首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
To narrow the area known to contain the blood pressure quantitative trait locus (QTL) on rat chromosome 1, we constructed a fine linkage map covering the blood pressure OTL region on the chromosome using 22 genetic markers informative for stroke-prone spontaneously hypertensive rats of the Izumo colony (SHRSP/Izm) and Wistar-Kyoto rats of the Izumo colony (WKY/Izm). Linkage mapping was done by genotyping 626 backcrossed rats from matings between SHRSP/Izm and WKY/Izm. Nineteen genetic markers informative for the two strains were selected from public databases. Two markers were newly isolated by screening a rat genomic library. One marker was mapped using a restriction endonuclease polymorphism. The region between DlWox29 and D1Smu11 was covered with 22 informative markers placed every 0.6 cM on average. In addition, 6 physiological candidates for a hypertension gene were mapped in this region either by linkage or by radiation hybrid (RH) mapping. This information should be essential for the construction and analysis of congenic strains for this QTL region.  相似文献   

2.
OBJECTIVE: Stroke-prone spontaneously hypertensive rats (SHRSP) are known to have sympathetic hyperactivity to various stimuli. In the search for 'intermediate phenotypes' inferring the function of hypertension genes, the present study assessed responsiveness to cold stress in a congenic strain derived from SHRSP/Izm and Wistar-Kyoto/Izm (WKY/Izm). DESIGN: A congenic strain, WKYpch1.0, was established by 10 generations of backcrossing to transfer the chromosomal fragment between D1Wox29 and D1Arb21 of SHRSP to WKY. This fragment covered the 100:1 confidence interval of the quantitative trait locus (QTL) for blood pressure identified in a previous study. Response to cold stress was studied by exposing rats to 4 degrees C for 4 h. Blood pressure was monitored with telemetry. Urine was collected during the exposure, and urinary concentrations of catecholamines were measured by high-performance liquid chromatography. RESULTS: Under the cold stress, urinary excretion of norepinephrine (NE) and vanillylmandelic acid (VMA), as well as the plasma level of NE, was significantly greater in WKYpch1.0 than in WKY. The increase in blood pressure during the cold stress was also greater in WKYpch1.0 than in WKY. Further, neonatal chemical sympathectomy using guanethidine abolished the exaggerated response in blood pressure and in urinary excretion of NE and VMA in WKYpch1.0. CONCLUSION: These results suggested that the QTL region on rat chromosome 1 harbored genes responsible for the exaggerated response of the sympathetic nervous system to the cold stress. The relationship of this with the pathogenesis of hypertension should be elucidated in future studies.  相似文献   

3.
The existence of blood pressure quantitative trait loci exaggerated by salt on rat chromosome 2 has been confirmed previously using congenic strains derived from stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto (WKY) rats. This study aimed to dissect the implicated chromosome 2 region and to identify candidate genes based on microarray expression profiling and real-time PCR. A marker-assisted breeding strategy generated congenic strains SP.WKYGla2a (D2Rat13-D2Rat157), SP.WKYGla2c* (D2Wox9-D2Mgh12), and SP.WKYGla2k (D2Mit21-D2Rat157) using SHRSP as the recipient and WKY as the donor strain. The SP.WKYGla2k strain contains a 10-cM congenic interval, which is encompassed within the larger (64-cM) SP.WKYGla2a congenic region. Salt-loaded systolic blood pressure, measured by radiotelemetry, was significantly lower in the SP.WKYGla2a and SP.WKYGla2k strains compared with SHRSP. Salt sensitivity in SP.WKYGla2c* was not significantly different from SHRSP. Exclusion mapping identified a 6-Mbp region harboring genes responsible for salt-sensitive blood pressure regulation. Microarray expression profiling was carried out in whole homogenized kidneys from parental and SP.WKYGla2a strains. Examination of expression data within the minimal congenic interval identified the positional candidates Edg1 and Vcam1, demonstrating significantly elevated renal RNA expression levels in the SHRSP compared with WKY and SP.WKYGla2a congenic strains. These results were confirmed by quantitative real-time PCR. DNA sequencing identified SNPs in both Edg1 and Vcam1 between SHRSP and WKY rats. In conclusion, we have identified a suggestive minimal interval encompassing a 6-Mbp region on rat chromosome 2. This region contains several physiological candidate genes for salt-sensitive hypertension in the SHRSP, including Edg1 and Vcam1, which are differentially expressed and lie on common and functionally important pathways.  相似文献   

