首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Filarial infections evoke exuberant inflammatory responses in the peritoneal cavities of immunocompetent mice. Clearance of infection appears to be dependent on complex interactions between B1 and B2 B lymphocytes, T cells, eosinophils, macrophages, and the products of these cells. In an earlier communication, we described the course of infection in normal immunocompetent mice. In this study, we utilize mice with well-characterized mutations that disable one or more effector components of adaptive immunity in order to determine their roles in host protection. We characterize peritoneal exudate cells by flow cytometry and determine the kinetics of accumulation of each of the different cell types following infection with Brugia pahangi. We find that (i) four-color flow-cytometric analysis of peritoneal exudate cells using anti-CD3, -CD11b, -CD19, and -Gr1 can distinguish up to six different populations of cells; (ii) an initial influx of neutrophils occurs within 24 h of infection, independent of the adaptive immune status of mice, and these cells disappear by day 3; (iii) an early influx of eosinophils is seen at the site of infection in all strains studied, but a larger, second wave occurs only in mice with T cells; (iv) the presence of T cells and eosinophils is important in causing an increase in macrophage size during the course of infection; and (v) most unexpectedly, T-cell recruitment appears to be optimal only if B cells are present, since JHD mice recruit significantly fewer T cells to the site of infection.  相似文献   

2.
In previous studies using a murine model of filarial infection, granuloma formation was found to be a most important host-protective mechanism. We have also shown that in vitro cytoadherence is a surrogate for the formation of antifilarial granulomas in vivo and that it requires "alternatively activated" host cells and a source of antifilarial antibody. We show here that antibodies against L3 excretory/secretory (E/S) products can facilitate in vitro cytoadherence. We generated a set of hybridomas reactive with filarial E/S products and screened them for their ability to mediate in vitro cytoadherence. One clone (no. 1E9) was positive in this assay. We then screened a novel expression library of filarial antigens displayed on the surface of T7 bacteriophage for reactivity with 1E9. Phage expressing two filarial antigens (TCTP and BmALT-2) reacted with 1E9. Immunization of mice showed that the cohort immunized with BmALT-2 cleared a challenge infection with infective Brugia pahangi L3 in an accelerated manner, whereas cohorts immunized with TCTP cleared larvae with the same kinetics as in unimmunized mice. These data confirm that BmALT-2 is the antigenic target of granuloma-mediated killing of B. pahangi L3. Our findings also confirm previous studies that BmALT-2 is a potential vaccine candidate for filarial infection. Our data reinforce the work of others and also provide a possible mechanism by which immune responses to BmALT-2 may provide host protection.  相似文献   

3.
There is increasing evidence that neutrophils are involved in the regulation of adaptive immunity. We therefore tested whether these cells may colocalize with T lymphocytes in lymphoid organs. Our results demonstrate that administration of the microbial product LPS induces the migration of neutrophils in the spleen from the red pulp and the marginal zone to the area of the white pulp where T cells reside. This movement is CD14-dependent, whereas the recruitment of neutrophils in the peritoneal cavity is increased in the absence of CD14. Our data further suggest the involvement of the chemokine MIP-2 and keratinocyte-derived chemokine and their receptor CXCR2. We conclude that neutrophils may interact with na?ve T cells upon infection/inflammation and that the migration of neutrophils in the lymphoid organs and in the periphery is regulated differently by a signal transduced by CD14.  相似文献   

