首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
A comparison of the dose-dependent blood burden of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP) in pregnant and nonpregnant rats and marmosets is presented. Sprague-Dawley rats and marmosets were treated orally with 30 or 500 mg DEHP/kg per day, nonpregnant animals on 7 (rats) and 29 (marmosets) consecutive days, pregnant animals on gestation days 14-19 (rats) and 96-124 (marmosets). In addition, rats received a single dose of 1000 mg DEHP/kg. Blood was collected up to 48 h after dosing. Concentrations of DEHP and MEHP in blood were determined by GC/MS. In rats, normalized areas under the concentration-time curves (AUCs) of DEHP were two orders of magnitude smaller than the normalized AUCs of the first metabolite MEHP. Metabolism of MEHP was saturable. Repeated DEHP treatment and pregnancy had only little influence on the normalized AUC of MEHP. In marmosets, most of MEHP concentration-time courses oscillated. Normalized AUCs of DEHP were at least one order of magnitude smaller than those of MEHP. In pregnant marmosets, normalized AUCs of MEHP were similar to those in nonpregnant animals with the exception that at 500 mg DEHP/kg per day, the normalized AUCs determined on gestation days 103, 117, and 124 were distinctly smaller. The maximum concentrations of MEHP in blood of marmosets were up to 7.5 times and the normalized AUCs up to 16 times lower than in rats receiving the same daily oral DEHP dose per kilogram of body weight. From this toxicokinetic comparison, DEHP can be expected to be several times less effective in the offspring of marmosets than in that of rats if the blood burden by MEHP in dams can be regarded as a dose surrogate for the MEHP burden in their fetuses.  相似文献   

2.
The dispositon of di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) was studied in the rat. Three hours after a single oral dose of DEHP (2.8 g/kg), plasma concentrations of 8.8±1.7 g/ml DEHP and 63.2±8.7 g/ml MEHP were reached. MEHP levels declined with a half-life of 5.2±0.5 h. The ratio of the area under the plasma concentration-time curve of MEHP to that of DEHP was 16.1±6.1. When 14CDEHP was administered, 19.3±3.3% of the radioactivity was excreted in the urine within 72 h, the rest being excreted in the faeces. The urinary excretion rate of total radioactivity declined with a half-life of 7.9±0.5 h. Single administration of MEHP (0.4 g/kg) resulted in plasma concentrations of 84.1±14.9 g/ml 3 h after dosing; the half-life of MEHP was 5.5±1.1 h. Multiple dosing with DEHP (2.8 g/kg/day) for 7 consecutive days produced no accumulation of DEHP or MEHP in plasma.  相似文献   

3.
The risk assessment of di(2-ethylhexyl)phthalate (DEHP) migrating from polyvinyl chloride (PVC) medical devices is an important issue. Many studies have been conducted to determine the level of DEHP migration. A recent report has indicated that DEHP in blood bags is hydrolyzed by esterase into mono(2-ethylhexyl)phthalate (MEHP). However, MEHP is thought to be even more toxic than the parent compound. Therefore, a method for the simultaneous determination of DEHP and MEHP was developed. The limits of quantification (LOQs) of DEHP and MEHP were 2.5 and 0.75 ng/ml, respectively. In this study, the effect of sterilization process on the levels of DEHP and MEHP migration was investigated. The level of migration of DEHP from gamma(gamma)-ray sterilized PVC sheet was low compared with that of the unsterilized control. By contrast, the level of MEHP migration from the gamma-ray sterilized PVC sheet was high compared with that of the unsterilized control. In addition, a high content of MEHP was found in the gamma-ray sterilized PVC sheet.  相似文献   