4.
The role of the chromosome 1 blood pressure quantitative trait locus (QTL) on the sympathorenal interaction was studied using congenic strains. The two reciprocal congenic strains, WKYpch1.0 and SHRSPwch1.0, were respectively constructed by introgressing the stroke-prone spontaneously hypertensive rat (SHRSP)-derived fragment for the QTL into a Wistar-Kyoto rat (WKY) and vice versa. The role of the sympathetic nervous system in the kidney was evaluated by comparing the renal functions between denervated and sham-operated kidneys under anesthesia. The denervation was performed by stripping the adventitia off and applying 10% phenol to the blood vessels at the left renal hilus. Polyfructosan was continuously injected intravenously to determine the renal plasma flow and the glomerular filtration rate. A reciprocal and significant alteration in the renal norepinephrine (NE) content was observed between WKY and WKYpch1.0 and between SHRSP and SHRSPwch1.0. Concomitantly, the renal vascular resistance differed significantly between the congenic and the background parental strains. By contrast, no significant difference was observed in the fractional excretion of sodium, an index of the tubular function. While the denervation elicited a significant decrease of the renal NE content in all of the four strains studied, the significant effects of the denervation on the renal functions were observed only in SHRSP and WKYpch1.0, both of which harbored the SHRSP-derived QTL fragment. These results indicated that the chromosome 1 blood pressure QTL modulated the renal functions through the sympathetic nerve activity in the kidney.  相似文献   

5.
Evidence for blood pressure quantitative trait loci (QTLs) on rat chromosome 10 has been found in multiple independent studies. Analysis of the homologous region on human chromosome 17 revealed significant linkage to blood pressure. The critical segment on human chromosome 17 spans a large interval containing the genes Itga2b, Gfap, and Itgb3. Therefore, findings in the rat may help to refine the position of blood pressure-regulating loci, assuming a common molecular cause across species. However, it has recently been suggested that the gene order in human, rat, and mouse is not conserved in this region, leaving uncertainty about the overlap of the blood pressure- regulating region between human chromosome 17 and rat chromosome 10. We have performed a detailed comparative analysis among human, mouse, and rat, defining the segment in question, by obtaining gene structure information in silico and by radiation hybrid mapping. It is of interest that this region also contains Wnk4, a gene previously identified to cause pseudohypoaldosteronism type II and human hypertension. Our results definitively show that the conserved synteny extends among human chromosome 17, rat chromosome 10, and mouse chromosome 11, demonstrating an overlap between previously localized blood pressure QTLs in humans and rats.  相似文献   

6.
OBJECTIVES: Total genome scans of genetically segregating populations derived from the spontaneously hypertensive rat (SHR) and other rat models of hypertension have suggested the presence of quantitative trait loci (QTL) regulating blood pressure and cardiac mass on multiple chromosomes, including chromosome 2. The objective of the current study was to directly test for the presence of a blood pressure QTL on rat chromosome 2. DESIGN: A new congenic strain was derived by replacing a segment of chromosome 2 in the SHR between D2Rat171 and D2Arb24 with the corresponding chromosome segment from the normotensive Brown Norway rat. Arterial pressures were directly monitored in conscious rats by radiotelemetry. RESULTS: We found that the SHR congenic strain (SHR-2) carrying a segment of chromosome 2 from the Brown Norway rat had significantly lower systolic and diastolic blood pressures than the SHR progenitor strain. The attenuation of hypertension in the SHR-2 congenic strain versus the SHR progenitor strain was accompanied by significant amelioration of cardiac hypertrophy. CONCLUSIONS: These findings demonstrate that gene(s) with major effects on blood pressure exist in the differential segment of chromosome 2 trapped within the new SHR.BN congenic strain.  相似文献   

