首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distal convoluted tubule (DCT) from rabbit kidney were perfused in vitro to study the conductive properties of the cell membranes by using electrophysiological methods. When the lumen and the bath were perfused with a biearbonate free solution buffered with HEPES, the transepithelial voltage (V T) averaged –2.8±0.6 mV (n=20), lumen negative. The basolateral membrane voltage (V B) averaged –77.8±1.1 mV (n=33) obtained by intracellular impalement of microelectrodes. Cable analysis performed by injecting a current from perfusion pipette revealed that the transepithelial resistance was 21.8±1.7 ·cm2 and the fractional resistance of the luminal membrane was 0.78±0.03 (n=8), indicating the existence of ionic conductances in the luminal membrane. Addition of amiloride (10–5 mol/l) to the luminal perfusate or Na+ removal from the lumen abolished the lumen negativeV T and hyperpolarized the apical membrane. An increase in luminal K+ concentration from 5 to 50 mmol/l reduced the apical membrane potential (V A) by 37.5±2.6 mV (n=7), whereas a reduction of Cl in the luminal perfusate did not changeV A significantly (0.5±0.5 mV,n=4). Addition of Ba2+ to the lumen reducedV A by 42.6±1.0 mV (n=4). When the bathing fluid was perfused with 50 mmol/l K+ solution, the basolateral membrane voltage (V B) fell from –76.8±1.5 to –31.0±1.3 mV (n=18), and addition of Ba2+ to the bath reducedV B by 18.3±4.8 mV (n=7). Although a reduction of Cl in the bathing fluid from 143 to 5 mmol/l did not cause any significant fast initial depolarization (1.8±1.7 mV,n=8), a spike like depolarization (14.0±2.5 mV,n=4) was observed, upon Cl reduction in the presence of Ba2+ in the bath. From these results, we conclude that the apical membrane of DCT has both K+ and Na+ conductances and the basolateral membrane has a K+ conductance and a small Cl conductance.  相似文献   

2.
To find out the mechanism(s) underlying NaCl absorption in the distal tubule of Necturus, we devised a variant of the split-drop technique. Following injection an oil column, subsequently split by a NaCl solution isotonic to plasma, a double-barrelled microelectrode (conventional/selective to Na+ or to Cl ions) recorded Na+ ( Na) or Cl ( Cl) activity and transepithelial potential (V te). Paired control/low-Na+ solutions yielded reabsorptive half-times (t 1/2) of 0.68±0.11 min and 7.6±1.8 min respectively; corresponding V te values were –22.2±4.0 mV and –7.6±1.9 mV. t 1/2 values of control versus low-Cl solutions were 0.77±0.32 min and 6.5±1.7 min respectively, whereas respective V te values were not different from one another: –23.8±4.3 mV versus –18.8±5.5 mV. Nominally K+-free solutions or bumetanide, 10 mol/l, did not alter t 1/2 or V te, with regard to the paired control. Amiloride, 5 mol/l or 2 mmol/l, failed to decrease t 1/2 or to lower V te; apparently, the role of a Na+/H+ antiport does not contribute significantly to NaCl absorption. Furosemide, 0.1 mmol/l, reduced t 1/2 by 54% with regard to the control state. Determination of t 1/2 as a function of increasing hydrochlorothiazide concentrations revealed apical high- and low-affinity sites, estimated at 0.56 mol/l and 0.115 mmol/l respectively. Taken together these observations indicate that NaCl absorption is predominantly carried out by an electroneutral Na+-Cl cotransport.  相似文献   

