首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Cumulative arsenic exposure (CAE) from drinking water has been shown to be associated with hypertension in a dose-response pattern. This study further explored the association between arsenic methylation capability and hypertension risk among residents of arseniasis-hyperendemic areas in Taiwan considering the effect of CAE and other potential confounders. METHOD: There were 871 subjects (488 women and 383 men) and among them 372 were diagnosed as having hypertension based on a positive history or measured systolic blood pressure >or=140 mm Hg and/or diastolic blood pressure >or=90 mm Hg. Urinary arsenic species were determined by high-performance liquid chromatography-hydride generator and atomic absorption spectrometry. Primary arsenic methylation index [PMI, defined as monomethylarsonic acid (MMA(V)) divided by (As(III)+As(V))] and secondary arsenic methylation index (SMI, defined as dimethylarsinic acid divided by MMA(V)) were used as indicators for arsenic methylation capability. RESULTS: The level of urinary arsenic was still significantly correlated with cumulative arsenic exposure (CAE) calculated from a questionnaire interview (p=0.02) even after the residents stopped drinking the artesian well water for 2-3 decades. Hypertensive subjects had higher percentages of MMA(V) and lower SMI than subjects without hypertension. However, subjects having CAE >0 mg/L-year had higher hypertension risk than those who had CAE=0 mg/L-year disregard a high or low methylation index. CONCLUSION: Inefficient arsenic methylation ability may be related with hypertension risk.  相似文献   

2.
Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As(III)+As(V)), monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA(V) and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA(V) and MMA(V). Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA(V), lower percent DMA(V), higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels.  相似文献   

3.
To investigate the interaction between skin lesion status and arsenic methylation profiles, the concentrations and proportions of arsenic metabolites in urine and arsenic methylation capacities of study subjects were determined. The results showed that the mean urinary concentrations of iAs (inorganic arsenic), MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), and TAs (total arsenic) were 75.65, 68.78, 265.81, and 410.24 μg/L, respectively, in the skin lesions subjects. The highest values were observed in the multiple skin lesions subjects. Higher %iAs and %MMA, and lower %DMA, PMI (primary methylation index), and SMI (secondary methylation index) were found in skin lesions subjects. The multiple skin lesions subjects had highest %iAs and %MMA, and lowest %DMA, PMI, and SMI. The prevalence of skin lesions strongly, positively correlated with arsenic levels in drinking water. The elder persons also had higher frequency of skin lesions compared with younger persons. It can be concluded that arsenic levels in drinking water significantly affected the prevalence of skin lesions. Male subjects usually had higher proportions of skin lesions when compared with female subjects. Moreover, it may be concluded that MMA was significantly related to single skin lesion, whereas DMA and iAs were associated with multiple skin lesions. It seemed that MMA had greater toxicity to hyperkeratosis, whereas DMA and iAs had higher toxicity to depigmentation or pigmentation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 28–36, 2017.  相似文献   

4.
Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case–control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined by HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29 μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35 μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA ORQ5vs.Q1 = 2.63; 95%CI 1.89,3.66; p for trend < 0.001; PMI ORQ5vs.Q1 = 1.90; 95%CI 1.39,2.59, p for trend < 0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA ORQ5vs.Q1 = 0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI ORQ5vsQ1 = 0.42, 95%CI 0.31,0.59, p for trend < 0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk.  相似文献   