7.
Genetic factors may be involved in both essential hypertension and cardiac hypertrophy. To identify genes contributing to elevated for blood pressure and cardiac hypertrophy in the spontaneously hypertensive rat (SHR), we performed a cosegregation analysis between blood pressure and heart weight and microsatellite markers for the candidate gene ANF on chromosome 5 in F2 animals obtained by mating SHR with Wistar-Kyoto (WKY) rats. We found evidence for a quantitative trait locus (QTL) determining mean blood pressure on chromosome 5 between atrial natriuretic factor (ANF) and MITR-3893 loci. No evidence for a QTL influencing heart weight was found. We propose that in SHR, blood pressure and heart weight may be independently controlled by different genetic mechanisms and that a gene close to ANF locus on chromosome 5 contributes towards hypertension in these animals.  相似文献   

8.
The rat is a well-established model for hypertension research, in both physiologic and pharmacologic study. Quantitative trait loci (QTL) for blood pressure and related phenotypes have been described on every rat chromosome; therefore, more simplified models must be generated to identify and study the function of the gene(s) located by QTL analysis. Designer rat strains, such as congenic and consomic strains, which share phenotypic and genotypic characteristics with humans but with a greatly simplified genetic background, would yield a powerful platform for functional studies, especially when combined with microarray technologies. Development of these designer rats would result in better-defined disease models that can be used in physiologic and applied pharmacologic studies to better treat human essential hypertension.  相似文献   

9.
BACKGROUND: To study the regulation of a naturally occurring genetic variant of high angiotensin-converting enzyme (ACE) gene (Ace in rat) expression, i.e., the Ace allele of the normotensive Wistar-Kyoto (WKY) rat, in the hypertensive background of stroke-prone spontaneously hypertensive (SHRSP) rats. METHODS: We analyzed a congenic strain termed SHRSP.WKY-Ace derived from SHRSP in which a chromosomal fragment of rat chromosome 10 including Ace was replaced by the WKY locus. We compared blood pressures by radiotelemetry, measured plasma ACE activity, tissue ACE messenger RNA (mRNA) and enzyme activities in lung, kidney, and left ventricle (LV) of the heart in adult animals. RESULTS: Congenic animals demonstrated a twofold increase in plasma ACE activity in comparison to SHRSP (P < 0.05) and thus similar levels to WKY. The increased tissue expression of ACE mRNA and enzyme activities in lung, kidney, and LV observed in WKY were similarly found in congenic animals when compared to SHRSP (P < 0.05, respectively). Systolic and diastolic blood pressures were not different between congenic and SHRSP animals. Analysis of renin in plasma and angiotensin peptides in LV tissues indicated the induction of compensatory mechanisms by downregulation of renin and angiotensin I (Ang I) concentrations in congenic animals. CONCLUSIONS: We demonstrated that genetically determined high ACE expression linked to WKY Ace remains unchanged in the hypertensive background of SHRSP.WKY-Ace. Our data indicate that buffering mechanisms in the renin-angiotensin system contribute to the finding that the development of spontaneous hypertension is not affected, despite an average twofold higher expression of ACE in congenic animals.  相似文献   