3.
Summary The role of renal Na+–K+-ATPase in the acute changes in sodium reabsorption caused by isotonic volume expansion was evaluatedin vivo andin vitro in the rat and the dog. Duringin vivo volume expansion with isotonic saline in the rat, renal medullary Na+–K+-ATPase specific activity increased, while the simultaneously determined cortical Na+–K+-ATPase specific activity and kinetics remained unchanged. Furthermore, experimentsin vitro failed to demonstrate a circulating inhibitor of renal Na+–K+-ATPase both in plasma dialysates from volume-expanded rats and in plasma dialysates concentrated 20-fold by ultrafiltration from volume-expanded dogs. These results suggest that the decreased proximal tubular reabsorption of sodium during volume expansion is not mediated by inhibition of renal cortical Na+–K+-ATPase. The acute increment in medullary Na+–K+-ATPase observed could represent an adaptive response to increased sodium reabsorption by the loops of Henle, and raises the possibility that this enzyme may participate in relatively rapid adjustments in the transport of sodium by the renal tubule.  相似文献   

4.
Hypothyroid rats reconstituted with 10 g/kg b.w. per day of tri-iodothironine (T3) for 4 days resulted in normal free T3 and TSH levels. FT3 levels were: 0.53±0.3 pg/ml in hypothyroid rats; 2.78±1.21 pg/ml in hormone reconstituted rats and 2.90±0.90 pg/ml in euthyroid rats. TSH levels were 3,508±513 g/ml in hypothyroid rats; 1,008±204 g/ml in reconstituted rats and 270±184 ng/ml in euthyroid rats.When hypothyroid rats were reconstituted with 50 g T3/kg b.w. per day, TSH levels were nearly normal after 4 days (1,157±621 ng/ml). However FT3 levels after 1–4 days were always higher than in euthyroid rats.Hypothyroid rats show a decrease in isotonic fluid reabsorption (J v) in the proximal tubule (1.50±0.08 versus 4.96±0.23 10–2 nl·mm–1·s–1 in euthyroid animals). 1 day after T3 (10 g/kg b.w./day) injectionJ v was increased significantly to 2.05±0.20 10–2 nl·mm–1·s–1 and continued to increase during 4 days of T3 reconstitution.When 50 g T3/kg b.w./day was used,J v increased to 2.75±0.07 after 1 day and to 3.10±0.42 10–2 nl·mm–1·s–1 after 4 days.J v was never reaching a value close to that of euthyroid rats because the tubular radius in hypothyroid rats (14.7±1.8 m) is less than that of euthyroid rats (19.2±0.5 m). The radius in hypothyroid rats treated with T3 was unchanged over a 4 day course with either high or low doses of T3.Na+–K+-ATPase activity was found to be 2.91±0.16 M Pi/h×mg protein in homogenates of kidney cortex from hypothyroid rats. Treatment of hypothyroid rats with 10 g or 50 g of T3 resulted in an initial decrease in ATPase activity, followed by an increase to base level in hypothyroid rats with 10 g and a significantly higher level with 50 g. This decrease in ATPase activity was contrasted to the increase inJ v.These data indicate that there is a dissociation between the effects of physiological doses of thyroid hormones on proximal tubular reabsorption and the effects of T3 on Na+–K+-ATPase activity of kidney cortex. This leads to question the relationship between sodium transport and ATPase activity under physiological doses of thyroid hormones. An early effect of physiological doses of thyroid hormones on brush border Na+ permeability is suggested.  相似文献   

5.
Substructure of membrane-bound Na+−K+-ATPase protein   总被引:1,自引:0,他引:1  
Purified membrane-bound Na+–K+-ATPase from rat kidney outer medulla was studied by freeze-fracturing, by freeze-etching and by negative staining. Freeze-fracturing of purified Na+–K+-ATPase membranes shows intramembraneous particles with a diameter of about 100 Å. The frequency of these intramembraneous particles — as estimated from the particle densities on the two fracture faces — lies between 4700 and 5600 particles per m2. Applying rotary shadowing a four partite substructure could be detected in these intramembraneous particles observed on the fracture planes. The same four partite substructure was detected in particles observed on freeze-fractured and rotary shadowed intact baso-lateral plasma membranes of the thick ascending limb of Henle's loop. Particles could be also detected on both membrane surfaces of the purified Na+–K+-ATPase. These surface particles have about the same diameter and are present at about the same frequency as those observed within the freeze-fractured membranes. Negative staining of isolated Na+–K+-ATPase membranes showed particles on both membrane surfaces with a diameter between 30 and 50 Å, at a frequency of about 19,000 per m2. On aspects of membrane edges we observed structures which suggest a transmembraneous connection of the negatively stained particles on both membrane surfaces.Our results suggest that the Na+–K+-ATPase protein is composed of four units and that each unit spans the cell membrane. The native enzyme structure of the Na+–K+-ATPase protein seems to be preserved during freeze-fracturing and freeze-etching. It is proposed that the four enzyme units of the Na+–K+-ATPase complex are dissociated during the negative staining procedure.Part of this work was presented at the Frühjahrstagung of the Deutsche Physiologische Gesellschaft [6]  相似文献   