4.
The relative contributions of transmembrane tumor necrosis factor (memTNF) and soluble tumor necrosis factor (solTNF) in innate and adaptive immunity are poorly defined. We examined the capacities of wild-type (WT) mice, TNF-/- mice, and memTNF mice, which express only transmembrane TNF, to control primary and secondary Listeria monocytogenes infections. Soluble TNF was not required for induction or maintenance of protective immunity against a low-dose (200-CFU) Listeria infection. In contrast to TNF-/- mice, both WT and memTNF mice cleared the bacilli within 10 days and were fully protected against rechallenge with a lethal infective dose. Furthermore, T cells transferred from immune mice, but not from na?ve, WT, and memTNF mice, protected TNF-/- recipients against an otherwise lethal infection. By contrast, infection with a higher dose of Listeria (2,000 CFU) clearly demonstrated that solTNF is required to coordinate an optimal protective inflammatory response. memTNF mice were more susceptible to a high-dose infection, and they exhibited delayed bacterial clearance, increased inflammation, and necrosis in the liver that resulted in 55% mortality. The dysregulated inflammation was accompanied by prolonged elevated expression of mRNAs for several chemokines as well as the macrophage effector molecules inducible nitric oxide synthase and LRG-47 in the livers of memTNF mice but not in the livers of WT mice. These data demonstrated that memTNF is sufficient for establishing protective immunity against a primary low-dose Listeria infection but that solTNF is required for optimal control of cellular inflammation and resistance to a primary high-dose infection. By contrast, memTNF alone is sufficient for resolution of a secondary, high-dose infection and for the transfer of protective immunity with memory T cells.  相似文献   

5.
Filarial infections have been associated with the development of a strongly polarized Th2 host immune response and a severe impairment of mitogen-driven proliferation and type 1 cytokine production in mice and humans. The role of this polarization in the development of the broad spectra of clinical manifestations of lymphatic filariasis is still unknown. Recently, data gathered from humans as well as from immunocompromised mouse models suggest that filariasis elicits a complex host immune response involving both Th1 and Th2 components. However, responses of a similar nature have not been reported in immunologically intact permissive models of Brugia infection. Brucella abortus-killed S19 was inoculated into the Brugia-permissive gerbil host to induce gamma interferon (IFN-gamma) production. Gerbils were then infected with B. pahangi, and the effect of the polarized Th1 responses on worm establishment and host cellular response was measured. Animals infected with both B. abortus and B. pahangi showed increased IFN-gamma and interleukin-10 (IL-10) and decreased IL-4 and IL-5 mRNA levels compared with those in animals infected with B. pahangi alone. These data suggest that the prior sensitization with B. abortus may induce a down regulation of the Th2 response associated with Brugia infection. This reduced Th2 response was associated with a reduced eosinophilia and an increased neutrophilia in the peritoneal exudate cells. The changes in cytokine and cellular environment did not inhibit the establishment of B. pahangi intraperitoneally. The data presented here suggest a complex relationship between the host immune response and parasite establishment and survival that cannot be simply ascribed to the Th1/Th2 paradigm.  相似文献   

6.
Protective host defense mechanisms against vaginal Candida albicans infections are poorly understood. Although cell-mediated immunity (CMI) is the predominant host defense mechanism against most mucosal Candida infections, the role of CMI against vaginal candidiasis is uncertain, both in humans and in an experimental mouse model. The role of humoral immunity is equally unclear. While clinical observations suggest a minimal role for antibodies against vaginal candidiasis, an experimental rat model has provided evidence for a protective role for Candida-specific immunoglobulin A (IgA) antibodies. Additionally, Candida vaccination-induced IgM and IgG3 antibodies are protective in a mouse model of vaginitis. In the present study, the role of infection-induced humoral immunity in protection against experimental vaginal candidiasis was evaluated through the quantification of Candida-specific IgA, IgG, and IgM antibodies in serum and vaginal lavage fluids of mice with primary and secondary (partially protected) infection. In na?ve mice, total, but not Candida-specific, antibodies were detected in serum and lavage fluids, consistent with lack of yeast colonization in mice. In infected mice, Candida-specific IgA and IgG antibodies were induced in serum with anamnestic responses to secondary infection. In lavage fluid, while Candida-specific antibodies were detectable, concentrations were extremely low with no anamnestic responses in mice with secondary infection. The incorporation of alternative protocols-including infections in a different strain of mice, prolongation of primary infection prior to secondary challenge, use of different enzyme-linked immunosorbent assay capture antigens, and concentration of lavage fluid-did not enhance local Candida-specific antibody production or detection. Additionally, antibodies were not removed from lavage fluids by being bound to Candida during infection. Together, these data suggest that antibodies are not readily present in vaginal secretions of infected mice and thus have a limited natural protective role against infection.  相似文献   