10.
Recently, a genome-wide screen has shown a major quantitative trait locus (QTL) for a stroke-associated phenotype on rat chromosome 1 (RNO1) independent of QTL for blood pressure (BP) in the stroke-prone spontaneously hypertensive rat (SHRSP) of a Heidelberg colony. However, it remains to be elucidated whether these observations reflect the existence of different genes predisposing to each of the disorders. To address this issue, we performed comprehensive approaches in a Japanese colony, Izm, as follows. First, we undertook genome-wide searches in F1(SHRSP/IzmxWKY/Izm)xSHRSP/Izm back-cross (n=63) to pursue a causal relation between hypertension and stroke. Although the strongest linkage to BP (LOD score of 3.4) was identified on RNO1, its relevance to stroke was not supported in the F1 back-cross studied. Second, we also investigated linkage to BP in F2 progeny (n=175) involving the stroke-resistant (or normal) spontaneously hypertensive rat (SHR). In F2 studies of SHR/Izm, this locus did not appear to constitute a principal BP QTL. Third, we constructed congenic animals with detailed phenotype characterization. Transfer of a chromosomal fragment between markers Klk1 and D1Rat116 from WKY/Izm onto the SHRSP/Izm background lowered systolic BP by 20 to 80 mm Hg, prevented development of apparent stroke, and exaggerated impaired glucose tolerance. In conclusion, we have successfully isolated an RNO1 region affecting BP, stroke, and glucose tolerance in SHRSP/Izm-derived congenic rats. The size of the introgressed region is large, but our novel congenic strain should help delineate complex, genetic impairments underlying BP and associated vascular disease phenotypes.  相似文献   

11.
Chromosome mapping based on congenic strains can restrict quantitative trait loci (QTLs) for blood pressure (BP) into small intervals that are otherwise indistinguishable in linkage analysis. Also, congenic strains can be created to test a candidate gene to be a BP QTL. Taking full advantage of these features, we produced 10 congenic strains by replacing various segments of chromosome (Chr) 10 of the Dahl salt-sensitive (DSS) rat with those of the Lewis (LEW) rat. These strains were made to systematically cover an entire section of Chr 10. Three of the strains were designed to narrow the intervals that harbor previously mapped QTL1 and QTL2. Two of the strains were designed for the express purpose of testing the QTL candidacy of loci for inducible nitric oxide synthase (Nos2) and angiotensin-converting enzyme (Ace) genes. BPs of these strains were measured by telemetry and compared with those of the DSS rat. Consequently, QTL1 and QTL2 were narrowed to segments of 53.5 and 100.4 centiRays, respectively. A new QTL, QTL3, was found between QTL1 and QTL2. Both Nos2 and Ace have been disqualified as QTLs in the DSS and LEW comparison. Therefore, there are no obvious candidate genes in the segments that harbor these 3 QTLs, which represent genes previously not thought to be involved in BP regulation. These QTLs will likely have an influence on studies of human hypertension because of their homology with the human CHR 17 region in which QTLs for BP have been found.  相似文献   

12.
The stroke-prone spontaneously hypertensive rat (SHRSP) has been reported to show significantly lower levels of serum total cholesterol than the normotensive control strain Wistar-Kyoto rat (WKY). Because selective inbreeding was conducted for stroke proneness, this concomitantly inherited characteristic of SHRSP may play some pathophysiological role in stroke. We evaluated the genetic determinants of the cholesterol trait by estimating heritability and subsequently by undertaking a genome-wide screen with 161 genetic markers in F(2) progeny involving SHRSP and WKY (104 male and 106 female rats). Three quantitative trait loci (QTLs) were detected on rat chromosomes 5, 7, and 15. Markers from the linked region on chromosome 15 indicated significant evidence of linkage with a maximal log of the odds (LOD) score of 7.7, whereas those on chromosomes 5 and 7 cosegregated with the trait in a sex-specific manner (the QTL close to genetic marker D5 Mit5 reached an LOD score of 7.3 in males, and that close to D7 Mit10 reached an LOD score of 3.2 in females). The male-specific QTL on chromosome 5 appeared to overlap with previously reported QTLs for stroke-associated phenotypes, but an identical gene (or genes) appeared unlikely to control these and the cholesterol traits simultaneously. In the present study, serum cholesterol levels were shown to be highly genetically determined in SHRSP (the heritability estimates are 76% in males and 83% in females), and 3 QTLs with substantial effects were identified. Further work, however, is required to clarify whether the cholesterol trait is related to the etiology of stroke or has been retained by chance through the inbreeding process in SHRSP.  相似文献   