6.
To examine the intracellular pH (pHi) regulation in primary cultures of rabbit distal convoluted tubules (DCTb) we used the pH-sensitive dye 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF/AM) and a video-microscopy technique. DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The culture epithelia were grown on semi-transparent permeable supports. Before pHi measurement, DCTb primary cultures were maintained for 48–96 h in growth-factor-free medium to obtain quiescent cells. We had previously shown that two mechanisms are involved in the regulation of intracellular pH: a basolateral Na+/H+ exchanger and an apical Cl/HCO 3 exchanger [1]. The pHi of DCTb cells was significantly decreased by the addition of 60 nM human calcitonin (from 7.30±0.04 to 7.08±0.04). This response to calcitonin was dose-dependent and mimicked by both forskolin and permeant cyclic AMP derivatives. An initial acidification (of 0.25 pH unit in 7–8 min) was observed after the addition of basolateral amiloride (1 mM). The persistence of the effect induced by human calcitonin in these conditions, suggests that the Na+/H+ exchanger is not involved in the response. However, the acidification response was blocked in both the absence of chloride at the apical side and by the apical addition of 0.1 mM 4,4-diisothiocyanostilbene-2,2-disulphonic acid (DIDS). These experiments suggest that the target for the human calcitonin effect on pHi is the Cl/HCO 3 exchanger. This study confirms the importance of this transporter in pHi regulation within the physiological pHi range and the influence of calcitonin in the regulation of DCTb cell function.  相似文献   

7.
The effects of glucagon on water and electrolyte transport in the kidney were investigated on hormone-deprived rats, i.e. thyroparathyroidectomized diabetes insipidus Brattleboro rats infused with somatostatin. Glucagon consistently inhibited the reabsorption of water and Na+, Cl, K+ and Ca2+ along the proximal tubule accessible to micropuncture, leaving the reabsorption of inorganic phosphate (Pi) untouched. In the loop, besides its previously described stimulatory effects on Na+, Cl, K+, Ca2+ and Mg2+ reabsorption, glucagon strongly inhibited Pi reabsorption, very probably in the proximal straight tubule. These effects resulted in a significant phosphaturia and considerable reductions of Mg2+ and Ca2+ excretions. The effects of glucagon at both the whole kidney and the nephron levels are very similar to those previously described for calcitonin. In the absence of an adenylate cyclase system sensitive to glucagon and calcitonin in the rat proximal tubule, and from the analogy of their physiological effects with those elicited by parathyroid hormone, it is suggested that glucagon and calcitonin exert their inhibitory effects on Na and Pi reabsorption in the proximal tubule through another pathway, which could be the phosphoinositide regulatory cascade.  相似文献   

8.
Na+, K+-ATPase expression in the epithelia of rabbit gut-associated lymphoid tissue was measured using indirect immunofluorescence and confocal laser scanning microscopy. All four major sites of aggregated lymphoid tissue, i. e. Peyer's patch, sacculus rotundus, caecal patch and appendix, were studied. Na+, K+-ATPase expression was localized to the basolateral surface of cells of the follicle-associated epithelium (FAE) and adjacent villous or surface epithelia (non-FAE), where increased expression during enterocyte migration was evident. In the FAE, expression of Na+, K+-ATPase appeared to be lower in the specialized M cells than in enterocytic-type cells, although expression in both cell types was lower than in adjacent non-FAE. Quantification of immunofluorescent staining of Na+, K+-ATPase by confocal laser scanning imaging showed a reduction of expression in the FAE to approximately 20–60% relative to that in the adjacent non-FAE. These results are consistent with a primary role of the FAE in mucosal immunity with minimal involvement in active solute absorption.  相似文献   