5.
In order to elucidate whether urinary levels of inorganic and organic arsenic metabolites are associated with previous exposure to high-arsenic artesian well water, a total of 302 residents of age 30 yr or older were recruited from three arseniasis-hyperendemic villages in Taiwan. Most study subjects had stopped consuming high-arsenic artesian well water for more than 20 yr. The mean total arsenic (Ast) determined by inductively cout pled plasma mass spectrometer (ICPMS) was 267.05 +/- 20.95 mug/L, and the mean level of inorganic arsenic and its metabolites (Ast) was 86.08 +/- 3.43 mug/L. In the multivariate analysis, urinary dimethylarsinic acid (DMA) levels were significantly inversely associated with age, with women exhibiting significantly lower urinary amounts of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), organic arsenic (Aso), and Ast compared to men. After adjustment for age and sex, previous cumulative arsenic exposure through consumption of artesian well water was significantly associated with elevated urinary levels of MMA and DMA, but not As(III) + As(V), Asot, and Ast. In the multivariate analysis, the percentage of As in As was significantly higher in men than women, but this was not significantly associated with age. The percentage of As(III) + As(V) in As increased significantly with age, while the reverse was noted with DMA in Asi. Women had a significantly higher DMA percentage but lower As(III) + As(V) and MMA percentages in Asi than men. After adjustment for age and sex, the percentages of As(III) + As(V) in Asi were significantly inversely associated with previous arsenic exposure through consumption of artesian well water. Data suggested that women seem to possess a more efficient arsenic methylation capability than men, and aging diminishes this methylation capability; furthermore, the higher the cumulative arsenic exposure, the greater is the body burden of inorganic arsenic, mainly in the form of MMA and DMA.  相似文献   

6.
Humans are exposed to arsenic and their organic derivatives, which are widely distributed in the environment, via food, water, and to a lesser extent, via air. Following uptake, inorganic arsenic undergoes biotransformation to mono- and dimethylated metabolites. Recent findings suggest that the methylation reactions represent a toxification rather than a detoxification pathway. In the present study, the genotoxic effects and the cellular uptake of inorganic arsenic [arsenate, As(i)(V); arsenite, As(i)(III)] and the methylated arsenic species monomethylarsonic acid [MMA(V)], monomethylarsonous acid [MMA(III)], dimethylarsinic acid [DMA(V)], dimethylarsinous acid [DMA(III)], trimethylarsenic oxide [TMAO(V)] were investigated in Chinese hamster ovary (CHO-9) cells. The chemicals were applied at different concentrations (0.1 microM to 10 mM) for 30 min and 1 h, respectively. Cytotoxic effects were investigated by the trypan blue extrusion test and genotoxic effects by the assessment of micronucleus (MN) induction, chromosome aberrations (CA), and sister chromatid exchanges (SCE). Intracellular arsenic concentrations were determined by ICP-MS techniques. Our results show that MMA(III) and DMA(III) induce cytotoxic and genotoxic effects to a greater extent than MMA(V) or DMA(V). Viability was significantly decreased after incubation (1 h) of the cells with > or = 1 microM As(i)(III), > or = 1 microM As(i)(V), > or = 500 microM MMA(III), > or = 100 microM MMA(V), and 500 microM DMA(V) and > or = 0.1 microM DMA(III). TMAO(V) was not cytotoxic at concentrations up to 10 mM. A significant increase of the number of MN, CA and SCE was found for DMA(III) and MMA(III). As(i)(III + V) induced CA and SCE but no MN. TMAO(V), MMA(V) and DMA(V) were not genotoxic in the concentration range tested (up to 5 mM). The nuclear division index (NDI) was not affected by any of the tested arsenic compounds after a recovery period of 14 to 35 h. When the uptake of the chemicals was measured by ICP-MS analysis, it was found that only 0.03% MMA(V) and DMA(V), and 2% MMA(III), As(i)(III) and (V) were taken up by the cells. In comparison, 10% of the DMA(III) dose was taken up. The total intracellular concentration of all arsenic compounds increased with increasing arsenic concentrations in the culture medium. Taken together, these data demonstrate that arsenic compounds in the trivalent oxidation state exhibit the strongest genotoxic effects. Trivalent organoarsenic compounds are more membrane permeable than the pentavalent species. The potency of the DNA damage decreases in the order DMA(III) > MMA(III) > As(i)(III and V) > MMA(V) > DMA(V) > TMAO(V). We postulate that the induction of genotoxic effects caused by the methylated arsenic species is primarily dependent upon their ability to penetrate cell membranes.  相似文献   