13.
Several clinical and animal studies indicate that essential hypertension is inherited as a multifactorial trait with a significant genetic and environmental component. In the stroke-prone spontaneously hypertensive rat model, investigators have found evidence for linkage to blood pressure regulatory genes (quantitative trait loci) on rat chromosomes 2, 10, and X. In 1 human study of French and UK sib pairs, evidence for linkage has been reported to human chromosome 17q, the syntenic region of the rat chromosome 10 quantitative trait loci (QTL). Our study confirms this linkage (P=0.0005) and refines the location of the blood pressure QTL.  相似文献   

14.
Aquantitative trait locus (QTL) for blood pressure was previously detected on rat chromosome 10 (RNO10) by linkage analysis and confirmed by the construction of congenic strains that encompass large regions of RNO10. In the present study, the rat RNO10 blood pressure QTL was dissected by the further construction of congenic substrains. The original congenic region was shown to contain 2 blood pressure QTLs (QTL 1 and QTL 2) approximately 24 cM apart. These were localized to a <2.6-cM region between markers D10Rat27 and D10Rat24 for QTL 1 and to a <3.2-cM region between D10Rat12 and D10Mco70 for QTL 2. Comparative mapping suggests that the rat RNO10 QTL 2 could be localized very close to a blood pressure QTL described by sib-pair analysis on human chromosome 17, but this is not definitively established because of multiple and complex chromosomal rearrangements between rodents and humans.  相似文献   

15.
A region with a major effect on blood pressure (BP) is located on rat chromosome 1 in the vicinity of the Sa gene, a candidate gene for BP regulation. Previously, we observed a single linkage peak for BP in this region in second filial generation rats derived from a cross of the spontaneously hypertensive rat (SHR) with the Wistar-Kyoto rat (WKY), and we have reported the isolation of the region containing the BP effect in reciprocal congenic strains (WKY.SHR-Sa) and (SHR.WKY-Sa) derived from these animals. Here, we report the further genetic dissection of this region. Two congenic substrains each were derived from WKY.SHR-Sa (WISA1 and WISA2) and SHR.WKY-Sa (SISA1 and SISA2) by backcrossing to WKY and SHR, respectively. Although there was some overlap of the introgressed regions retained in the various substrains, the segments in WISA1 and SISA1 did not overlap. Furthermore, although the Sa allele in WISA1, WISA2, and SISA2 remained donor in origin, recombination in SISA1 reverted it back to the recipient (SHR) allele. Surprisingly, all 4 substrains demonstrated a highly significant BP difference compared with that of their respective parental strain, which was of a magnitude similar to those seen in the original congenic strains. The findings strongly indicate that there are at least 2 quantitative trait loci (QTLs) affecting BP in this region of rat chromosome 1. Furthermore, the BP effect seen in SISA1 indicates that at least a proportion of the BP effect of this region of rat chromosome 1 cannot be due to the Sa gene. SISA1 contains an introgressed segment of <3 cM, and this will facilitate the physical mapping of the BP QTL(s) located within it and the identification of the susceptibility-conferring genes. Our observations serve to illustrate the complexity of QTL dissection and the care needed to interpret findings from congenic studies.  相似文献   

16.
Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.  相似文献   

17.
OBJECTIVE : To localize quantitative trait loci (QTL) in an animal model that is potentially relevant to human hypertension. DESIGN AND METHODS : Four congenic strains have been constructed by replacing various segments of the Dahl salt-sensitive (S) rat by those of the Lewis (LEW) rat. A marker-assisted approach was employed to facilitate this process. When these congenic strains were established, their blood pressures (BPs) were measured by telemetry and compared with that of the S rat. Moreover, a search was conducted to find possible intermediate phenotypes linking the BP effects of the QTL and other physiological traits. RESULTS : Two BP QTL, designated as QTL1 and QTL2, have been mapped to the regions of 4.2 centiMorgans (cM) and less than 12.1 cM respectively on rat chromosome 10. The effects of both QTL correlate with cardiac, left ventricular and aortic hypertrophy. The effect of QTL1 is also associated with renal hypertrophy. CONCLUSION : The current study proved that multiple QTL exist in the region of Dahl rat chromosome 10. The identification of these QTL may help unravel the mechanisms underlying the pathogenesis of certain QTL in humans.  相似文献   

