首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
G protein activation by somatostatin (somatotropin release inhibiting factor, SRIF), cortistatin (CST) and analogues of these neuropeptides was investigated at human somatostatin receptor subtypes 1-5 (sst1-5) stably expressed in CCL39 Chinese hamster lung fibroblast cells by measuring agonist-stimulated [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding. [35S]GTPgammaS binding was assessed in the presence of 100 mM NaCl and 1 microM GDP, although higher Emax and/or pEC50 values may have been obtained under other conditions, but at the expense of lower absolute stimulation or signal/noise ratio. SRIF14 stimulated [35S]GTPgammaS binding to 162, 220, 148 and 266% of control levels via sst2, sst3, sst4 and sst5 receptors, respectively. At sst1 receptors, SRIF14 produced only a limited stimulation (Emax 115%). Hence sst1 receptors were not subjected to further [35S]GTPgammaS binding experiments. [35S]GTPgammaS binding assays were then performed with sst2-5 receptors. Most of the peptide analogues stimulated [35S]GTPgammaS binding in sst2-5 receptor-expressing cells. BIM 23056 behaved as an antagonist on SRIF14-induced [35S]GTPgammaS binding with an apparent pKBs of 6.33 and 5.84 at hsst3 and hsst5 receptors respectively, whereas neither agonism nor antagonism could be shown (at 1 microM) at sst2 or sst4 receptors. The effect at sst5 receptors was not surmountable and needs further investigations. The so-called "antagonist" SA, was devoid of antagonist activity at sst2 or sst3 receptors, whereas it was almost a full agonist at sst4 and sst5 receptor-mediated [35S]GTPgammaS binding. The [35S]GTPgammaS-binding profiles of hsst2-5 receptors were compared with their respective radioligand binding profiles. For sst4 and sst5 receptors, the rank order of affinity of all tested radioligands correlated highly significantly with [35S]GTPgammaS binding (r = 0.814-0.897). At sst3 receptors, [35S]GTPgammaS binding correlated somewhat less with binding profiles obtained with [125I][Tyr10]CST14 and [125I]CGP 23996 than with [125I]LTT-SRIF28 (r = 0.743, 0.757 and 0.882, respectively). At sst2 receptors, [35S]GTPgammaS binding correlated with [125I]LTT-SRIF28, [125I]CGP 23996 and [125I][Tyr3]octreotide binding profiles (r = 0.596-0.699), but not with [125I][Tyr10]CST14 binding. The present [35S]GTPgammaS binding data combined to previous radioligand binding results obtained in cells expressing human SRIF receptors, suggest that at any given receptor, agonists' rank orders of potency (not to mention absolute affinity values which vary profoundly) are not as strictly ordered as may be anticipated. We are investigating these aspects further by analysing additional signalling pathways.  相似文献   

3.
The availability of antagonist ligands for somatostatin receptors is very limited, with those that are available often displaying agonist properties or limited receptor subtype selectivity. Hay et al. [Bioorg. Med. Chem. Lett. 11 (2001) 2731] recently described the development of small-molecule somatostatin receptor subtype 2 (sst(2)) selective compounds. This study investigates the binding affinity and functional characteristics of two of those antagonists (2 and 3) and the agonist compound, from which they were derived (1). In radioligand binding studies using the agonist radioligands [125I][Tyr(11)]SRIF-14 (Ala-Gly-c[Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-(125I-Tyr)-Thr-Ser-Cys]-OH), [125I]LTT-SRIF-28 ([Leu(8),DTrp(22),125I-Tyr(25)]SRIF-28; Ser-Ala-Asn-Ser-Asn-Pro-Ala-Leu-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-c[Cys-Lys-Asn-Phe-Phe-DTrp-Lys-Thr-(125I-Tyr)-Thr-Ser-Cys]-OH), [125I]CGP 23996 (c[Lys-Asu-Phe-Phe-Trp-Lys-Thr-(125I-Tyr)-Thr-Ser]), [125I][Tyr(3)]octreotide (DPhe-c[Cys-(125I-Tyr)-DTrp-Lys-Thr-Cys]-Thr-OH) and [125I][Tyr(10)]cortistatin-14 (Pro-c[Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-(125I-Tyr)-Ser-Ser-Cys]-Lys) at human recombinant somatostatin receptors expressed in Chinese hamster lung fibroblast (CCL39) cells and native rat cortex, the compounds bound with high affinity (pK(d) 6.8-9.7) and selectivity to human sst(2) receptors. Some affinity was also observed for sst(5) labelled by [125I][Tyr(3)]octreotide and [125I]CGP 23996. In functional studies at human sst(2) receptors expressed in Chinese hamster ovary (CHO) cells, both the agonist 1 and the two putative antagonists 2 and 3 concentration dependently inhibited forskolin-stimulated adenylate cyclase and stimulated luciferase reporter gene expression, with similar efficacy to the natural ligand somatotropin release inhibiting factor (SRIF)-14. Compound 1 had similar potency to SRIF-14, which was in the nanomolar range, whereas 2 and 3 were 10-100-fold less potent. The intrinsic activity of 2 and 3 was too high to allow antagonist studies to be carried out. In conclusion, in contrast to previous findings, all three compounds are potent agonists at recombinant human sst(2) receptors.  相似文献   