7.
The myeloid differentiation primary response gene 88 (Myd88) is critical for protection against pathogens. However, we demonstrate here that MyD88 expression in B cells inhibits resistance of mice to Salmonella typhimurium infection. Selective deficiency of Myd88 in B cells improved control of bacterial replication and prolonged survival of the infected mice. The B cell-mediated suppressive pathway was even more striking after secondary challenge. Upon vaccination, mice lacking Myd88 in B cells became completely resistant against this otherwise lethal infection, whereas control mice were only partially protected. Analysis of immune defenses revealed that MyD88 signaling in B cells suppressed three crucial arms of protective immunity: neutrophils, natural killer cells, and inflammatory T?cells. We further show that interleukin-10 is an essential mediator of these inhibitory functions of B cells. Collectively, our data identify a role for MyD88 and B cells in regulation of cellular mechanisms of protective immunity during infection.  相似文献   

8.
Perforin (cytolysin; pore-forming protein) is expressed in both CD8(+) cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, and is a major factor responsible for the cytolytic activities of these cells. Both CD8(+) T-cells and NK cells are important in eliminating cells infected with certain viruses. We examined the role of perforin in a mouse model of HSV-1 infection using perforin-deficient mice. Na?ve perforin knockout (perforin(0/0)) mice were more susceptible to lethal HSV-1 ocular challenge (60% survival), than na?ve parental C57BL/6 (100% survival). In contrast, both C57BL/6 and perforin(0/0) mice had similar levels of HSV-1 induced corneal scarring. Vaccination of perforin(0/0) mice induced a significantly higher HSV-1 neutralizing antibody titer than vaccination of C57BL/6 mice, and the mice were completely protected against lethal ocular challenge. These results suggest that in na?ve mice ocularly challenged with HSV-1, the perforin pathway was involved in protection against death, but not in protection against corneal scarring.  相似文献   

9.
Li Q  Ruan Z  Zhang H  Peng N  Zhao S  Qin L  Chen X 《Parasitology research》2012,110(2):961-969
T lymphocytes play a vital role in antimalaria immunity, but there is little information about the role of T cells in malaria infection. In order to explore the profile of T cells in malaria immunity, we infected Chinese rhesus macaques with the malaria parasite (Plasmodium cynomolgi) and examined the dynamics of T cell subsets. Both repeated and long-term infections were involved. Our results showed that the monkeys in the repeated infection group acquired protective immunity through primary infection, which was evidenced by a much lower parasitemia, milder anemia, and milder fever during reinfection; the monkeys in the long-term infection group also developed protective immunity, but this was not sufficient to eliminate the parasite. The total counts of leukocytes, neutrophils, CD3+ T cells, CD4+ or CD8+ T cells, and na?ve and memory CD4+ and CD8+ T cells declined during the acute phase of malaria but increased after the parasite was controlled. The total number of activated CD4+ T cells significantly increased during malaria in animals with a long-term infection, which remained at least 3 months after the termination of malaria. However, the activated CD4+ T cells decreased during the acute phase of infection in the repeated infection group and converted to preinfection levels after malaria was cured. Regulatory CD4+ T cells continued to increase during the malaria infections and quickly reverted to preinfection levels after the parasite was controlled. Our study provides a systematic analysis of the kinetic profiles of T lymphocyte subsets during malaria infections and provides some experimental insight into malaria immunology.  相似文献   

10.
Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of na?ve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus, Bacteroides fragilis, and a combination of Enterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28-B7-2 pathway.  相似文献   