4.
Human metabolism of di(2-ethylhexyl)phthalate (DEHP) was studied after a single oral dose of 48.1 mg to a male volunteer. To avoid interference by background exposure the D4-ring-labelled DEHP analogue was dosed. Excretion of three metabolites, mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP) and mono(2-ethylhexyl)phthalate (MEHP), was monitored for 44 h in urine and for 8 h in serum. Peak concentrations of all metabolites were found in serum after 2 h and in urine after 2 h (MEHP) and after 4 h (5OH-MEHP and 5oxo-MEHP). While the major metabolite in serum was MEHP, the major metabolite in urine was 5OH-MEHP, followed by 5oxo-MEHP and MEHP. Excretion in urine followed a multi-phase elimination model. After an absorption and distribution phase of 4 to 8 h, half-life times of excretion in the first elimination phase were approximately 2 h with slightly higher half-life times for 5OH- and 5oxo-MEHP. Half-life times in the second phase—beginning 14 to 18 h post dose—were 5 h for MEHP and 10 h for 5OH-MEHP and 5oxo-MEHP. In the time window 36 to 44 h, no decrease in excreted concentrations of 5OH- and 5oxo-MEHP was observed. In the first elimination phase (8 to 14 h post dose), mean excretion ratios of MEHP to 5oxo-MEHP and MEHP to 5OH-MEHP were 1 to 1.8 and 1 to 3.1. In the second elimination phase up to 24 h post dose mean excretion ratios of MEHP to 5oxo-MEHP to 5OH-MEHP were 1 to 5.0 to 9.3. The excretion ratio of 5OH-MEHP to 5oxo-MEHP remained constant through time at 1.7 in the mean. After 44 h, 47% of the DEHP dose was excreted in urine, comprising MEHP (7.3%), 5OH-MEHP (24.7%) and 5oxo-MEHP (14.9%).  相似文献   

5.
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is suspected to induce antiandrogenic effects in men via its metabolite mono(2-ethylhexyl) phthalate (MEHP). However, there is only little information on the kinetic behavior of DEHP and its metabolites in humans. The toxikokinetics of DEHP was investigated in four male volunteers (28-61 y) who ingested a single dose (645 ± 20 μg/kg body weight) of ring-deuterated DEHP (DEHP-D4). Concentrations of DEHP-D4, of free ring-deuterated MEHP (MEHP-D4), and the sum of free and glucuronidated MEHP-D4 were measured in blood for up to 24 h; amounts of the monoesters MEHP-D4, ring-deuterated mono(2-ethyl-5-hydroxyhexyl) phthalate and ring-deuterated mono(2-ethyl-5-oxohexyl) phthalate were determined in urine for up to 46 h after ingestion. The bioavailability of DEHP-D4 was surprisingly high with an area under the concentration-time curve until 24 h (AUC) amounting to 50% of that of free MEHP-D4. The AUC of free MEHP-D4 normalized to DEHP-D4 dose and body weight (AUC/D) was 2.1 and 8.1 times, that of DEHP-D4 even 50 and 100 times higher than the corresponding AUC/D values obtained earlier in rat and marmoset, respectively. Time courses of the compounds in blood and urine of the volunteers oscillated widely. Terminal elimination half-lives were short (4.3-6.6 h). Total amounts of metabolites in 22-h urine are correlated linearly with the AUC of free MEHP-D4 in blood, the parameter regarded as relevant for risk assessment.  相似文献   

6.
Two studies were designed to examine amniotic fluid and maternal urine concentrations of the di(2-ethylhexyl) phthalate (DEHP) metabolite mono(2-ethylhexyl) phthalate (MEHP) and the di-n-butyl phthalate (DBP) metabolite monobutyl phthalate (MBP) after administration of DEHP and DBP during pregnancy. In the first study, pregnant Sprague-Dawley rats were administered 0, 11, 33, 100, or 300 mg DEHP/kg/day by oral gavage starting on gestational day (GD) 7. In the second study, DBP was administered by oral gavage to pregnant Sprague-Dawley rats at doses of 0, 100, or 250 mg/kg/day starting on GD 13. Maternal urine and amniotic fluid were collected and analyzed to determine the free and glucuronidated levels of MEHP and MBP. In urine, MEHP and MBP were mostly glucuronidated. By contrast, free MEHP and free MBP predominated in amniotic fluid. Statistically significant correlations were found between maternal DEHP dose and total maternal urinary MEHP (p=0.0117), and between maternal DEHP dose and total amniotic fluid MEHP levels (p=0.0021). Total maternal urinary MEHP and total amniotic fluid MEHP levels were correlated (Pearson correlation coefficient=0.968). Statistically significant differences were found in amniotic MBP levels between animals within the same DBP dose treatment group (p<0.0001) and between animals in different dose treatment groups (p<0.0001). Amniotic fluid MBP levels increased with increasing DBP doses, and high variability in maternal urinary levels of MBP between rats was observed. Although no firm conclusions could be drawn from the urinary MBP data, the MEHP results suggest that maternal urinary MEHP levels may be useful surrogate markers for fetal exposure to DEHP.  相似文献   