4.
The five human somatostatin receptor subtypes (hsst1-5) were stably expressed in CCL39 cells (Chinese hamster lung fibroblast cells) to study the inhibition of forskolin-stimulated adenylate cyclase (FSAC) activity induced by somatostatin (somatotropin release inhibiting factor, SRIF), cortistatin (CST) and SRIF peptide analogues. Inhibition of FSAC was observed with all five receptors, although the maximal effects produced by SRIF14 varied from around 40% (sst1, sst2, sst4) to 67% (sst3, sst5) reflecting to some extent differences in receptor density (Bmax values published in accompanying paper, this journal). SRIF28 was slightly more potent than SRIF14 to inhibit FSAC at all five receptors, although the potency of the natural peptides SRIF14, SRIF28 and CST17 was generally similar with pEC50-values ranging from 7.5 to 8.7 depending on receptor and peptide. At SRIF1 receptors (sst2, sst3, sst5) most of the peptide analogues displayed full agonism (with some exceptions e.g. BIM 23056 at sst1-3 and sst5 receptors, and L362,855 and cycloantagonist SA at sst3 receptors), whereas at SRIF2 receptors these analogues tended to behave as partial agonists. BIM 23056 was an antagonist at sst3 receptors (antagonist binding constant pKB = 6.33), but not at other receptors. The AC inhibition profiles of sst1-5 receptors were compared with the different radioligand binding profiles as well as with [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding profile for sst2-5 receptors. High correlations were observed between FSAC inhibition, radioligand binding and [35S]GTPgammaS binding profiles at sst3, sst4 and sst5 receptors; by contrast, correlation coefficients at sst1 and sst2 receptors were low, and the binding profiles of [125I][Tyr10]CST14 correlated poorly. In line with these findings, the FSAC inhibition and [35S]GTPgammaS binding correlated poorly at sst2 receptors (sst1 receptors show no significant induction of [35S]GTPgammaS binding). The apparent lack of, or only weak, relationship between FSAC, radioligand or [35S]GTPgammaS binding observed for some SRIF receptors suggests that different active states may exist for these receptors, which may favour one transduction cascade over others.  相似文献   

5.
Clinically used somatostatin (SRIF) analogs, octreotide and lanreotide, act primarily by binding to SRIF receptor subtype 2 (sst2). In contrast, the recently described multiligand SOM230 binds with high affinity to sst(1-3) and sst5 and KE 108 is characterised as a high affinity ligand for all five SRIF receptors. In tumoural mouse corticotrophs (AtT-20 cells) and in mouse hippocampus, binding and functional features of KE 108 were examined and compared to SRIF-14, octreotide and SOM230. In AtT-20 cells, KE 108 bound with high affinity at [125I]LTT-SRIF-28-labelled sites similarly to SRIF-14, octreotide and SOM230. At the functional level, all four ligands increased guanosine-5'-O-(3-[35S]thio)-triphosphate binding and decreased cAMP accumulation or intracellular Ca2+ concentration through G(i/o) proteins. In hippocampal slices, KE 108, octreotide and SOM230 also bound with high affinity at [125I]LTT-SRIF-28-labelled sites similarly to SRIF-14, but KE 108, octreotide or SOM230 did not influence spontaneous epileptiform activity which was, in contrast, inhibited by SRIF-14. In conclusion, this study demonstrates that KE 108 has high affinity for native mouse SRIF receptors. Functionally, KE 108 mediates SRIF action at sst(2/5) in corticotrophs whereas it does not mimic the SRIF-induced inhibition of hippocampal excitation suggesting that the high potency and efficacy of a synthetic ligand to all known SRIF receptors may not reproduce entirely the effects of the natural SRIF.  相似文献   

6.
Total [3H]phosphoinositide (IPx) accumulation, a measure of phospholipase C (PLC) activity, induced by somatostatin (somatotropin release-inhibiting factor, SRIF) and cortistatin (CST) analogues was studied at human somatostatin receptor subtypes 1-5 (hsst1-5) recombinantly expressed in CCL39 (Chinese hamster lung fibroblast) cells. SRIF14 (10 microM) stimulated total [3H]-IPx production 200% and 1070% over basal levels, and increased intracellular Ca2+ ([Ca2+]i) 1600% and 2790%, in cells expressing hsst3 and hsst5 receptors, respectively. The SRIF14-stimulated IPx production was partly blocked by 100 ng/ml pertussis toxin (PTX) (30% and 15% inhibition, respectively). At hsst1, hsst2, and hsst4 receptors, only weak or no stimulation of PLC activity was found (Emax = 114%, 122%, and 102%, respectively). Consequently, hsst3 and hsst5 receptors were subjected to more detailed studies to establish pharmacological profiles of PLC stimulation. At hsst3 receptors, the relative efficacies of most ligands were in the same range (maximum response Emax = 218-267%). At hsst5 receptors Emax varied over a broad range, seglitide, CST17, SRIF28 displaying almost full agonism compared to SRIF14, whereas octreotide and BIM 23052 showed very low partial agonism. BIM 23056 behaved as an antagonist on SRIF14-induced total [3H]-IPx accumulation with a pKB (negative logarithm of antagonist binding constant) of 6.74 at hsst3 receptors, and of 6.94 at hsst5 receptors. The putative cycloantagonist SA showed weak antagonist activity on SRIF14-induced total [3H]-IPx levels at hsst3 (pKB = 5.85), but not at hsst5 receptors. The [3H]-IPx accumulation profiles at sst3/sst5 receptors were compared to their respective radioligand binding ([125I]LTT-SRIF28, [125I][Tyr10]CST14, [125I]CGP 23996, [125I][Tyr3]octreotide binding), to [35S]GTPgammaS binding, and to forskolin-stimulated adenylate cyclase (FSAC) inhibition profiles determined previously in CCL39 cells. The different affinity profiles correlated relatively well at both receptor subtypes with PLC activation (sst3: r = 0.90-0.97; sst5: r = 0.80-0.87). However, [35S]GTPgammaS binding correlated only minimally with stimulation of [3H]-IPx levels at sst5 receptors (r = 0.59), but rather well at sst3 receptors (r = 0.80). A moderate correlation was also observed between inhibition of FSAC activity and stimulation of PLC activity for hsst3 and hsst5 receptors with correlation coefficients of 0.85 and 0.70, respectively. In summary, most SRIF analogues behave as full agonists at hsst3 receptors and agonist-induced phosphoinositide turnover correlates well with radioligand binding, [35S]GTPgammaS binding and inhibition of adenylate cyclase activity, all measured in CCL39 cells. By contrast, at hsst5 receptors, most SRIF analogues behave as intermediate or very low partial agonists (although receptor levels are comparatively high, 7000 vs. 400 fmol/mg), and the agonist-induced phosphoinositide turnover correlates rather poorly with radioligand binding, [35S]GTPgammaS binding or inhibition of adenylate cyclase activity, all measured in the same cell line. Agonist-induced phosphoinositide turnover, [35S]GTPgammaS binding and inhibition of adenylate cyclase activity, show differences both in the rank orders of potency and relative efficacy at hsst3 and markedly at hsst5 receptors, suggesting either that PLC activity is functionally irrelevant or, more probably, that agonist-dependent receptor trafficking is taking place in CCL39 cells.  相似文献   