7.
Methylation has been considered to be the primary detoxication pathway of inorganic arsenic. Inorganic arsenic is methylated by many, but not all animal species, to monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), and dimethylarsinic acid (DMA(V)). The As(V) derivatives have been assumed to produce low toxicity, but the relative toxicity of MMA(III) remains unknown. In vitro toxicities of arsenate, arsenite, MMA(V), MMA(III), and DMA(V) were determined in Chang human hepatocytes. Leakage of lactate dehydrogenase (LDH) and intracellular potassium (K(+)) and mitochondrial metabolism of the tetrazolium salt XTT were used to assess cytotoxicity due to arsenic exposure. The mean LC50 based on LDH assays in phosphate media was 6 microM for MMA(III) and 68 microM for arsenite. Using the assay for K(+) leakage in phosphate media, the mean LC50 was 6.3 microM for MMA(III) and 19.8 microM for arsenite. The mean LC50 based on the XTT assay in phosphate media was 13.6 microM for MMA(III) and 164 microM for arsenite. The results of the three cytotoxicity assays (LDH, K(+), and XTT) reveal the following order of toxicity in Chang human hepatocytes: MMA(III) > arsenite > arsenate > MMA(V) = DMA(V). Data demonstrate that MMA(III), an intermediate in inorganic arsenic methylation, is highly toxic and again raises the question as to whether methylation of inorganic arsenic is a detoxication process.  相似文献   

8.
Urinary dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) are among the commonly used biomarkers for inorganic arsenic (iAs) exposure, but may also arise from seafood consumption and organoarsenical pesticide applications. We examined speciated urinary arsenic data from National Health and Nutrition Examination Survey (NHANES) 2009–2010 cycle to assess potential correlations among urinary DMA, MMA, and the organic arsenic species arsenobetaine. Urinary DMA and MMA were positively associated with urinary arsenobetaine, suggesting direct exposure to these species in seafood or metabolism of organic arsenicals to these species, although the biomonitoring data do not directly identify the sources of exposure. The magnitude of association was much larger for DMA than for MMA. The secondary methylation index (SMI, ratio of urinary DMA to MMA) observed in the NHANES program likewise is much higher in persons with detected arsenobetaine than in those without, again suggesting that direct DMA exposure is co-occurring with exposure to arsenobetaine. Urinary MMA was less correlated with organic arsenic exposures than DMA and, therefore, may be a more reliable biomarker for iAs exposure in the general US population. However, given the associations between both MMA and DMA and organic arsenic species in urine, interpretations of the urinary arsenic concentrations observed in the NHANES in the context of potential arsenic exposure should be made cautiously.  相似文献   

9.
Potential occupational arsenic exposure is a significant problem in smelting plants. The metabolites containing arsenic with an oxidation of +3 have been considered more cytotoxic and genotoxic than their parent inorganic species. The current study examined the capacity of arsenic methylation and its risk on skin lesions. The primary aim of this study is to determine if methylation capacity, as measured by urinary arsenic metabolites, differed in workers with skin lesions compared to workers without skin lesions. Hydride generation-atomic absorption spectrometry was used to determine three arsenic species in urine of workers who had been working in arsenic plants, and primary and secondary methylation indexes were calculated. Skin lesions were examined at the same time. Many workers had obvious skin lesions (36/91). The mean concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in urine of workers are obviously higher than those of the control group. There are more iAs, MMA, and DMA in urine, higher MMA%, lower iAs% for workers with skin lesions compared with those without skin lesions. Workers with skin lesions have the lowest SMI (3.50±1.21), and they may be in danger. Our results support the viewpoint that individuals who metabolize inorganic arsenic to MMA easily, but metabolize MMA to DMA difficulty have more risk of skin lesions.  相似文献   