9.
Recent in vitro studies from the rat and rabbit have suggested a tightly coupled sodium/hydrogen ion exchanger on the luminal membrane of proximal tubules. The steep sodium gradient from the lumen to cell supplies indirect energy for hydrogen ions to be pumped from the cell to the lumen. However, a proton translocating pump has been demonstrated in other epithelia, which is independent of sodium transport and directly driven by ATP. To examine the role that sodium might play in the process of acidification, rat proximal convoluted tubules and their surrounding peritubular capillaries were perfused in vivo with artificial ultrafiltrate-like perfusion solutions. Total CO2 absorption was measured by microcalorimetry during alterations in sodium transport by replacement of the sodium with an impermeant cation, choline, or by inhibition of the (Na++K+)-ATPase by removing potassium from both perfusion solutions. Under control conditions the absolute rate of total CO2 absorption was 140 pmol/mm·min. In the choline substitution and potassium removal experiments, absolute total CO2 absorption fell to 23 and 28 pmol/mm·min, respectively. The data suggest that: 1) in the rat superficial proximal convoluted tubule approximately 80% of the bicarbonate absorption is tightly coupled to sodium transport; 2) this process is driven indirectly by the (Na++K+)-ATPase system; and 3) the residual 20% of acidification appears to be mediated by another mechanism or may be a consequence of technical liminations.  相似文献   

10.
Piretanide blocks the Na+ 2Cl K+ cotransporter protein in the thick ascending limb (TAL) of the loop of Henle reversibly. When tested from the luminal side in isolated perfused cTAL segments it leads to a half maximal inhibition (IC50) of the equivalent short circuit current (Isc) at a concentration of 10–6 mol/l. From the basolateral side it has no effect on Isc up to 10–4 mol/l. The present study was designed to search for high affinity blockers of the Na+ 2Cl K+ cotransporter with large molecular weight in an attempt to use these macromolecules for antibody-labelling or affinity separation of this transport-protein. Amino-ethyl-dextran or amino-ethyl-polyethylene glycol (M.W. 5kd) were coupled to isothiocyanato-piretanide (ISO-PIR) at room temperature in DMSO. The resulting compounds dextran-sulfonylurea-piretanide (PIR-DEX) and polyethylene glycol-sulfonylurea-piretanide (PIR-PEG) (M.W. 5.38kd) were purified and tested in isolated perfused cTAL segments. IC50 values for ISO-PIR, PIR-DEX and PIR-PEG were estimated from dose response curves after their addition to the lumen or bath perfusate, respectively. ISO-PIR, PIR-DEX and PIR-PEG acted from the lumen side at 3·10–6, 6·10–6 and 2·10–6 mol/l. The inhibitory effect was easily reversible. From the basolateral side no effect for any compound was seen at up to 10–4 mol/l. In clearance experiments PIR-DEX was given to female Wistar rats as an i.v. bolus (25 mol/kg) and the diuretic urine was collected. After dialysis (exclusion limit 2.5kd) the dialysed urine and the dialysate were tested in isolated perfused cTAL segments. The dialysates had no effect on Isc, but the dialysed urine inhibited Isc by 35% from the luminal side. The present data show: High molecular derivatives of piretanide with dextran or polyethylene glycol moieties block the Na+ 2Cl K+ cotransporter in cTAL segments at roughly the same low concentration as piretanide itself. Our data exclude a metabolism of these piretanide compounds in the kidney. Since these macromolecular probes can probably not enter the cell their inhibitory effect indicates that the binding site for piretanide diuretics on the Na+ 2Cl K+ cotransporter is exposed on the surface of the luminal cell membrane.This study was supported by Deutsche Forschungsgemeinschaft Gr 480/9  相似文献   