11.
IL-15 plays a crucial role in innate defense against viral infections. The role of IL-15 in the generation and function of adaptive immunity, following mucosal immunization, against genital HSV-2 has not been studied. Here, we report that immunized IL-15(-/-) mice were able to generate antibody and T cell-mediated immune responses against HSV-2, comparable to those seen in immunized B6 mice. However, immunized IL-15(-/-) mice were not protected against subsequent HSV-2 challenge, compared to B6 immunized mice, even with a ten times lower challenge dose. We then examined if the adaptive immune responses generated in the absence of IL-15 could provide protection against HSV-2 in an IL-15-positive environment. Adoptive transfer of lymphocytes from immunized IL-15(-/-) to naive mice were able to provide protection against HSV-2 challenge similar to protection with immunized cells from control mice. This suggests that the adaptive immune responses raised in the absence of IL-15 are functional in vivo. Reconstitution of the innate components, particularly IL-15, NK cells and NK cell-derived IFN-gamma, in immunized IL-15(-/-) mice restored their protective adaptive immunity against subsequent genital HSV-2 challenge. Our results clearly suggest that innate antiviral activity of IL-15 is necessary for protective adaptive immunity against genital HSV-2 infection.  相似文献   

12.
Important to malaria vaccine design is the phenomenon of "strain-specific" immunity. Using an accurate and sensitive assay of parasite genotype, real-time quantitative PCR, we have investigated protective immunity against mixed infections of genetically distinct cloned "strains" of the rodent malaria parasite Plasmodium chabaudi chabaudi in mice. Four strains of P. c. chabaudi, AS, AJ, AQ, and CB, were studied. One round of blood infection and drug cure with a single strain resulted in a partial reduction in parasitemia, compared with levels for na?ve mice, in challenge infections with mixed inocula of the immunizing (homologous) strain and a heterologous strain. In all cases, the numbers of blood-stage parasites of each genotype were reduced to similar degrees. After a second, homologous round of infection and drug cure followed by challenge with homologous and heterologous strains, the parasitemias were reduced even further. In these circumstances, moreover, the homologous strain was reduced much faster than the heterologous strain in all of the combinations tested. That the immunity induced by a single infection did not show "strain specificity," while the immunity following a second, homologous infection did, suggests that the "strain-specific" component of protective immunity in malaria may be dependent upon immune memory. The results show that strong, protective immunity induced by and effective against malaria parasites from a single parasite species has a significant "strain-specific" component and that this immunity operates differentially against genetically distinct parasites within the same infection.  相似文献   

13.
Mice immunized with irradiated Onchocerca volvulus third-stage larvae developed protective immunity. Eosinophil levels were elevated in the parasite microenvironment at the time of larval killing, and measurements of total serum antibody levels revealed an increase in the immunoglobulin E (IgE) level in immunized mice. The goal of the present study was to identify the role of granulocytes and antibodies in the protective immune response to the larval stages of O. volvulus in mice immunized with irradiated larvae. Immunity did not develop in mice if granulocytes, including both neutrophils and eosinophils, were eliminated, nor did it develop if only eosinophils were eliminated. Moreover, larvae were killed in na?ve interleukin-5 transgenic mice, and the killing coincided with an increase in the number of eosinophils and the eosinophil peroxidase (EPO) level in the animals. To determine if EPO was required for protective immunity, mice that were genetically deficient in EPO were immunized, and there were no differences in the rates of parasite recovery in EPO-deficient mice and wild-type mice. Two mouse strains were used to study B-cell function; micro MT mice lacked all mature B cells, and Xid mice had deficiencies in the B-1 cell population. Immunity did not develop in the micro MT mice but did develop in the Xid mice. Finally, protective immunity was abolished in mice treated to eliminate IgE from the blood. We therefore concluded that IgE and eosinophils are required for adaptive protective immunity to larval O. volvulus in mice.  相似文献   