10.
To elucidate the influence of folate concentration on the association between urinary arsenic profiles and urothelial carcinoma (UC) risks in subjects without evident arsenic exposure, 177 UC cases and 488 controls were recruited between September 2002 and May 2004. Urinary arsenic species including inorganic arsenic, monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) were determined by employing a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry procedure. After adjustment for suspected risk factors of UC, the higher indicators of urinary total arsenic levels, percentage of inorganic arsenic, percentage of MMA(V), and primary methylation index were associated with increased risk of UC. On the other hand, the higher plasma folate levels, urinary percentage of DMA(V) and secondary methylation index were associated with decreased risk of UC. A dose-response relationship was shown between plasma folate levels or methylation indices of arsenic species and UC risk in the respective quartile strata. The plasma folate was found to interact with urinary arsenic profiles in affecting the UC risk. The results of this study may identify the susceptible subpopulations and provide insight into the carcinogenic mechanisms of arsenic even at low arsenic exposure.  相似文献   

11.
Inorganic arsenic methylation by rat tissue slices   总被引:3,自引:0,他引:3  
Rat liver, kidney and lung slices methylate trivalent inorganic arsenic (AsIII) to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA); the liver has the greatest methylating capacity. AsIII enters the liver cells by a diffusion process followed by extensive binding to intracellular components which favors its extensive accumulation inside the cells. Reduced glutathione regulates AsIII metabolism through several mechanisms: facilitation of AsIII diffusion into the cells, stimulation of the first methylation reaction and increase of DMA excretion by the cells. An excess of AsIII inhibits DMA production by liver cells but this inhibition is reversible; mercuric ions inhibit both MMA and DMA production probably by decreasing inorganic arsenic (Asi) uptake and the second methylation reaction. DMA can be produced from MMA by rat liver slices and this methylation step is stimulated by GSH. In contrast to AsIII, AsV is not extensively taken up by the hepatocyte and is thus poorly methylated.  相似文献   

12.
A speciation technique for arsenic has been developed using an anion-exchange high-performance liquid chromatography/inductively coupled argon plasma mass spectrometer (HPLC/ICP MS). Under optimized conditions, eight arsenic species [arsenocholine, arsenobetaine, dimethylarsinic acid (DMA(V)), dimethylarsinous acid (DMA(III)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), arsenite (As(III)), and arsenate (As(V))] can be separated with isocratic elution within 10 min. The detection limit of arsenic compounds was 0.14-0.33 microg/L. To validate the method, Standard Reference Material in freeze-dried urine, SRM-2670, containing both normal and elevated levels of arsenic was analyzed. The method was applied to determine arsenic species in urine samples from three arsenic-affected districts of West Bengal, India. Both DMA(III) and MMA(III) were detected directly (i.e., without any prechemical treatment) for the first time in the urine of some humans exposed to inorganic arsenic through their drinking water. Of 428 subjects, MMA(III) was found in 48% and DMA(III) in 72%. Our results indicate the following. (1) Since MMA(III) and DMA(III) are more toxic than inorganic arsenic, it is essential to re-evaluate the hypothesis that methylation is the detoxification pathway for inorganic arsenic. (2) Since MMA(V) reductase with glutathione (GSH) is responsible for conversion of MMA(V) to MMA(III) in vivo, is DMA(V) reductase with GSH responsible for conversion of DMA(V) to DMA(III) in vivo? (3) Since DMA(III) forms iron-dependent reactive oxygen species (ROS) which causes DNA damage in vivo, DMA(III) may be responsible for arsenic carcinogenesis in human.  相似文献   

13.
Recent studies have shown that monomethylarsonous acid is more cytotoxic and genotoxic than arsenate and arsenite, which may attribute to the increased levels of reactive oxygen species. In this study, we used hydride generation-atomic absorption spectrometry to determine three arsenic species in urine of workers who had been working in arsenic plants,and calculated primary and secondary methylation indexes. The damages of exon 5, 6, 8 of p53 gene were determined by the method developed by Sikorsky, et al. Results show that the concentrations of each urinary arsenic species,and damage indexes of exon 5 and 8 of p53 gene in the exposed population were significantly higher, but SMI was significantly lower than in the control group. The closely positive correlation between the damage index of exon 5 and PMI,MMA, DMA were found, but there was closely negative correlation between the damage index of exon 5 and SMI. Those findings suggested that DNA damage of exon 5 and 8 of p53 gene existed in the population occupationally exposed to arsenic. For exon 5, the important factors may include the model of arsenic metabolic transformation, the concentrations of MMA and DMA, and the MMA may be of great importance.  相似文献   