7.
1 The fish somatostatin receptor 3 (fsst3) is one of the few somatostatin (SRIF) receptors cloned from a non-mammalian species so far. Here we extended our earlier characterization of this receptor by investigating the guanine nucleotide sensitivity of agonist radioligand binding at the fsst3 receptor recombinantly expressed in CCL39 (Chinese hamster lung fibroblast) cells. Further, we measured somatostatin (SRIF) and cortistatin (CST) analogues stimulated GTPgammaS binding, inhibition of forskolin-stimulated adenylate cyclase (FSAC) and stimulation of phospholipase C (PLC) activities. The present transductional data were then compared with previous radioligand binding and/or second messenger features determined for fsst3 and/or human SRIF receptors (hsst2, hsst3 and hsst5). 2 The GTP analogue guanylylimidodiphosphate (GppNHp) inhibited binding of [125I]CGP 23996 and [125I][Tyr3octreotide by 72 and 83% suggesting preferential labelling of G-protein-coupled fsst3 receptors. By contrast, [125I]LTT-SRIF28 and [125I][Tyr10]CST14 binding was rather GppNHp insensitive (42 and 35% inhibition) suggesting labelling of both coupled and non-coupled receptor states. These results might explain the apparent higher receptor densities determined in saturation experiments with [125I]LTT-SRIF28 and [125I][Tyr10]CST14 (4470 and 4030 fmol mg(-1)) compared with [125I]CGP 23996 and [125I][Tyr3]octreotide (3420 and 1520 fmol mg(-1)). 3 SRIF14 (10 microm)-stimulated specific [35S]GTPgammaS binding by three-fold; SRIF28 and octreotide displayed full agonism, whereas most other ligands displayed 60-80% intrinsic activity compared with SRIF14. SRIF14 and SRIF28 inhibited forskolin-stimulated AC (FSAC) activity by 60%; all tested ligands except BIM 23056 inhibited FSAC with comparable high intrinsic activities. SRIF14 stimulated PLC activity five- to six-fold, as determined by measuring total [3H] IP(x) accumulation; it was rather insensitive to pertussis toxin (PTX, 100 ng ml(-1), 21% inhibition), which suggests the G(q)-family proteins couple to PLC activity. SRIF14, SRIF28 and [Tyr10]CST14 showed full agonism at PLC, whereas all other ligands behaved as partial agonists (20-70% intrinsic activity). BIM 23056, which showed weak partial or no agonism, antagonized SRIF14-induced total [3H]-IP(x) production (pK(B) = 6.83), but failed to block competitively agonist-stimulated [35S]GTPgammaS binding or agonist-induced inhibition of FSAC activity. 4 Comparison of the pharmacological profiles of fsst3 receptors established in GTPgammaS binding, FSAC inhibition and PLC stimulation resulted in low correlations (r = 0.410-0.594). Both rank orders of potency and rank orders of relative efficacy varied in the three second messenger experiments. Significant, although variable correlations were obtained comparing GTPgammaS binding and inhibition of FSAC activity with previously reported affinity profiles of [125I]LTT-SRIF28, [125I][Tyr10]CST14, [125I]CGP 23996, [125I][Tyr3]octreotide (r = 0.75-0.83; 0.68-0.89). By contrast, the PLC stimulation and radioligand-binding profiles did not correlate. 5 Comparison of the functional data (GTPgammaS binding, FSAC inhibition, PLC stimulation) of fsst3 receptors with those of human sst2, sst3, sst5 receptors expressed in CCL39 cells resulted in highest correlation with the hsst5 receptor (r = 0.94, 0.97, 0.49) > hsst2 (0.80, 0.50, n.d.) > hsst3 (0.25, 0.19, 0.17). 6 In summary, fsst3 receptors expressed in CCL39 cells are involved in signalling cascades similar to those reported for mammalian SRIF receptors, suggesting SRIF receptors to be highly conserved in evolution. Binding and functional data showed highest similarity of fsst3 receptors with the human sst5 receptor subtype. Different affinities, receptor densities and GppNHp-sensitivities determined with the four radioligands (agonists) are assumed to results from ligand-specific states of the fsst3-ligand complex. The differences in the rank orders of potency and relative efficacy in the various signalling cascades may be explained by agonist-induced receptor trafficking.  相似文献   