7.
The metabolism of di(2-ethylhexyl)phthalate (DEHP) in humans was studied after three doses of 0.35 mg (4.7 g/kg), 2.15 mg (28.7 g/kg) and 48.5 mg (650 g/kg) of D4-ring-labelled DEHP were administered orally to a male volunteer. Two new metabolites, mono(2-ethyl-5-carboxypentyl)phthalate (5cx-MEPP) and mono[2-(carboxymethyl)hexyl]phthalate (2cx-MMHP) were monitored for 44 h in urine and for 8 h in serum for the high-dose case, in addition to the three metabolites previously analysed: mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP) and mono(2-ethylhexyl)phthalate (MEHP). For the medium- and low-dose cases, 24 h urine samples were analysed. Up to 12 h after the dose, 5OH-MEHP was the major urinary metabolite, after 12 h it was 5cx-MEPP, and after 24 h it was 2cx-MMHP. The elimination half-lives of 5cx-MEHP and 2cx-MMHP were between 15 and 24 h. After 24 h 67.0% (range: 65.8–70.5%) of the DEHP dose was excreted in urine, comprising 5OH-MEHP (23.3%), 5cx-MEPP (18.5%), 5oxo-MEHP (15.0%), MEHP (5.9%) and 2cx-MMHP (4.2%). An additional 3.8% of the DEHP dose was excreted on the second day, comprising 2cx-MMHP (1.6%), 5cx-MEPP (1.2%), 5OH-MEHP (0.6%) and 5oxo-MEHP (0.4%). In total about 75% of the administered DEHP dose was excreted in urine after two days. Therefore, in contrast to previous studies, most of the orally administered DEHP is systemically absorbed and excreted in urine. No dose dependency in metabolism and excretion was observed. The secondary metabolites of DEHP are superior biomonitoring markers compared to any other parameters, such as MEHP in urine or blood. 5OH-MEHP and 5oxo-MEHP in urine reflect short-term and 5cx-MEHP and 2cx-MMHP long-term exposure. All secondary metabolites are unsusceptible to contamination. Furthermore, there are strong hints that the secondary oxidised DEHP metabolites—not DEHP or MEHP—are the ultimate developmental toxicants.  相似文献   