14.
Excess intake of arsenic is known to cause vascular diseases as well as skin lesions and cancer in humans. Recent reports suggest that trivalent methylated arsenicals, which are intermediate metabolites in the methylation process of inorganic arsenic, are responsible for the toxicity and carcinogenicity of environmental arsenic. We investigated acute toxicity and accumulation of monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), trimethylarsine oxide (TMAO), and monomethylarsonous acid diglutathione (MMA(III) (GS)(2)) in rat heart microvessel endothelial (RHMVE) cells. MMA(V) (LC(50) = 36.6 mM) and DMA(V) (LC(50) = 2.54 mM) were less toxic than inorganic arsenicals (cf. LC(50) values for inorganic arsenite (iAs(III)), and inorganic arsenate (iAs(V)) was reported to be 36 and 220 microM, respectively, in RHMVE cells. TMAO was essentially not toxic. However, MMA(III) (GS)(2) was highly toxic (LC(50) = 4.1 microM). The order of cellular arsenic accumulation of those four organic arsenic compounds was MMA(III) (GS)(2) > MMA(V) > DMA(V) > TMAO. MMA(III) (GS)(2) was efficiently taken up by the cells and cellular arsenic content increased with the concentration of MMA(III) (GS)(2) in culture medium. N-acetyl-l-cysteine (NAC) reduced cellular arsenic content in DMA(V)-exposed cells and also decreased the cytotoxicity of DMA(V), whereas it changed neither cellular arsenic content nor the viability in MMA(V)-exposed cells. mRNA levels of heme oxygenase-1 (HO-1) were decreased by NAC in DMA(V)-exposed, but MMA(V)-exposed cells. Buthionine sulfoximine (BSO), a cellular glutathione (GSH) depleting agent, enhanced the cytotoxicity of MMA(V). However, BSO reduced, rather than enhanced, the cytotoxicity of DMA(V). These results suggest that intracellular GSH modulated the toxic effects of arsenic in opposite ways for MMA(V) and DMA(V). Even though intracellular GSH decreased the cytotoxicity of MMA(V), extracellularly added GSH enhanced the cytotoxicity of MMA(V). The use of high-performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometric analyses suggested that a small amount of MMA(V) was converted to MMA(III) (GS)(2) in the presence of GSH. These results suggest that MMA(III) (GS)(2) is highly toxic compared to other arsenic compounds because of faster accumulation of this species by cells, in addition to having the toxic nature of methylated trivalent organic arsenics.  相似文献   

15.
Biotransformation by methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) influences inorganic arsenical toxicity, which is often investigated in cultured cells. Arsenic (III) uptake and methylation was assessed in rat hepatocytes in primary culture and in three established rat cell lines (hepatoma-derived McA-RH 7777 cells and H4-II-EC-3 cells, and kidney epithelium-derived NRK-52E cells) to compare their use as model systems for arsenite metabolism. Incubation of all cell types with 0.27, 0.67, 1.33, 2.67, or 6.67 microM As(III) concentrations resulted in concentration-dependent arsenic uptake and biomethylation. Arsenic uptake by the NRK-52E cells was initially slower than that of the other cells, but by 8 h, total uptake was similar in all cell types. At the lowest arsenite concentration, the percentages of total arsenic methylated to MMA and DMA by the hepatocytes and the McA-RH 7777 cells were similar (67 and 66%); methylation by the H4-II-EC-3 cells was somewhat lower (52%), and methylation by the kidney-derived NRK-52E cells was much lower (15%). Total arsenic methylation was inhibited in the cell lines, but not in the hepatocytes, at the highest arsenite concentrations. In all cases, exposure to increased arsenite concentrations inhibited conversion of MMA to DMA much more than it affected the initial methylation step (inorganic arsenite to MMA). These results indicate that rat hepatocytes in primary culture and established rat hepatoma-derived cell lines are similar in their abilities to accumulate and methylate arsenic to MMA and DMA at environmentally relevant arsenic concentrations in the medium. They differed from the kidney epithelium-derived cells, which exhibited substantially lower biomethylation activity.  相似文献   