11.
The localization of the Na+−K+-ATPase in the cells of rat kidney cortex   总被引:3,自引:0,他引:3  
Summary Plasma membrane fractions of rat kidney cortex were subdivided by centrifugation on a continuous and a discontinuous sucrose gradient and by carrier free continuous electrophoresis. In the different fractions the activity of alkaline phosphatase and aminopeptidase, enzymes which are present in the brushborder membrane, as well as Mg++-ATPase, Na+–K+-ATPase, 5-nucleotidase, acid phosphatase and glucose-6-phosphatase were determined.The distribution of alkaline phosphatase, aminopeptidase and 5-nucleotidase is identical, indicating the localization of these enzymes in the brushborder membrane. Na+–K+-ATPase does not show an identical distribution with any of the enzymes studied.Using carrier free continuous electrophoresis fractions can be obtained which are enriched in alkaline phosphatase by a factor of 15 when compared to the cortex homogenate, whereas the specific activity of Na+–K+-ATPase is reduced to one third of the starting material. On the other hand fractions can be isolated in which the specific activity of Na+–K+-ATPase is 16 times higher than in the homogenate. No enrichment of alkaline phosphatase occurs in these fractions.It is therefore concluded that the Na+–K+-ATPase is not present in the brushborder membrane nor in the lysosomes or endoplasmatic reticulum. The most probable localization of the Na+–K+-ATPase are the basal infoldings of the plasma membranes of the cells.A preliminary report has been published by Kinneet al. [28, 29].Major part of this work was done by J. E. Schmitz for his degree of M. D.  相似文献   

12.
Summary Distribution and principal characteristics of (Na+K+)-activated ATPase in human cornea were investigated.(Na+K+)-ATPase was present in both epithelium and endothelium, whereas the corneal stroma did not exhibit significant enzyme activity.In homogenates specific activity of the (Na+K+)-ATPase was 2.3-fold higher in endothelium than in epithelium. Calculation of total enzyme activity revealed a 6.1-fold higher content of (Na+K+)-ATPase in the epithelium.In the epithelium a 7-fold enrichment of (Na+K+)-ATPase compared to the homogenate was obtained in the 150–1500×g av fraction. Maximum enrichment in the endothelium was 3.5-fold and was achieved in the 1500–2500×g av fraction. Both fractions showed, however, the same specific activity.The pH-optimum of (Na+K+)-ATPase in the 150–1500×g av fraction ranged from 8.0–8.2 in both epithelium and endothelium.In the epithelial 150–1500×g av fraction the apparentK m-values were 4.0 mM for Na+, 2.8 mM for K+ and 0.12 mM for Mg2+ · ATP in equimolar concentrations.The inhibition constant of epithelial (Na+K+)-ATPase for ouabain was determined asK i=3.3×10–7 M.The present data support the view that control of corneal hydration in man is a function of both endothelium and epithelium.  相似文献   

13.
The effect of parathyroid hormone (PTH) on acid/base transport in isolated rabbit renal proximal tubule S3 segment was investigated with double-barreled and conventional microelectrodes. PTH (10 nM) induced a small depolarization and enhanced the initial rates of cell pH (pHi) increase and cell Cl ([Cl]i) decrease in response to bath Cl removal by 28.0±2.1% and 31.0±6.4% respectively. The calculated initial HCO3 influx to bath Cl removal was also enhanced by 28%. On the other hand, PTH reduced the initial rate of pHi decrease to luminal Na+ removal in the absence of HCO3 /CO2 by 20.4±3.9%. The PTH-induced depolarization was not accompanied with changes in steadystate pHi or [Cl]i levels, but was greatly attenuated in the presence of ouabain (0.1 mM). Either dibutyrylcAMP (0.1 mM) plus theophylline (1 mM) or forskolin (10 M) alone could reproduce all the effects of PTH. These results indicate that (a) PTH inhibits the luminal Na+/H+ exchanger but stimulates the basolateral Cl/HCO3 exchanger in the S3 segment; (b) the PTH-induced depolarization largely results from inhibition of Na+/K+-ATPase and (c) all these effects are at least partly mediated by a cAMP-dependent mechanism.  相似文献   

