessing high base unpairing potential within these MARs are referred to as base unpairing regions (BURs). BUR-affinity chromatographic separations of proteins from breast cancer cells yielded, almost exclusively, a mixture of poly (ADP-ribose) polymerase (PARP) and DNA-dependent protein kinase (DNA-PK), two nuclear enzymes that are implicated in the cellular response to DNA damage. Contrary to the long-held notion that PARP and Ku autoantigen, the DNA-binding heterodimeric subunit of DNA-PK, bind only to DNA ends, recently we have shown that both proteins individually bind BURs with high affinity and specificity in an end-independent manner. Furthermore, Ku autoantigen forms a molecular complex with PARP in the absence of DNA, and the physical association of these proteins synergistically enhanced their BUR-binding activity. Autoribosylation of PARP abolished its association with Ku autoantigen and BUR-binding activity. These findings have, for the first time, provided a molecular link toward elucidating the functional interaction between PARP and DNA-PK. The identification of MARs as their common binding target suggests a novel role for these enzymes in the modulation of chromatin structure and function.  相似文献   

17.
Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.  相似文献   

18.
DNA methylation is ubiquitously found in all three domains of life. This epigenetic modification on adenine or cytosine residues serves to regulate gene expression or to defend against invading DNA in bacteria. Here, we report the significance of N6-methyladenine (6mA) to epigenetic immunity in Deinococcus radiodurans. Putative protein encoded by DR_2267 ORF (Dam2DR) contributed 35% of genomic 6mA in D. radiodurans but did not influence gene expression or radiation resistance. Dam2DR was characterized to be a functional S-adenosyl methionine (SAM)-dependent N6-adenine DNA methyltransferase (MTase) but with no endonuclease activity. Adenine methylation from Dam2DR or Dam1DR (N6-adenine MTase encoded by DR_0643) improved DNA uptake during natural transformation. To the contrary, methylation from Escherichia coli N6-adenine MTase (DamEC that methylates adenine in GATC sequence) on donor plasmid drastically reduced DNA uptake in D. radiodurans, even in presence of Dam2DR or Dam1DR methylated adenines. With these results, we conclude that self-type N6-adenine methylation on donor DNA had a protective effect in absence of additional foreign methylation, a separate methylation-dependent Restriction Modification (R-M) system effectively identifies and limits uptake of G6mATC sequence containing donor DNA. This is the first report demonstrating presence of epigenetic immunity in D. radiodurans.  相似文献   

19.
The study assessed the effect of Chinese herbs of Shenghe Powder (SHP) on the repair capacity of gamma-radiation-induced DNA damage in rat glioma cells (C6) compared with normal human astrocytes (NHA). C6 and NHA Cells treated with SHP and irradiated with 2Gy of gamma radiation. Cells growth inhibition were analysed by MTT assay, DNA damage and repair were evaluated using phosphorylated histone H2AX (γH2AX) at the appointed time. Apoptosis was observed by flow cytometry, and the expression of DNA-dependent protein kinase (DNA-PK) and surviving proteins were assessed by Western blot analysis. SHP depressed the radiation-induced DNA double-strand break and enhanced the DNA repair capacity in NHA, which correlated with promotion of DNA-PK phosphorylation. In contrast, SHP enhanced radiosensitivity of C6 cells, the pre-treatment with SHP resulted in reduced numbers of γH2AX foci in irradiated C6 cells, and decreased the expression of DNA-PK and survivn(P<0.005). It significant effect on inhibition of C6 cell proliferation and induced C6 cells apoptosis in a time-depdendent manner than radiation alone (P<0.001). SHP showed a novel bidirectional function to improve the radioresistance of NHA and enhanced radiosensitivity of C6 cells. This implies that SHP can protect the NHA from radiant damage and enhanced the sensitivity of C6 cells to radiation, which could be attributed to the alteration of survivin DNA-PK in DNA repair processes.  相似文献   

20.
Although possession of the ε4 allele of the apolipoprotein E gene appears to be an important biological marker for Alzheimer's disease (AD) susceptibility, strong evidence indicates that at least one additional risk gene exists on chromosome 12.

Here, we describe an association of the 3'-UTR +1073 C/T polymorphism of the OLR1 (oxidised LDL receptor 1) on chromosome 12 with AD in French sporadic (589 cases and 663 controls) and American familial (230 affected sibs and 143 unaffected sibs) populations. The age and sex adjusted odds ratio between the CC+CT genotypes versus the TT genotypes was 1.56 (p=0.001) in the French sample and 1.92 (p=0.02) in the American sample. Furthermore, we have discovered a new T/A polymorphism two bases upstream of the +1073 C/T polymorphism. This +1071 T/A polymorphism was not associated with the disease, although it may weakly modulate the impact of the +1073 C/T polymorphism.

Using 3'-UTR sequence probes, we have observed specific DNA protein binding with nuclear proteins from lymphocyte, astrocytoma, and neuroblastoma cell lines, but not from the microglia cell line. This binding was modified by both the +1071 T/A and +1073 C/T polymorphisms. In addition, a trend was observed between the presence or absence of the +1073 C allele and the level of astrocytic activation in the brain of AD cases. However, Aß40, Aß42, Aß total, and Tau loads or the level of microglial cell activation were not modulated by the 3'-UTR OLR1 polymorphisms. Finally, we assessed the impact of these polymorphisms on the level of OLR1 expression in lymphocytes from AD cases compared with controls. The OLR1 expression was significantly lower in AD cases bearing the CC and CT genotypes compared with controls with the same genotypes. In conclusion, our data suggest that genetic variation in the OLR1 gene may modify the risk of AD.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号