14.
Citrobacter rodentium, an attaching-effacing bacterial pathogen, establishes an acute infection of the murine colonic epithelium and induces a mild colitis in immunocompetent mice. This study describes the role of T-cell subsets and B lymphocytes in immunity to C. rodentium. C57Bl/6 mice orally infected with C. rodentium resolved infection within 3 to 4 weeks. Conversely, systemic and colonic tissues of RAG1(-/-) mice orally infected with C. rodentium contained high and sustained pathogen loads, and in the colon this resulted in a severe colitis. C57Bl/6 mice depleted of CD4(+) T cells, but not CD8(+) T cells, were highly susceptible to infection and also developed severe colitis. Mice depleted of CD4(+) T cells also had diminished immunoglobulin G (IgG) and IgA antibody responses to two C. rodentium virulence-associated determinants, i.e., EspA and intimin, despite having a massively increased pathogen burden. Mice with an intact T-cell compartment, but lacking B cells ( micro MT mice), were highly susceptible to C. rodentium infection. Systemic immunity, but not mucosal immunity, could be restored by adoptive transfer of convalescent immune sera to infected micro MT mice. Adoptive transfer of immune B cells, but not na?ve B cells, provided highly variable immunity to recipient micro MT mice. The results suggest that B-cell-mediated immune responses are central to resolution of a C. rodentium infection but that the mechanism through which this occurs requires further investigation. These data are relevant to understanding immunity to enteric attaching and effacing bacterial pathogens of humans.  相似文献   

15.
The role of CD8+ T cells in adaptive immunity is well documented and involves numerous effector mechanisms including direct cytolysis of targets and secretion of cytokines. The role of CD8+ T cells in innate immunity has not been previously appreciated. Using J774 macrophages infected in vitro with the intracellular bacterium, Listeria monocytogenes (LM), we show that CD8+ T cells isolated from na?ve C57BL/6 (B6) mice respond rapidly by secreting IFN-gamma. CD8+ T cells secreting IFN-gamma can also be found in na?ve B6 mice 16 h after infection with LM. This rapid IFN-gamma response is TCR-independent and mediated through the actions of IL-12 and IL-18. Cell surface staining and cell sorting experiments indicate that these novel CD8+ T cells express memory markers. In vitro CFSE-labeling experiments show that IFN-gamma-secreting CD8+ T cells proliferate rapidly after 2 days in culture and after 4 days constitute the majority of the CD8+ T cell population. Together, these data suggest an important role for IFN-gamma-secreting CD8+ T cells in the innate response to bacterial pathogens.  相似文献   

16.
Peritoneal macrophages from Mongolian jirds (Meriones unguiculatus) with either lymphatic or intraperitoneal infections of Brugia pahangi were studied to determine the effects of infection on macrophage function and morphology. Macrophages were collected at 40, 90, 140, and 200 days after inoculation of infective third-stage larvae and assayed for phagocytic and bactericidal activity by the acridine orange method and for morphological changes by light and electron microscopy. Significant increases in phagocytic and microbicidal activity (P less than or equal to 0.01) were observed in peritoneal macrophages collected from jirds with intraperitoneal infections when compared with peritoneal macrophages from jirds with lymphatic infections and resident peritoneal macrophages from normal, noninfected jirds. Morphological changes in peritoneal macrophages from jirds with intraperitoneal infections were similar to those found in thioglycolate-elicited macrophage populations. Granuloma formation was also observed in the peritoneal cavities of intraperitoneally infected jirds. The peritoneal cavity may serve as a model to study cell-worm interactions in filarial nematode infections.  相似文献   

17.
Several microbial infections, including Mycoplasma pneumoniae respiratory infection, are capable, in man, of transiently inducing the expression of anti-red blood cell autoantibody called cold agglutinins (CA). To analyze the mechanisms by which immune tolerance is broken following a mycoplasma infection, we used transgenic mice expressing a pathogenic human CA, designated CA-GAS, specific for sialylated carbohydrates. In these mice peripheral deletion of autoreactive B lymphocytes and receptor editing, prevent the development of autoimmune hemolytic anemia. Experimental infections of transgenic mice with Mycoplasma pulmonis resulted in a high anti-mycoplasma antibody response (despite a severe B cell depletion at the onset of infection), and an important induction of serum CA concentrations, reaching in some mice pathological titers. Whereas in na?ve mice, only a small percentage of CA-expressing cells could be detected, in infected mice, a majority of circulating B lymphocytes were large B220(-) cells, which expressed the transgenic immunoglobulin. Immunization of the transgenic mice with keyhole limpet hemocyanin and Freund's adjuvant, to nonspecifically stimulate the expression of the passenger transgenes, only moderately increased the CA titers. These results indicate that M. pulmonis infection is capable of breaking immune tolerance in the CA-transgenic mice, in part through specific activation of CA-expressing B lymphocytes. This experimental infection mimics the induction of CA in humans and provide an animal model for studying the genesis of the autoimmune hemolytic anemia.  相似文献   