8.
The two forms (DTyr8 and LTyr8) of the putative somatostatin sst2 receptor antagonist CYN 154806 (Ac-4NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-D/LTyr-NH2) were investigated on recombinant human somatostatin receptors and endogenous guinea-pig ileum receptors. In radioligand binding studies using the agonist radioligands [125I]LTT-SRIF-28, [125I][Tyr10]cortistatin-14, [125I]CGP 23996 and [125I][Tyr3]octreotide in Chinese hamster lung fibroblast (CCL39) and Chinese hamster ovary (CHO) cells expressing human somatostatin receptors (hsst1-5), CYN 154806 binds to sst2 receptors with nanomolar affinity (pKD=8.14-8.89), 40- to 4500-fold higher than for sst1, sst3 or sst4. High affinity was also demonstrated for sst5 receptors, particularly for LTyr8CYN 154806 where the sst5 affinity was higher than for sst2 receptors when using [125I]CGP 23996 and [125I][Tyr3]octreotide. Functional properties of the compounds were examined in Chinese hamster ovary (CHO) cells expressing human sst2 receptors, in (1) inhibition of forskolin-stimulated adenylate cyclase, (2) stimulation of serum response element-driven luciferase expression and (3) [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPS) binding. L- and DTyr8CYN 154806 showed full agonism at inhibition of forskolin-stimulated cAMP accumulation (pEC50=7.73 for both, Emax 104% and 78%, respectively), partial agonism at luciferase expression (pEC50=7.85 and 8.16, Emax=50% and 29%, respectively) and behaved as apparently silent antagonists at [35S]GTPS binding (no agonism observed, pKB=6.88 and 7.50, respectively). The agonist potential was confirmed in isolated guinea-pig ileum preparations via measurement of SRIF-induced inhibition of neurotransmission, where the L-isoform had marked agonism (pEC50=8.23, Emax=32%) whereas the D-isoform was apparently devoid of agonism. The present data suggest that CYN 154806 should be used with caution as an sst2 receptor antagonist tool, since it possesses intrinsic activity at sst2, and high affinity for both sst2 and sst5 receptors. The DTyr form, having lower intrinsic activity, especially in natural tissues, and greater selectivity for sst2 receptors, may be more reliable than LTyr CYN 154806.  相似文献   

9.
The first cloned non-mammalian somatostatin (somatostatin release-inhibiting factor = SRIF) receptor previously obtained from the teleost fish Apteronotus albifrons and generically named somatostatin receptor 3 (fsst3), was stably expressed and characterised in Chinese hamster lung fibroblast (CCL39) cells. Radioligand binding studies were performed with four radioligands selective for SRIF receptors in CCL39 cells expressing the fsst3 receptors; [125I]LTT-SRIF28 ([Leu8, D-Trp22, 125I-Tyr25]-SRIF28), [125I]Tyr10-cortistatin, [125I]CGP 23996, and [125I]Tyr3-octreotide labelled the fsst3 receptor with high affinity (pKd values: 10.47, 10.87, 9.59 and 9.57) and in a saturable manner, but defined different Bmax values; 4500, 4000, 3400 and 1500 fmol/mg, respectively. The affinities of SRIF peptides and analogues determined for fsst3 receptors displayed the following rank order of potency: seglitide = SRIF25 > SRIF14 = SRIF28 > cortistatin 14 > BIM 23014 > RC160 = L361,301 = octreotide > or = BIM 23052 > or = L362,855 > CGP23996 > BIM 23056 > BIM 23030 = cycloantagonist > SRIF22. The pharmacological profiles determined with [125I]LTT-SRIF28, [125I]CGP 23996 and [125I]Tyr10-cortistatin correlated highly significantly (r = 0.96-0.99), whereas [125I]Tyr3-octreotide binding was rather divergent (r = 0.78-0.81). Further, [125I]Tyr3-octreotide- and [125I]CGP 23996-labelled sites showed higher affinity for the various peptides than [125I]LTT-SRIF28 and [125I]Tyr10-cortistatin-labelled sites, although there were exceptions. [125I]LTT-SRIF28-binding to fsst3 receptors and human sst1-5 receptors was compared; the fsst3 binding profile correlated better with the hsst5- than with the hsst3 receptor profile. SRIF inhibited potently forskolin-stimulated adenylate cyclase activity in fsst3 transfected CCL39 cells; this effect was blocked by pertussis toxin, suggesting coupling of the fsst3 receptor to Gialpha and/or Goalpha. [125I]LTT-SRIF28 binding was detected in fish brain, liver, heart, spleen, and stomach, but not in gut. The pharmacological profile of [125I]LTT-SRIF28-labelled sites in brain, but not in liver, correlated significantly with the recombinant fsst3 receptor, in agreement with expression of the fsst3 receptor gene found by RT-PCR in the brain. However, biphasic binding curves obtained with two SRIF-analogues in brain, as well as the distinct pharmacological profile of the liver SRIF receptor, suggest the existence of several yet to be defined SRIF receptor subtypes in fish. The present data demonstrate that the recombinantly expressed fsst3 receptor has a pharmacological profile compatible with that of a SRIF1 receptor, although the rank order of affinity of fsst3 is closer to that of hsst5 than hsst3 receptors, as may be found when comparing very distantly related species. The fsst3 receptor expressed in CCL39 cells, is negatively coupled to adenylate cyclase activity via pertussis toxin-sensitive G-proteins, like mammalian sst3 receptors. Radioligand binding performed with fish tissue suggests the presence of a native sst3 receptor in brain as well as other yet to be defined SRIF receptor subtypes.  相似文献   

