首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

PURPOSE

One of the major keys to achieve successful osseointegration of the implant is its surface properties. The aim of this study was to investigate the bone response to dental implants with different surface characteristics using the rabbit tibia model. Tricalcium phosphate (TCP) coated, anodic oxidized and turned (control) surfaces were compared.

MATERIALS AND METHODS

Seventy two implants were placed in the tibia of eighteen rabbits. Nine rabbits were sacrificed at 3 weeks of healing and the remaining nine were sacrificed at 6 weeks of healing. The bone-to-implant contact (BIC) and the bone volume density (BVD) were assessed by light microscope after 3 and 6 weeks of healing.

RESULTS

Statistical analysis showed that no significant differences in the BIC and BVD were observed between the different implant surfaces and the control group at 3 weeks and 6 weeks of healing. Data also suggested that the BVD of all the surfaces showed significant difference at 3 and 6 weeks.

CONCLUSION

The present study has showed that osseointegration occurred in all investigated types of surface-treated implants. In the current study all of the threads of the implants were observed to calculate BIC and BVD values (instead of choosing some of the threads from the bone cortex for example), which didn''t make BIC or BVD percentage values better than in the control group, therefore the clinical relevance of these results remains to be shown.  相似文献   

2.
Bioactive substances may be used to enhance the rate and quantity of bone healing during osseointegration of titanium dental implants. A pilot observational study was undertaken to assess a novel keratin hydrogel in six adult sheep utilising the femoral condyles as the surgical site to assess osseointegration. Implants and osteotomy sites were coated with the keratin gel prior to implant placement (test implants) whereas the opposite knee received unmodified control implants in each animal. Fifty 3.5 mm × 7 mm Neoss dental implants were surgically implanted with a range of 3–5 Neoss dental implants placed per surgical site in each knee and allowed to heal for 5 days or 2, 4, 8, 12 and 16 weeks prior to the sheep being sacrificed. Of the 50 placed implants, 24 were used for this study and analysed via resin-embedded, undemineralised sections from test and control implants to assess the range of healing around the unloaded dental implants. These dental implants were analysed using histomorphometric methods for the best 3 consecutive threads on each side and the percentage of bone to implant contact (%BIC) was used to determine the degree of osseointegration between test and control dental implants at each time point. All implants appeared osseointegrated at the time of sacrifice. One each of the pairs of control implants at 2, 4 and 12 weeks demonstrated minimal integration histologically, with %BIC <10 %. No test implants had %BIC <35 % at any time point. Mean %BIC for test implants was higher than controls at all time points except 5 days and 2 weeks. The range from 2 to 16 weeks healing was 39.7 % [SD 25.5 %] to 85.4 % [14.2 %] for test implants and 35.6 % [43.4 %] to 46.6 % [23.1 %] for controls. %BIC appeared to increase earlier in the test implants (from 4 weeks onwards) compared to controls. After 16 weeks, %BIC was almost twice as great in test implants as controls. This pilot observational study suggests that keratin hydrogel may promote earlier osseointegration around titanium dental implants. Further cross-sectional studies with larger sample sizes are warranted. The most marked difference between test and control implants was seen after 4 weeks. It is recommended that future studies in this model focus on healing after 4 weeks.  相似文献   

3.
Background The aim of the present study was to evaluate the effect of different concentrations of growth hormone (GH) on endosteal implant’s surface at the early stages of osseointegration.Material and Methods Sixty tapered acid-etched titanium implants were divided into four groups: i) Collagen, used as a control group; and three experimental groups, where after collagen coating, GH was administered directly to the surface in varying concentrations: ii) 0.265 mg, iii) 0.53 mg, and iv) 1 mg. Implants were placed in an interpolated fashion in the anterior flange of C3, C4 or C5 of 15 sheep with minimum distance of 6 mm between implants. After 3-, 6- and 12-weeks of healing samples were harvested, histologically processed, qualitatively and quantitatively assessed for bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO).Results Statistical analysis as a function of time in vivo and coating resulted in no significant differences for BIC and BAFO at any evaluation time point. Histological evaluation demonstrated similar osseointegration features for all groups with woven bone formation at 3 weeks and progressive replacement of woven for lamellar bone in close contact with the implant surface and within the implant’s threads.Conclusions A single local application of growth hormone to the surface of titanium implants did not yield improved implant osseointegration independent of healing time. Key words:Growth hormone, osseointegration, low density bones, metallic implants, sheep, bone-to-implant contact.  相似文献   