18.
The heterotrimeric guanine nucleotide-binding protein Galphai2 is involved in regulation of immune responses against microbial and nonmicrobial stimuli. Galphai2-/- mice have a selectively impaired IgM response consistent with a disorder in B cell development yet have augmented T cell effector function associated with increased production of IFN-gamma and IL-4. The goal of the present study was to determine if a deficiency in the Galphai2 protein in mice would affect the protective immune response against Strongyloides stercoralis, which is IL-4-, IL-5-, and IgM-dependent. Galphai2-/- and wild-type mice were immunized and challenged with S. stercoralis larvae and analyzed for protective immune responses against infection. Galphai2-/- mice failed to kill the larvae in the challenge infection as compared with wild-type mice despite developing an antigen-specific Th2 response characterized by increased IL-4, IL-5, IgM, and IgG. Transfer of serum collected from immunized Galphai2-/- mice to na?ve wild-type mice conferred passive protective immunity against S. stercoralis infection thus confirming the development of a protective antibody response in Galphai2-/- mice. Differential cell analyses and myeloperoxidase assays for quantification of neutrophils showed a significantly reduced recruitment of neutrophils into the microenvironment of the parasites in immunized Galphai2-/- mice. However, cell transfer studies demonstrated that neutrophils from Galphai2-/- mice are competent in killing larvae. These data demonstrate that Galphai2 signaling events are not required for the development of the protective immune responses against S. stercoralis; however, Galphai2 is essential for the recruitment of neutrophils required for host-dependent killing of larvae.  相似文献   

19.
M Zhang  H Hisaeda  T Sakai  H Ishikawa  Y-P Hao  Y Nakano  Y Ito    K Himeno 《Immunology》1999,97(4):611-615
C57BL/6 (B6) mice are resistant to infection with the non-lethal (NL) strain of Plasmodium yoelii 17X, while being susceptible to that with the lethal (L) strain. The 65 000 MW heat-shock protein (hsp 65) was strongly expressed in splenic adherent cells of B6 mice 10 days after infection with the NL strain of P. yoelii but only slightly in those from mice infected with the L strain. Mice which had survived infection with the NL strain were resistant to challenge with the L strain and hsp 65 was strongly expressed in splenic adherent cells of these mice. Severe combined immunodeficient mice and nude mice were susceptible to malaria infection even with the NL strain and did not express hsp 65 after infection, suggesting that T cells are required for the expression of hsp 65 as well as for protective immunity. B6 mice treated intraperitoneally with carrageenan, which impairs the macrophage function, became susceptible to NL strain infection, indicating that macrophages play an important role as the final effectors in protective immunity. These results demonstrate that the hsp 65 expressed by macrophages correlates closely with protection against P. yoelii infection.  相似文献   

20.
Interaction between dendritic cells (DCs) and T cells is essential for the generation of cell-mediated immunity. Here we show that DCs from mice with chronic Leishmania donovani infection fail to migrate from the marginal zone to the periarteriolar region of the spleen. Stromal cells were fewer, which was associated with loss of CCL21 and CCL19 expression. The residual stromal cells and endothelium produced sufficient CCL21 to direct the migration of DCs transferred from na?ve mice. However, DCs from infected mice had impaired migration both in na?ve recipients and in vitro, in response to CCL21 and CCL19. Defective localization was attributable to tumor necrosis factor-alpha-dependent, interleukin 10-mediated inhibition of CCR7 expression. Effective immunotherapy was achieved with CCR7-expressing DCs, without the need to identify protective Leishmania antigens. Thus defective DC migration plays a major role in the pathogenesis of this disease and the immunosuppression is mediated, at least in part, through the spatial segregation of DCs and T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号