10.
The pharmacology of 3-(2-ethylmorpholino)-5,5'-di(p-bromophenyl)-imidazolidinedione (DML20), 3-(1-hydroxypropyl)-5,5'-di(p-bromophenyl)-imidazolidinedione (DML21) and 3-heptyl-5,5'-di(p-bromophenyl)-imidazolidinedione (DML23) was extended by studying affinity and GTP binding modulation on cannabinoid receptor subtypes (CB1 and CB2) from rat tissues and human cannabinoid receptors expressed in Chinese Hamster Ovary cells. Competitive binding studies indicated that DML20, DML21 and DML23 are selective ligands for cannabinoid CB1 receptors. In rat cerebellum homogenates, DML20, DML21 and DML23 were unable to influence [35S]GTPgammaS binding but competitively inhibit HU 210-induced [35S]GTPgammaS binding (pKB of 6.11 +/- 0.14, 6.25 +/- 0.06 and 5.74 +/- 0.09, respectively), indicating that they act as cannabinoid CB1 receptor neutral antagonists. However, in CHO cells homogenates expressing selectively either human cannabinoid CB1 or CB2 receptors, they behaved as inverse agonists decreasing the [35S]GTPgammaS binding, with similar efficacy. In conclusion, these derivatives exhibit different activities (neutral antagonism and inverse agonism) in the different models of cannabinoid receptors studied.  相似文献   

11.
1. The human recombinant somatostatin (SRIF) receptors, sst1 and sst2, have been stably expressed in mouse fibroblast (Ltk-) cells. Two stable clones, LSSR 1/20 and LSSR 11/13, expressing sst1 and sst2 receptors, respectively, have been used to characterize these receptor types using radioligand binding assays as well as measurements of changes in extracellular acidification rates using microphysiometry. 2. [125I]-[Tyr11]-SRIF bound to sst1 and sst2 receptors expressed in Ltk- cells with high affinity, Kd values being 1.52 nM, and 0.23 nM respectively. 3. In Ltk- cells expressing sst1 receptors, SRIF, SRIF-28, [D-Trp8]-SRIF and CGP 23996 all displaced [125I]-[Tyr11]-SRIF binding with high potency (IC50 values of 0.43 - 1.27 nM) whilst seglitide, BIM-23027, BIM-23056 and L-362855 were either weak inhibitors of binding or were ineffective. 4. In contrast MK-678 (seglitide) and BIM-23027 were the most potent inhibitors of [125I]-[Tyr11]-SRIF binding in Ltk- cells expressing sst2 receptors with IC50 values of 0.014 and 0.035 nM, respectively. 5. SRIF and a number of SRIF agonists, including seglitide and BIM-23027, caused concentration-dependent increases in extracellular acidification rates in Ltk- cells expressing sst2 receptors but not in Ltk- cells expressing sst1 receptors. The maximum increase in acidification rate produced by SRIF was 11.3 +/- 0.7% above baseline (0.1-0.28 pH unit min-1). The relative potencies of the SRIF agonists examined in causing increases in extracellular acidification rates in Ltk- cells expressing sst2 receptors correlated well with their relative potencies in inhibiting [125I]-[Tyr11] -SRIF binding (r = 0.94). 6. The increase in extracellular acidification produced by SRIF was markedly inhibited by pretreatment of cells with pertussis toxin (100 ng ml-1) indicating the involvement of pertussis toxin-sensitive G proteins. 7. SRIF (1 microM) had no effect on basal cyclic AMP levels in Ltk- cells expressing sst1 or sst2 receptors nor did it inhibit forskolin stimulated increases in cyclic AMP levels in either cell type. 8. The results from the present study describe the operational characteristics of human sst2 receptors expressed in Ltk- cells where receptor activation causes increases in extracellular acidification rates. This receptor is coupled to a pertussis toxin-sensitive G protein. In contrast, activation of sst1 receptors, at a similar transfection density, did not cause increases in extracellular acidification rates.  相似文献   

12.
BACKGROUND AND PURPOSE: We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. EXPERIMENTAL APPROACH: Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. KEY RESULTS :Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. CONCLUSIONS AND IMPLICATIONS: Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.  相似文献   