14.
The purpose of this study was to investigate intracytoplasmic pH (pHi) regulation in primary cultures of proximal (PCT) and distal bright (DCTb) convoluted tubules. PCT and DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The cultured epithelia were grown on semi-transparent permeable supports. The pHi was determined by video microscopy and digital image processing using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and measuring the ratio of BCECF fluorescence excited by two successive wavelengths (490 nm and 450 nm). Resting pHi values, determined in bicarbonatefree medium (extracellular pH: 7.40), were 7.25±0.02 (n=23) and 7.17±0.04 (n=30) for cultured PCT and DCTb respecitively. After the acid-loading procedure, cultured proximal cells recovered their pHi by means of the classic Na+/H+ antiporter, sensitive to amiloride and located in the apical membrane only. In cultured DCTb part of the pHi recovery was mediated by a Na+/H+ exchange present in the basolateral side. Moreover, at physiological initial pHi values, chloride removal from the apical solution caused the pHi to increase in the presence of bicarbonate. In acidified cultured DCTb cells, a partial pHi recovery was induced in sodium-free media by 15 mM HCO 3 in the presence of an outward chloride gradient. This pHi change was completely abolished by 4,4-diisothiocyanostilbene 2,2-disulfonic acid (1 mM). These data suggest that DCTb cells possess in apical anion/base exchanger that resembles the Na+-independent Cl/HCO 3 exchanger.  相似文献   

15.
Laboratory of Physiological Genetics, Institute of Cytology and Genetics, Siberian Brach, Russian Academy of Sciences, Novosibirsk. (Presented by Academician of the Russian Academy of Medical SciencesV. P. Lozov.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 114, No. 8, pp. 150–153, August, 1992.  相似文献   

16.
Summary The existence of an ouabain-sensitive (Na+–K+)-activated ATPase system has been demonstrated in the total intestine of the rat. The (Na+–K+)-ATPase activity was about 10–15% of the total ATPase in 4 equal parts of the small intestine; in the colon about 35% of the total ATPase was (Na+–K+)-activated ATPase. The highest (Na+–K+)-ATPase activity has been observed in the first and second part of the small intestine, while in the colon the activity was 2–4 times higher than in the ileum.The (Na+–K+)-ATPase of rat colon required both Na+ (K m=8.3 mmoles/l) and K+ (K m=0.6 mmoles/l). Maximal activation of the (Na+–K+)-ATPase system required 2 mM Mg2+ at an ATP concentration of 2 mM. The pH optimum for (Na+–K+)-ATPase of rat colon was 7.5, while the Mg2+-activated ATPase activity had a pH optimum of 8.6. The (Na+–K+)-ATPase was inhibited by ouabain (pI 50=3.6).The relation between the differences in (Na+–K+)-ATPase activity and Na+-absorption on different parts of the intestine is discussed.  相似文献   

17.
Activity of (Na+K+)-stimulated adenosintriphosphatase in the rat nephron   总被引:11,自引:0,他引:11  
Summary In 17 male Wistar rats in antidiuresis 10 different nephron segments and arteries are identified with the aid of Lowry's technique, dissected and total-and (Mg++)-adenosintriphosphatase (=ATPase) determined. (Na+K+)-activated ATPase in the distal tubule is four to five times (max. eight times) more active than in the proximal segment. This difference of activity may speak for a high pump mechanism mediated by the way of a (Na+K+)-activated enzyme system in the distal nephron and for a partially passive reabsorption of sodium from the proximal convolution.With the support of the Schweiz. Nationalfonds zur Förderung der wissenschaftlichen Forschung (Nr. 4256 and Nr. 4809.3)  相似文献   