8.
We compared the metabolic profile of di (2-ethylhexyl) phthalate (DEHP) in juveniles and fetus between rats and marmosets. STUDY-I: (14)C-DEHP (100 and 2,500 mg/kg) was singly administered to juvenile and adult marmosets by gavage. C(max) of the radioactivity in juvenile marmosets was 6.45 and 31 μg eq./g, respectively. The radioactivity excreted mainly into feces; however, at least 10% of the radioactivity was absorbed even at 2,500 mg/kg. No abnormal accumulation was observed in the male reproductive organs. STUDY-II: (14)C-DEHP (100 mg/kg) was singly administered to juveniles of rat and marmoset. The plasma radioactivity in marmosets was about 5% to 9% of that in rats. Free forms of mono-2-ethylhexyl phthalate (MEHP) and its oxidized metabolites such as oxo-, OH-, and COOH-MEHP were detected as the main compositions in rat plasma. In marmosets, free form of MEHP was also detected as a major composition, but not for oxidized MEHP metabolites. In rats, oxidized MEHP metabolites were excreted into urine as unconjugated forms. MEHP and its oxidized metabolites were also detected in marmoset urine; however, they were mostly glucuronized. No specific accumulation of the radioactivity was noted in the testes of either species; however, the radioactivity concentration in the marmoset testes was much lower than that in rats. STUDY-III: (14)C-DEHP (100 mg/kg) was singly administered to dams on gestation day 130 for marmosets and day 20 for rats. In either species, no specific accumulation of radioactivity was noted in the testis of fetuses from the dams treated with (14)C-DEHP; however, the radioactivity in the rat testis was about 20-times higher than that in the marmoset. Major metabolite components in rat whole fetal tissue were free forms of MEHP, OH-MEHP, and oxo-MEHP. Free form of MEHP was also detected as only a peak in the marmoset fetal tissue.  相似文献   

9.
Any insult that affects survival of ovarian antral follicles can cause abnormal estradiol production and fertility problems. Phthalate esters (PEs) are plasticizers used in a wide range of consumer and industrial products. Exposure to these chemicals has been linked to reduced fertility in humans and animal models. Di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) decrease serum estradiol levels and aromatase (Arom) expression, prolong estrous cycles, and cause anovulation in animal and culture models. These observations suggest PEs directly target antral follicles. We therefore tested the hypothesis that DEHP (1-100 μg/ml) and MEHP (0.1-10 μg/ml) directly inhibit antral follicular growth and estradiol production. Antral follicles from adult mice were cultured with DEHP or MEHP, and/or estradiol for 96 h. During culture, follicle size was measured every 24 h as a measurement of follicle growth. After culture, media were collected for measurement of estradiol levels and follicles were subjected to measurement of cylin-D-2 (Ccnd2), cyclin-dependant-kinase-4 (Cdk4), and Arom. We found that DEHP and MEHP inhibited growth of follicles and decreased estradiol production compared to controls at the highest doses. DEHP and MEHP also decreased mRNA expression of Ccnd2, Cdk4, and Arom at the highest dose. Addition of estradiol to the culture medium prevented the follicles from DEHP- and MEHP-induced inhibition of growth, reduction in estradiol levels, and decreased Ccnd2 and Cdk4 expression. Collectively, our results indicate that DEHP and MEHP may directly inhibit antral follicle growth via a mechanism that partially includes reduction in levels of estradiol production and decreased expression of cell cycle regulators.  相似文献   

10.
The distribution and elimination of di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) after a single oral administration of DEHP (25 mmol/kg) were studied. A gas-liquid Chromatographic method was used for the simultaneous determination of MEHP and DEHP. The compounds were extracted with methylene chloride and the monoester was alkylated to the hexyl derivative by solid-liquid phase transfer catalysis in methylethyl ketone. The coefficients of variation of this method for determination of DEHP and MEHP were 8.3% and 11.4% respectively. The concentration of DEHP and MEHP in blood and tissues increased to maximum within 6–24 h after dosing, while the highest levels observed in the heart and lungs occurred within 1 h. At 6 h after administration, the highest ratio of MEHP/DEHP (mol%) were recorded in testes (210%) while the other tissues exhibited less than 100%. MEHP disappeared exponentially with t 1/2 values ranging from 23 to 68 h; DEHP t 1/2 ranged from 8 to 156 h and the t 1/2 values of MEHP in several tissues were slightly longer than DEHP. The t 1/2 values in blood were 23.8 h and 18.6 h for MEHP and DEHP, respectively.  相似文献   