13.
The peptide hormone/neurotransmitter somatostatin (somatotropin release inhibiting factor; SRIF) and its receptors (sst(1)-sst(5)) appear to regulate many physiological functions in the CNS. Semi-quantitative analysis of the densities of mRNA expression for sst(1-5) receptors and SRIF receptor binding sites were established in sst(2) receptor knock-out (KO) mice. Patterns of sst(1-5) receptor mRNA expression were largely conserved for sst(1,3,4) and sst(5) selective oligonucleotide probes; whereas sst(2) signals were completely absent in KO mouse brain. Autoradiographic analysis demonstrated [(125)I]LTT SRIF(28), [(125)I]CGP 23996 (two radioligands known to label all five recombinant SRIF receptors) and [(125)I]Tyr(3)-octreotide (sst(2) and sst(5) receptor selective) binding in wild type (WT) mouse brain sections; yet no specific binding of [(125)I]Tyr(3)-octreotide in KO mice. In contrast, [(125)I]LTT SRIF(28) and [(125)I]CGP 23996 binding was still present in a number of brain areas in KO mice, although to a lesser degree than in those regions where [(125)I]Tyr(3)-octreotide binding was found, in WT animals. The present data suggest first, that both sst(2) receptor protein and mRNA were completely absent in the brain of these KO animals. Second, there was little evidence of compensatory regulation, at the mRNA level, of the other SRIF receptors as a consequence of the sst(2) KO. Third, the absence of any [(125)I]Tyr(3)-octreotide binding, in KO mice, suggests that this particular ligand is selective for the sst(2) receptor subtype (under the conditions utilised); or that sst(5) receptors are only marginally expressed in brain. Fourth, there were regions where the binding of [(125)I]LTT SRIF(28) and [(125)I]CGP 23996 were moderately affected by the sst(2) KO, suggesting that additional SRIF receptors may well contribute to the binding of the aforementioned radioligands. Finally, since the relative distribution of these two ligands were not entirely superimposable, it suggests that their respective selectivity profiles towards the different SRIF receptor subtypes in situ are not identical.  相似文献   

14.
The mouse somatostatin (somatotropin release inhibiting factor, SRIF) sst(5) receptor coding sequence was cloned from a mouse BALB/c genomic library. It shows 97% and 81% homology with the corresponding rat and human receptors, respectively. The msst(5) receptor messenger RNA (mRNA) is present at low levels in the adult mouse brain, with significant expression in a few nuclei only, e.g. in the septum (lateral septal nuclei) or the amygdala (medial amygdaloid nucleus); very few signals were observed in the mesencephalon, metencephalon, and myelencephalon (except the dorsal motor nucleus of the vagus nerve).The msst(5) receptor was stably expressed in the hamster fibroblast cell line CCL39-SRE-Luci, which harbours the luciferase reporter gene driven by the serum responsive element. [(125)I]LTT-SRIF-28 ([Leu(8), D-Trp(22), (125)I-Tyr(25)]-SRIF-28), [(125)I]Tyr(10)-CST, [(125)I]CGP 23996, and [(125)I]Tyr(3)-octreotide labelled msst(5) receptors with high affinity (pK(d) values: 11.0, 10.15, 9.75 and 9.43) and in a saturable manner, but defined different Bmax values: 697, 495, 540 and 144 fmoles/mg, respectively. [(125)I]LTT-SRIF-28-labelled sites displayed the following rank order: SRIF-28> rCST-14> somatuline > CGP-23996= SRIF-14= octreotide, whereas [(125)I]Tyr(3)-octreotide-labelled sites displayed a different profile: octreotide > SRIF-28> rCST-14= somatuline > SRIF-14> CGP-23996. The pharmacological profiles determined with [(125)I]LTT-SRIF-28, [(125)I]CGP 23996 and [(125)I]Tyr(10)-CST correlated highly significantly (r(2) =0.88-0.99), whereas [(125)I]Tyr(3)-octreotide binding was rather divergent (r(2) =0.77). Also, human and mouse sst(5) receptor profiles are very different, e. g. r(2) =0.385 for [(125)I]Tyr(10)-CST and r(2) =0.323 for [(125)I]LTT-SRIF-28-labelled sites.Somatostatin induces expression of luciferase reporter gene in CCL39-SRE-Luci cells. The profile was consistent with a msst(5) receptor-mediated effect although apparent potency in the luciferase assay was much reduced compared to radioligand binding data: Octreotide = SRIF-28> rCST-14= SRIF-14= CGP-23996. Octreotide, SRIF-28, BIM23052 and D Tyr Cyanamid 154806 behaved as full or nearly full agonists in comparison to SRIF-14, whereas the other compounds had relative efficacies of 40 to 70%.The present study shows that agonists radioligands define apparently different receptor populations in terms of number of sites and pharmacological profile in cells expressing a single recombinant receptor. These variations suggest that the conformation of the ligand receptor complex may vary depending on the agonist. Further, the msst(5) receptor, although primarily coupled to Gi/Go proteins, is able to stimulate luciferase gene expression driven by the serum responsive element. Finally, it is suggested that putative sst(2) selective agonists e.g. octreotide, RC160 or BIM23027 show similar or higher potency at msst(5) receptors than SRIF-14.  相似文献   