16.
The cytotoxicity of trivalent and pentavalent inorganic arsenic salts was determined in mouse fibroblasts in vitro. Concentrations of As (III) in the M range led to a reduction of proliferation and viability with a concomitant increase in LDH release and stimulation of lactic acid production. Similar effects were noted with approximately 10-fold greater molar concentrations of As(V). Cells pretreated with a low As(III) concentration are less sensitive to toxic doses of As(III) or As(V).Uptake of As(III) by the fibroblasts is greater than that of As(V). Both forms of inorganic arsenic are converted intracellularly to monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are then released into the culture medium. In As-pretreated cells, which are more resistant to As toxicity, biotransformation of inorganic arsenic to MMA and DMA is increased.  相似文献   

17.
To elucidate the role of genetic factors in arsenic (As) metabolism, we studied associations of single nucleotide polymorphisms (SNPs) in As (+ 3 oxidation state) methyltransferase (AS3MT) with the As concentrations in hair and urine, and urinary As profile in residents in the Red River Delta, Vietnam. Concentrations of total As in groundwater were 0.7-502 μg/l. Total As levels in groundwater drastically decreased by using sand filter, indicating that the filter could be effective to remove As from raw groundwater. Concentrations of inorganic As (IAs) in urine and total As in hair of males were higher than those of females. A significant positive correlation between monomethylarsonic acid (MMA)/IAs and age in females indicates that older females have higher methylation capacity from IAs to MMA. Body mass index negatively correlated with urinary As concentrations in males. Homozygote for SNPs 4602AA, 35991GG, and 37853GG, which showed strong linkage disequilibrium (LD), had higher percentage (%) of dimethylarsinic acid (DMA) in urine. SNPs 4740 and 12590 had strong LD and associated with urinary %DMA. Although SNPs 6144, 12390, 14215, and 35587 comprised LD cluster, homozygotes in SNPs 12390GG and 35587CC had lower DMA/MMA in urine, suggesting low methylation capacity from MMA to DMA in homo types for these SNPs. SNPs 5913 and 8973 correlated with %MMA and %DMA, respectively. Heterozygote for SNP 14458TC had higher MMA/IAs in urine than TT homozygote, indicating that the heterozygote may have stronger methylation ability of IAs. To our knowledge, this is the first study on the association of genetic factors with As metabolism in Vietnamese.  相似文献   

18.
The ATP-binding cassette (ABC) transporter protein multidrug resistance protein 1 (MRP1; ABCC1) plays an important role in the cellular efflux of the high-priority environmental carcinogen arsenic as a triglutathione conjugate [As(GS)(3)]. Most mammalian cells can methylate arsenic to monomethylarsonous acid (MMA(III)), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III)), and dimethylarsinic acid (DMA(V)). The trivalent forms MMA(III) and DMA(III) are more reactive and toxic than their inorganic precursors, arsenite (As(III)) and arsenate (As(V)). The ability of MRP1 to transport methylated arsenicals is unknown and was the focus of the current study. HeLa cells expressing MRP1 (HeLa-MRP1) were found to confer a 2.6-fold higher level of resistance to MMA(III) than empty vector control (HeLa-vector) cells, and this resistance was dependent on GSH. In contrast, MRP1 did not confer resistance to DMA(III), MMA(V), or DMA(V). HeLa-MRP1 cells accumulated 4.5-fold less MMA(III) than HeLa-vector cells. Experiments using MRP1-enriched membrane vesicles showed that transport of MMA(III) was GSH-dependent but not supported by the nonreducing GSH analog, ophthalmic acid, suggesting that MMA(III)(GS)(2) was the transported form. MMA(III)(GS)(2) was a high-affinity, high-capacity substrate for MRP1 with apparent K(m) and V(max) values of 11 μM and 11 nmol mg(-1)min(-1), respectively. MMA(III)(GS)(2) transport was osmotically sensitive and inhibited by several MRP1 substrates, including 17β-estradiol 17-(β-D-glucuronide) (E(2)17βG). MMA(III)(GS)(2) competitively inhibited the transport of E(2)17βG with a K(i) value of 16 μM, indicating that these two substrates have overlapping binding sites. These results suggest that MRP1 is an important cellular protective pathway for the highly toxic MMA(III) and have implications for environmental and clinical exposure to arsenic.  相似文献   