11.
Di(2-ethylhexyl)phthalate (DEHP) is a reproductive toxicant in male rodents. The aim of the current study was to extrapolate the pharmacokinetics and toxicokinetics of mono(2-ethylhexyl)phthalate (MEHP, a primary metabolite of DEHP) in humans by using data from oral administration of DEHP to chimeric mice transplanted with human hepatocytes. MEHP and its glucuronide were detected in plasma from control mice and chimeric mice after single oral doses of 250 mg DEHP/kg body weight. Biphasic plasma concentration–time curves of MEHP and its glucuronide were seen only in control mice. MEHP and its glucuronide were extensively excreted in urine within 24 h in mice with humanized liver. In contrast, fecal excretion levels of MEHP glucuronide were high in control mice compared with those with humanized liver. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated urine MEHP concentrations in humans were consistent with reported concentrations. This research illustrates how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of pharmacokinetics or toxicokinetics of the primary or secondary metabolites of DEHP.  相似文献   

12.
We measured the background levels of di(2-ethylhexyl) phthalate (DEHP) and its hydrolytic metabolite mono(2-ethylhexyl) phthalate (MEHP) in blood from naive female Sprague-Dawley rats and in de-ionized charcoal-purified water using an analytical procedure that is based on sample treatment with acetonitrile, n-hexane extraction and analysis by gas chromatography. In blood, blank values of 91.3 +/- 34.7 micrograms DEHP/l (n = 31) and 30.1 +/- 13.1 micrograms MEHP/l (n = 20) were obtained, and in water, values of 91.6 +/- 44.2 micrograms DEHP/l (n = 26) and 26.7 +/- 10.4 micrograms MEHP/l (n = 15) were found. Since there is no difference between the background valves obtained from blood of naive rats and water, we conclude that DEHP and MEHP result from contamination during the analytical procedure.  相似文献   

13.
Di(2-ethylhexyl) phthalate (DEHP), a commercially important plasticizer, induces testicular toxicity in laboratory animals at high doses. After oral exposure, most of the DEHP is rapidly metabolized in the gut to mono(2-ethylhexyl) phthalate (MEHP), which is the active metabolite for induction of testicular toxicity. To quantify the testes dose of MEHP with various routes of exposure and dose levels, we developed a physiologically based pharmacokinetic (PBPK) model for DEHP and MEHP in rats. Tissue:blood partition coefficients for DEHP were estimated from the n-octanol: water partition coefficient, while partition coefficients for MEHP were determined experimentally using a vial equilibration technique. All other parameters were either found in the literature or estimated from blood or tissue levels following oral or intravenous exposure to DEHP or MEHP. A flow-limited model failed to adequately simulate the available data. Alternative plausible mechanisms were explored, including diffusion-limited membrane transport, enterohepatic circulation, and MEHP ionization (pH-trapping model). In the pH-trapping model, only nonionized MEHP is free to become partitioned into the tissues, where it is equilibrated and trapped as ionized MEHP until it is deionized and released. All three alternative models significantly improved predictions of DEHP and MEHP blood concentrations over the flow-limited model predictions. The pH-trapping model gave the best predictions with the largest value of the log likelihood function. Predicted MEHP blood and testes concentrations were compared to measured concentrations in juvenile rats to validate the pH-trapping model. Thus, MEHP ionization may be an important mechanism of MEHP blood and testes disposition in rats.  相似文献   

14.
Di(2-ethylhexyl)phthalate (DEHP) is a commonly used plasticizer in polyvinylchloride (PVC)-derived plastic. Mono(2-ethylhexyl)phthalate (MEHP), the major metabolite of DEHP, had a reversible, concentration-dependent (15-200 micrograms/ml) negative inotropic effect on a human in vitro atrial trabecular isometric preparation with an IC50 of 85 micrograms/ml. When atropine (22-32 micrograms/ml) was included in the atrial preparation the IC50 was shifted to greater than 120 micrograms/ml, suggesting that MEHP acts in part through the cholinergic receptors.  相似文献   