15.
To characterize the nature and distribution of somatostatin (SRIF) receptors, radioligand binding studies and in vitro receptor autoradiography were performed in Rhesus monkey brain using either [125I]LTT-SRIF-28 ([Leu8,D-Trp22,125I-Tyr25]SRIF-28) alone or in the presence of 3 nM seglitide (to block sst2 sites), [1251]Tyr3-octreotide or [125I] CGP 23996 (c[Asu-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Tyr-Thr-Ser]) in buffer containing either 120 mM Na+ or 5 mM Mg2+. [125I]Tyr3-octreotide labelled an apparently homogeneous population of sites in cerebral and cerebellar cortex (B max = 27.3±2.8 fmol/mg protein and 52.6±8.6 fmol/mg protein, pKd = 9.46±0.03 and 9.93±0.03, respectively). The pharmacological profile of these sites correlated highly significantly with that of human recombinant sst2 receptors (r = 0.996), but not or much less with that of human recombinant sst3 and sst5 receptors (r = 0.12 and 0.45, respectively). [125I]CGP 23996 (in Na+-buffer) also labelled an apparently homogeneous population of sites in Rhesus monkey cerebral cortex membranes (B max = 3.1±0.3 fmol/mg protein, pKd = 10.57±0.08), the pharmacological profile of which was highly significantly correlated with the profiles of human recombinant sst1 and sst4 receptors (r = 0.98 and 0.96, respectively).Using receptor autoradiography, high levels of [125I]LTT-SRIF-28 and [125I]Tyr3-octreotide recognition sites were found in basal ganglia, molecular and granular layers of the cerebellum and layers III, V and VI of entorhinal cortex. In these regions, the addition of 3 nM seglitide produced a marked decrease of [125I]LTT-SRIF-28 binding. Low levels of [125I]LTT-SRIF-28 binding were observed in subiculum, pituitary and choroid plexus. By contrast, [125I]CGP 23996 labelling in the presence of Mg2+ as well as Na+ ions was highest in pituitary and choroid plexus. However, [125I]CGP 23996 binding was diversely affected by these ionic conditions in several regions of hippocampus and cerebral cortex. Displacement of [125I]CGP 23996 (in Mg2+-buffer) with seglitide in the molecular layer of the cerebellum, deep layers of the entorhinal cortex, layers I, II and V of the insular cortex and frontal pole yielded complex competition curves suggesting the presence of two populations of SRIF receptors. By contrast, [125I]CGP 23996 binding (in Mg2+-buffer) in the choroid plexus, hilus of the dentate gyrus and stratum oriens and radiatum of the CA3 field of hippocampus was not affected by seglitide up to 10 M, suggesting only sst1 and/or sst4 sites which have a negligible affinity for seglitide to be present in these structures.Taken together, these results suggest that [125I]CGP 23996 (in the presence of Na+) labels exclusively SRIF-2 receptors (sst1 and/or sst4), whereas in the presence of Mg2+ ions, [125I]CGP 23996 labels both SRIF-2 and SRIF-1 receptors (sst2, sst3 and sst5). The present study also demonstrates the presence and differential distribution of sst2 and sst1/sst4 receptors in the Rhesus monkey brain.  相似文献   

16.
5-HT1A receptor-mediated signalling in rat brain was evaluated after chronic administration (14 days; s.c.) of the selective serotonin reuptake inhibitor (SRRI) fluoxetine (10 mg/kg/day) alone, or in combination with the 5-HT1A receptor antagonist WAY100635 (0.1 mg/kg/day). The density of 5-HT1A binding sites was unchanged following fluoxetine, WAY100635, or the combination of fluoxetine and WAY100635. However, the net stimulation of [35S]GTPgammaS binding induced by the 5-HT1A agonist 8-OH-DPAT was significantly attenuated in dorsal raphe nucleus (DRN), but not in hippocampus, after chronic fluoxetine. Moreover, depending of the area analysed, the basal binding of [35S]GTPgammaS was differentially affected by this treatment: increased in DRN and decreased in hippocampal dentate gyrus. Interestingly, the changes in [35S]GTPgammaS basal binding and on 5-HT1A receptors functionality were prevented by the concomitant administration of WAY100635. The inhibition of dorsal raphe firing by 8-OH-DPAT was also attenuated in fluoxetine-treated rats (ED50 = 2.12 +/- 0.32 microg/kg and 4.34 +/- 0.09 microg/kg, for vehicle and fluoxetine respectively), an effect which was also prevented by the concomitant administration of WAY100635 (ED50 = 2.10 +/- 0.58 microg/kg). Chronic administration of WAY100635 alone did not affect the 5-HT1A receptor-induced stimulation of [35S]GTPgammaS binding, nor the 8-OH-DPAT-induced inhibition of 5-HT neuron firing. These results demonstrate that the concomitant blockade of 5-HT1A receptors when administering fluoxetine prevents those adaptive changes of 5-HT1A receptor function associated with the chronic administration of this antidepressant. These findings could be relevant from the therapeutic point of view, and further support the potential benefit of treatments with a SSRI/5-HT1A receptor antagonist combination.  相似文献   

17.
This study examines the effect of long-term elevation of brain monoamine levels on receptor/G-protein coupling by chronic administration of a highly potent tropane analog, WF-23 (2beta-propanoyl-3beta-(2-naphthyl) tropane). WF-23 blocks dopamine, serotonin and norepinephrine transporters with high affinity in vitro, and blocks transporters for at least two days following a single in vivo administration. Rats were chronically treated for 15 days with 1mg/kg WF-23, injected i.p. every two days. Receptor activation of G-proteins was determined by [35S]GTPgammaS autoradiography in brain sections for D2, 5-HT1A and alpha2-adrenergic receptors, as well as mu opioid receptors as a non-monoamine receptor control. Chronic treatment with WF-23 produced significant reductions in D2, 5-HT1A, and alpha2-adrenergic receptor-stimulated [35S]GTPgammaS binding in caudate/putamen, hippocampus and amygdala, respectively. There were no effects of WF-23 treatment on mu opioid-stimulated [35S]GTPgammaS binding. Additionally, there was no effect of WF-23 treatment on D2 receptor binding, as determined by [3H]spiperone autoradiography. These data show that chronic blockade of monoamine transporters produces specific uncoupling of receptors and G-proteins in specific brain regions in the absence of receptor downregulation.  相似文献   