18.
Summary The main excretory duct of the submaxillary gland of normal and adrenalectomized rats was perfused with bicarbonate Ringer's solution and the following values were measured: the transepithelial electrical potential difference, the specific electrical resistance of the epithelium, and the transepithelial net fluxes for Na+ and K+. From the potential difference and the resistance, the short circuit current was calculated. Following adrenalectomy the short circuit current dropped to about one half, while the electrical resistance increased around twofold and the transepithelial potential difference remained constant. The reduction of short circuit current was accompanied by a 30% reduction of Na+ reabsorption whereas K+ secretion was only slightly diminished Acute substitution of aldosterone to adrenalectomized animals led to a restitution of the Na+ fluxes and showed a tendency to increase K+ secretion. Following the administration of Actinomycin D to normal animals, Na+ resorption declined as in adrenalectomized rats but K+ secretion remained essentially unchanged. From these observations it is concluded that the hypothetical aldosterone-induced proteins act only on Na-resorption and that they may act by both increasing the sodium permeability of the luminal cell membrane and stimulating active Na+ transport. The latter effect does not seem to consist of a non specific enhancement of the energy supply since it does not influence the active potassium secretion of the cell.  相似文献   

19.
We intend to develop a bioartificial kidney using tubular epithelial cells and artificial membranes, and to evaluate the reabsorptive function of the confluent layers. Madin-Darby canine kidney (MDCK) cells were cultured on a nucleopore polycarbonate membrane for up to 4 weeks after confluence to examine the influence of culture period on their properties, such as the localization of Na+/K+-ATPase and active Na+ transport. The results were as follows. Ouabain-sensitive Na+ active transport declined at 3 to 4 weeks after confluence in each matrix. The localization of Na+/K+-ATPase indicated depolarization in the cell membrane 3 to 4 weeks after confluence. Prolongation of the culture period increased the formation of an upheaving cell mass after the formation of the confluent monolayer. Scanning electron microscopy revealed fewer microvilli and more flat cells after 3 to 4 weeks of confluency. We conclude that the decline of Na+ active transport in the MDCK cells was due to both the formation of multilayers and a decline of cell function throughout the long period of culture following the formation of the confluent monolayers. Further study for selection of membrane material, the extracellular matrix, and species of cells should be continued. Laboratories for Structure and Function Research Department of Physiology  相似文献   

20.
Summary Olsalazine (azodisalicylate) and mesalazine (5-aminosalicylic acid) have recently been developed as new treatment modalities for inflammatory bowel disease to avoid sulfasalazine-related side effects. However, there are reports regarding new and hitherto unexpected side effects in some patients receiving olsalazine or mesalazine, such as watery diarrhea. Since sodium pump activities play an important role in the pathogenesis of water and electrolyte disturbances, we investigated the influence of olsalazine and mesalazine on human ileal and colonic (Na+ + K+)-ATPase and its specific [3H]-ouabain binding. We found a concentration-dependent inhibition of ileal and colonic (Na+ + K+)-ATPase by olsalazine with an IC50 of 4.1 mM and 4.8 mM, respectively. Mesalazine inhibited this enzyme in the ileum with an IC50 of 4.5 mM and in the sigmoid colon with an IC50 3.5 mM. In addition, [3H]-ouabain binding was inhibited by mesalazine with an IC50 of 3.6 mM. The maximal inhibition, however, did not exceed 80% under any conditions (up to 10 mM drug concentration). Olsalazine and mesalazine induce inhibition of the ileal and colonic sodium pump activities that may (in addition to other possible mechanisms) mediate impaired water and electrolyte absorption. This is possibly of clinical relevance in patients with severely damaged mucosa. In patients with milder forms of mucosal inflammation, this inhibition most likely is of minor importance because of the great capacitiy of the (Na+ + K+)-ATPase and the incomplete inhibition leaving at least 20% of the enzyme activity intact.Abbreviations 5-ASA 5-aminosalicylic acid - EDTA ethylenediaminetetracetic acid - IBD inflammatory bowel disease  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号