18.
Human essential hypertension is a complex, multifactorial, quantitative trait under a polygenic control. Over the last decade several strategies have been used to dissect the genetic determinants of hypertension. Of these strategies, the study of rare monogenic forms of hypertension has been the most successful. Attempts to identify the multiple genes involved in the more common polygenic form of hypertension has been more difficult. Many laboratories use rat models of genetic hypertension where some of the complexity of studying human hypertension can be removed. Numerous crosses between hypertensive and normotensive strains have produced several quantitative trait loci (QTL) for blood pressure and other related phenotypes such as left ventricular hypertrophy, stroke, insulin resistance and kidney failure. In this review we describe established and novel strategies to dissect the susceptibility and severity loci for human essential hypertension. We also illustrate a few successful examples of a direct translation of genetic discoveries from the experimental setting to human investigation. The use of new molecular tools such as gene 'chips' or microarrays for either gene expression profiling or single nucleotide polymorphisms (SNPs)-based total genome scanning strategies will ultimately result in new diagnostics and therapeutics for human essential hypertension.  相似文献   

19.
Chromosomes (Chr) 10 and 16 of the Dahl salt-sensitive (S) rat harbor quantitative trait loci (QTLs) for blood pressure (BP). To facilitate gene discovery of these QTLs, gene profiling based on microarrays was combined with fine QTL mapping to identify potential candidate genes that are differentially expressed. First, the region harboring the BP QTL on Chr 16 was narrowed by comparative congenic mapping. In this endeavor, a number of new chromosome markers were generated and used to physically define the chromosome interval in question. Second, in an effort to minimize the costs of gene profiling without sacrificing the chance of gene discovery, a combination congenic strain was produced by replacing one segment of Chr 10 along with one segment of Chr 16 of the hypertensive S rat by those of the normotensive Lewis (LEW) rat. Both of these regions are known to contain BP QTLs. Third, kidneys of this combination congenic strain and the S strain were employed for expression profiling studies. Finally, a comparison between the two strains yielded a number of potentially differentially expressed candidates. Six Established Sequence Tags (ESTs)/genes among them were located in Chr 10 regions and 1 was found in a Chr 16 region, and the genetic make-ups of all these regions were shown to be different between S and LEW. However, none of these ESTs/genes identified by gene profiling were located in an interval containing a QTL. Thus, the present study highlights the importance of correlating the results of gene expression profiling with fine congenic mapping.  相似文献   

20.
Candidate gene(s) for multiple blood pressure (BP) quantitative trait loci (QTL) were sought by analysis of differential gene expression patterns in the kidneys of a panel of eight congenic strains, each of which carries a different low-BP QTL allele with a genetic composition that is otherwise similar to that of the hypertensive Dahl salt-sensitive (S) rat strain. First, genes differentially expressed in the kidneys of one-month-old Dahl S and salt-resistant (R) rats were identified. Then, Northern filter hybridization was used to examine the expression patterns of these genes in a panel of congenic strains. Finally, their chromosomal location was determined by radiation hybrid (RH) mapping. Seven out of 37 differentially expressed genes were mapped to congenic regions carrying BP QTLs, but only one of these genes, L-2 hydroxy acid oxidase (Hao2), showed the congenic strain-specific pattern of differential kidney gene expression predicted by its chromosomal location. This data suggests that Hao2 should be examined as a candidate gene for the rat chromosome 2 (RNO2) BP QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号