18.
The effects of somatostatin (SRIF, somatotropin release inhibiting factor) on the release of glutamate have been investigated using superfused mouse cerebrocortical synaptosomes. SRIF-14 inhibited the K+ (12 mM)-evoked overflow of preaccumulated [3H]D-aspartate as well as that of endogenous glutamate. Cyanamid 154806, a selective sst2 receptor antagonist, but not BIM-23056, an antagonist at sst5 receptors, prevented the SRIF-14 effect. Octreotide and L779976, selective agonists at sst2 receptors, mimicked SRIF-14, whereas L797591, L796778, L803087 and L362855, selective agonists at sst1, sst3, sst4 and sst5 receptor subtypes, were inactive. Activation of sst2 receptors seems to involve inhibition of the adenylyl cyclase-protein kinase A pathway present in glutamatergic terminals since the adenylyl cyclase inhibitor MDL-12,330A and the protein kinase A inhibitor H89 prevented the K+-evoked [3H]D-aspartate overflow. Consistent with the involvement of adenylyl cyclase, depolarization with 12 mM K+ increased synaptosomal cyclic AMP (cAMP) content, while forskolin, an adenylyl cyclase activator, potentiated basal [3H]D-aspartate release in an octreotide-, MDL-12,330A- and H89-sensitive manner. To conclude, glutamatergic cerebrocortical nerve endings possess release-inhibiting sst2 receptors which represent potential targets for new drugs able to mitigate the effects of excessive glutamate transmission.  相似文献   

19.
Paradoxically, the potencies (EC(50)) of agonists stimulating [35S]GTPgammaS binding are several orders of magnitude lower than their affinities in receptor binding assays. We have investigated the quantitative stoichiometry of mu-opioid receptor-G-protein coupling in postmortem human brain. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO) displaced [3H]naloxone binding in a biphasic pattern. The ratio between K(i-low) and EC(50) of DAMGO stimulating [35S]GTPgammaS binding was lower than one. The K(A) of DAMGO was calculated following mu-opioid receptor alkylation by beta-funaltrexamine from [35S]GTPgammaS binding data using the "nested hyperbolic method", yielding K(A)/EC(50)>1. Thus, only 1.2 +/- 0.2% of mu-opioid receptors was needed to be occupied to achieve the half-maximal effect of DAMGO. The estimated ratio between the G-proteins activated by 10 microM DAMGO (determined by isotopic dilution curves) and the occupied-mu-opioid receptors was 1304. In conclusion, we have determined the stoichiometric and the kinetic parameters in the mu-opioid receptor-G-protein system.  相似文献   

20.
1. The mouse corticotroph tumour cell line AtT-20 is a useful model to investigate the physiological role of native somatostatin (SRIF, Somatotropin release inhibitory factor) receptor subtypes (sst(1) - sst(5)). The objective of this study was to characterise the pharmacological features and the functional effects of SRIF receptors expressed by AtT-20 cells using radioligand binding and cAMP accumulation. 2. [(125)I]LTT-SRIF-28, [(125)I]CGP 23996, [(125)I]Tyr(10)-cortistatin-14 and [(125)I]Tyr(3)-octreotide labelled SRIF receptor binding sites with high affinity and in a saturable manner (B(max)=315, 274, 239 and 206 fmol mg(-1), respectively). [(125)I]LTT-SRIF-28 labels significantly more sites than [(125)I]Tyr(10) -cortistatin-14 and [(125)I]Tyr(3) -octreotide as seen previously in cells expressing pure populations of sst(2) or sst(5) receptors. 3. SRIF analogues displaced the binding of the four radioligands. sst(2/5) receptor-selective ligands showed much higher affinity than sst(1/3/4) receptor-selective ligands. The binding profile of [(125)I]Tyr(3)-octreotide was different from that of [(125)I]LTT-SRIF-28, [(125)I]CGP 23996 and [(125)I]Tyr(10)-cortistatin-14. The sst(5/1) receptor-selective ligand L-817,818 identified two binding sites, one with subnanomolar affinity (sst(5) receptors) and one with micromolar affinity (sst(2) receptors); however, the proportions were different: 70 - 80% high affinity with [(125)I]LTT-SRIF-28, [(125)I]CGP 23996, [(125)I]Tyr(10)-cortistatin-14, but only 20% with [(125)I]Tyr(3)-octreotide. 4. SRIF analogues inhibited the forskolin-stimulated cAMP levels depending on concentration. sst(2/5) receptor-selective ligands were highly potent, whereas sst(1/3/4) receptor-selective ligands had no significant effects. The sst(2) receptor antagonist D-Tyr(8)-CYN 154806 competitively antagonised the effects of SRIF-14 and sst(2) receptor-preferring agonists, but not those of L-817,818. 5. The complex binding properties of SRIF receptor analogues indicate that sst(2) and sst(5) receptors are the predominant SRIF receptors expressed on AtT-20 cell membranes with no or only negligible presence of sst(1), sst(3) and sst(4) receptors. In the functional studies using cAMP accumulation, only sst(2) and sst(5) receptors appear to play a role. However, the "predominant" receptor appears to be the sst(2) receptor, although sst(5) receptors can also mediate the effect, when the ligand is not able to activate sst(2) receptors. This clearly adds flexibility to SRIF-mediated functional effects and suggests that the physiological role of SRIF and its analogues may be mediated preferentially via one subtype over another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号