19.
This laboratory has studied the enzymology involved in the biotransformation of inorganic arsenic to dimethylarsinous acid (DMA(III)) and in human studies established that monomethylarsonous acid (MMA(III)) and DMA(III) appear in urine of people chronically exposed to arsenic. It appears that only two proteins are required for inorganic arsenic biotransformation in the human, namely, monomethylarsonic acid (MMA(V)) reductase and arsenic methyltransferase. MMA(V) reductase and the unique glutathione transferase omega (hGST-O) are identical proteins. Arsenicals with a +3 oxidation state are more toxic than the +5 species. While methylation of arsenite, MMA(III), and DMA(III) produces less toxic +5 oxidation arsenic species containing an additional methyl group such as MMA(V), dimethylarsinic acid (DMA(V)), and TMAO, a new mechanism involving hydrogen peroxide for detoxifying arsenite, MMA(III), and DMA(III) is proposed based on in vitro experiments.  相似文献   

20.
The formation of monomethylarsonous acid (MMA(III)) by tissue homogenates of brain, bladder, spleen, liver, lung, heart, skin, kidney, or testis of male Golden Syrian hamsters was assessed using [(14)C]monomethylarsonic acid (MMA(V)) as the substrate for MMA(V) reductase. The mean +/- SEM of MMA(V) reductase specific activities (nanomoles of MMA(III) per milligram of protein per hour) were as follows: brain, 91.4 +/- 3.0; bladder, 61.8 +/- 3.7; spleen, 30.2 +/- 5.4; liver, 29.8 +/- 1.4; lung, 21.5 +/- 0.8; heart, 19.4 +/- 1.5; skin, 14.7 +/- 1.6; kidney, 10.6 +/- 0.4; and testis, 9.8 +/- 0.6. The concentrations of MMA(III) in male Golden Syrian hamster livers were determined 15 h after administration of a single intraperitoneal dose of 145 microCi of [(73)As]arsenate (2 mg of As/kg of body weight). Trivalent arsenic species (arsenite, MMA(III), and dimethylarsinous acid, DMA(III)) were extracted from liver homogenates using carbon tetrachloride (CCl(4)) and 20 mM diethylammonium salt of diethyldithiocarbamic acid (DDDC). Pentavalent arsenicals (arsenate, MMA(V), and dimethylarsinic acid, DMA(V)) remained in the aqueous phase. The organic and the aqueous phases then were analyzed by HPLC. Metabolites of inorganic arsenate present in hamster liver after 15 h were observed in the following concentrations (nanograms per gram of liver +/- SEM): MMA(III), 38.5 +/- 2.9; DMA(III), 49.9 +/- 10.2; arsenite, 35.5 +/- 3.0; arsenate, 118.2 +/- 8.7; MMA(V), 31.4 +/- 2.8; and DMA(V), 83.5 +/- 6.7. This first-time identification of MMA(III) and DMA(III) in liver after arsenate exposure indicates that the significance of arsenic species in mammalian tissue needs to be re-examined and re-evaluated with respect to their role in the toxicity and carcinogenicity of inorganic arsenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号