15.
Di(2-ethylhexyl) phthalate (DEHP) is used as a plastic softener in the polymer industry and is widespread in medical devices. DEHP has been incriminated as an endocrine-disrupting chemical, and the effects of DEHP in various species have included disturbances in the reproductive system. The effects of the chemical have varied, depending upon exposure routes and species. This study was performed in order to characterise the kinetics of DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) in the young male pig, an omnivore model-species for research in reproductive toxicology. Eight pigs were given 1000 mg DEHP/kg bodyweight by oral gavage. The concentrations of DEHP and MEHP were then measured in the plasma and tissues of the pigs at different time points after administration. There was no consistent rise above contamination levels of concentrations of DEHP in the plasma of the pigs. However, the metabolite MEHP reached the systemic blood circulation. The half-life of MEHP in the systemic blood circulation was calculated to be 6.3 h. Absorption from the intestine was biphasic in six of the eight pigs and the mono-exponential elimination-phase started 16 h after the after the administration of DEHP. To conclude, MEHP consistently reaches the systemic circulation in the pig when DEHP is administered orally. The kinetic pattern of the parent substance on the other hand is more difficult to characterise.  相似文献   

16.
Acute testicular atrophy results when appropriate dosages of di-(2-ethylhexyl) phthalate (DEHP) or its hydrolysis product mono-2-ethylhexyl phthalate (MEHP) are given to male rats. Events thought to be involved in this pathological effect also occur in cultures of testicular cells in vitro, but require MEHP rather than DEHP. Primary cultures of hepatocytes, Sertoli cells, and Leydig cells were incubated with 14C-labeled MEHP [8 microM] for up to 24 hr. No significant reduction in viability was produced under these conditions. In contrast to the hepatocytes, which extensively metabolized MEHP to a variety of products in 1 hr, the testicular cell cultures were apparently unable to metabolize MEHP (beyond a slight hydrolysis to phthalic acid by Sertoli cells) in 18-24 hr. MEHP was efficiently taken up by hepatocytes, but much less so by testicular cells. These results, combined with related observations from the literature, support the hypothesis that MEHP itself is the metabolite of DEHP responsible for testicular atrophy in rats.  相似文献   

17.
Di(2-ethylhexyl)phthalate (DEHP) and mono(2-ethylhexyl)phthalate (MEHP) were administered PO or IP to pregnant ICR mice at varying doses on days 7, 8, and 9 of gestation. In groups given DEHP orally, resorptions and malformed fetuses increased significantly at 1,000 mg/kg. Fetal weights were also significantly suppressed. Anterior neural tube defects (anencephaly and exencephaly) were the malformations most commonly produced. No teratogenic effects were revealed by IP doses of DEHP and PO or IP doses of MEHP, although high doses were abortifacient and lethal to pregnant females. Thus DEHP is highly embryotoxic and teratogenic in mice when given PO but not IP. The difference in metabolism, disposition, or excretion by the route of administration may be responsible for the difference in DEHP teratogenicity. Although MEHP is a principal metabolite of DEHP and is several times more toxic than DEHP to adult mice, it seems that MEHP and its metabolites are not teratogenic in ICR mice.  相似文献   

18.
Mono-(2-ethylhexyl) phthalate (MEHP) is the most toxic metabolite of di-(2-ethylhexyl) phthalate (DEHP). It has been reported that DEHP causes abnormal reproductive development in women, and suppresses estradiol synthesis and ovulation in female rats with diminished size of preovulatory follicles. The present study was conducted to evaluate the ovarian toxicity of MEHP using cultured rat ovarian follicles. Secondary follicles were isolated from the ovaries of 14-day-old female rats and cultured for 48 hr with MEHP (0, 10, 30, and 100 μg/ml). At 0, 24, and 48 hr of MEHP treatment, follicular diameters were measured. After the culture, viability and apoptosis of follicles were assessed, and progesterone, androstenedione, testosterone, and estradiol levels in culture media were measured. At 100 μg/ml, suppression of follicular development was observed, which is associated with decreased viability of follicles and apoptosis of granulosa cells. At this concentration, progesterone level increased markedly, whereas androstenedione, testosterone, and estradiol levels decreased. At 10 and 30 μg/ml, follicular development was not suppressed, no apoptotic change was observed, and the levels of all measured steroid hormones tended to increase. The combined levels of all steroid hormones increased at all concentrations of MEHP, and the increase implies that MEHP activates the synthetic pathway from cholesterol to estradiol including de novo synthesis of cholesterol. However, the progesterone/androstenedione ratio increased extremely at 100 μg/ml, and the increase implies that MEHP inhibits the conversion of progesterone to androstenedione. In conclusion, MEHP induces ovarian toxicity via suppression of follicular development and abnormal steroid hormone synthesis in cultured rat ovarian follicles.  相似文献   

19.
Di(2-ethylhexyl) phthalate (DEHP) is added to polyvinyl chloride (PVC) plastics used widely in medical devices and toys to impart flexibility and durability. DEHP produces reproductive and development toxicities in rodents. Initial metabolism of DEHP in animals and humans results in mono(2-ethylhexyl) phthalate (MEHP), which subsequently metabolizes to a wide range of oxidative metabolites before being excreted in urine and feces. We investigated the metabolism of DEHP in humans by identifying urinary oxidative metabolites of DEHP from individuals with urinary MEHP concentrations about 100 times higher than the median concentration in the general US population. In addition to the previously identified DEHP metabolites MEHP, mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono(2-carboxymethylhexyl) phthalate (MCMHP), we also identified for the first time in humans three additional oxidative metabolites, mono(2-ethyl-3-carboxypropyl) phthalate (MECPrP), mono(2-ethyl-4-carboxybutyl) phthalate (MECBP), and mono(2-(1-oxoethyl)hexyl) phthalate (MOEHP) based on their chromatographic behavior and mass spectrometric fragmentation patterns. We also tentatively identified metabolites with two functional groups in the side alkyl chain as isomers of mono(2-hydroxyethyl-4-carboxybutyl) phthalate (MHECBP), mono(2-ethyl-4-oxo-5-carboxypentyl) phthalate (MEOCPP), and mono(2-ethyl-4-hydroxy-5-carboxypentyl) phthalate (MEHCPP). We report the presence of urinary DEHP metabolites in humans that have fewer than eight carbons in the alkyl chain. These metabolites were previously identified in rodents. Although quantitative information is not available, our findings suggest that, despite potential differences among species, the oxidative metabolism of DEHP in humans and rodents results in similar urinary metabolic products.  相似文献   

20.
Five daily oral doses of di(2-ethylhexyl) phthalate (DEHP) (2 g/kg) given to rats on Days 2-6, 6-10, or 14-18 of lactation caused significant decreases in body weight and increases in hepatic peroxisomal enzymes palmitoyl CoA oxidase and carnitine acetyltransferase in the dams and their suckling pups. Plasma cholesterol and triglyceride levels were decreased in the lactating dams. Decreased food consumption, as indicated by pair-fed rats, accounted for the decreased body weight in the pups but not the increases in enzyme activities. To determine whether DEHP and mono(2-ethylhexyl) phthalate (MEHP) were transferred through the milk, milk and plasma were collected from lactating rats 6 hr after the third dose of DEHP. The milk contained 216 +/- 23 micrograms/ml DEHP and 25 +/- 6 micrograms/ml MEHP (mean +/- SE), while the plasma contained less than 0.5 micrograms/ml DEHP and 75 +/- 12 micrograms/ml MEHP. The high milk/plasma ratio for DEHP (greater than 200) indicates efficient extraction of DEHP from the plasma into the milk. DEHP dosing during lactation also caused a decrease in mammary gland weight and a decrease in mammary gland RNA content which reflects synthetic activity. The water content of the milk was reduced, which probably accounted for the increase in lipid in the milk. Milk lactose was decreased in DEHP-treated and pair-fed rats, consistent with the decrease in milk production. The results show that exposure to high doses of DEHP during lactation in rats can result in changes in milk quality and quantity and can lead to DEHP and MEHP exposure in the suckling rat pups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号