4.
目的 :研究雌激素替代治疗对骨质疏松时种植体骨愈合的影响。方法 :选用32周龄雌性SD大鼠36只 ,并随机分为假手术组、卵巢切除组及雌激素组。卵巢切除12周后于大鼠胫骨近中干骺端植入纯钛螺纹状种植体 ,雌激素组同时肌注苯甲酸雌二醇。种植术后4周及12周分两批处死大鼠 ,摘取胫骨 ;标本分别进行扫描电镜观察和骨计量学测量。结果 :在种植后4周及12周时 ,雌激素组除12周时皮质骨结合率与卵巢切除组无显著差异外 ,其它各项骨计量学参数均显著高于卵巢切除组 (P<0.05或P<0.01) ;而与假手术组比较 ,除骨矿化速度及4周时单位骨量外 ,其他各项指标均无显著差异 (P>0.05)。电镜观察种植体—骨界面愈合雌激素组和假手术组均优于卵巢切除组。结论 :雌激素替代治疗可促进实验性骨质疏松大鼠种植体骨愈合 ;该方法有助于增加临床绝经性骨质疏松患者牙种植体骨整合率  相似文献   

5.
Promising biomaterial characteristics of diamond-coatings in biomedicine have been described in the literature. However, there is a lack of knowledge about implant osseointegration of this surface modification compared to the currently used sandblasted acid-etched Ti-Al6-V4 implants. The aim of this study was to investigate the osseointegration of microwave plasma-chemical-vapour deposition (MWP-CVD) diamond-coated Ti-Al6-V4 dental implants after healing periods of 2 and 5 months.Twenty-four MWP-CVD diamond-coated and 24 un-coated dental titanium-alloy implants (Ankylos®) were placed in the frontal skull of eight adult domestic pigs. To evaluate the effects of the nano-structured surfaces on bone formation, a histomorphometric analysis was performed after 2 and 5 months of implant healing. Histomorphometry analysed the bone-to-implant contact (BIC). No significant difference in BIC for the diamond-coated implants in comparison to reference implants could be observed for both healing periods. Scanning electron microscopy revealed an adequate interface between the bone and the diamond surface. No delamination or particle-dissociation due to shearing forces could be detected. In this study, diamond-coated dental titanium-alloy implants and sandblasted acid-etched implants showed a comparable degree of osseointegration.  相似文献   

6.
The knowledge of how nanostructures might affect early bone healing and osseointegration is limited. The aim of this study was to investigate if nanometer thick coatings of hydroxyapatite nanocrystals applied on a moderately rough surface might enhance early bone healing on screw-shaped dental implants and to evaluate if the thickness of the coat influences healing. Sandblasted and acid etched titanium implants coated with two different thicknesses of hydroxyapatite (test implants) and sandblasted and acid etched titanium implants (control implants), were inserted in rabbit tibia. After a healing time of 2, 4 and 9 weeks, a removal torque analysis and a histological evaluation were performed. The results from the removal torque analysis showed a tendency for higher values for the double coated hydroxyapatite after 4 weeks and for both the coated surfaces after 9 weeks of healing. The histological evaluations indicated slightly more new bone formation with the coated implants compared with the control; the differences did not reach statistical significance. The present study could not support the importance of nanometer thick coatings of hydroxyapatite nanocrystals in early bone healing, at least not when applied on a blasted and etched surface and placed in a cortical bone.  相似文献   

7.
The surface characteristics of dental implants play an important role in the osseointegration process. Over the years implant surfaces have been subjected to different treatments, including turning, plasma spraying, coating, sand blasting, acid etching, and anodization. FBR coating is a fully resorbable calcium phosphate (CaP) coating made of brushite, obtained by electrochemical deposition on titanium plasma-sprayed (TPS) implants; this bioactive layer may be totally resorbable in 6-12 weeks and once the FBR coating has been resorbed, the newly formed bone is in contact with the roughness of the TPS surface. Human biopsy of immediately-loaded implants is certainly the most definitive means of determining the occurrence of osseointegration. In this case series the histologic and histomorphometric features of the bone-implant interface are analyzed and discussed in 3 immediately restored implants, retrieved from human subjects at 8, 10 and 12 weeks, respectively. All 3 implants were osseointegrated, with a bone to implant contact (BIC) ranging from 54.4% to 70.1%. The FBR coating was resorbed and replaced by new bone. Osteoconduction was especially noticeable between the implant threads, where the pristine bone was removed during implant bed preparation. The results suggest that the resorption window of 6-12 weeks for the CaP coating seems to be confirmed at least in the human mandible, and that immediately loaded FBR-coated implants placed in the posterior mandible can achieve osseointegration within 6-12 weeks of loading.  相似文献   

8.
Stimulation with low-power laser (LPL) can enhance bone repair as reported in experimental studies on bone defects and fracture healing. Little data exist concerning the use of LPL postoperative stimulation to improve osseointegration of endosseous implants in orthopaedic and dental surgery. An in vivo model was used for the present study to evaluate whether Ga-Al-As (780 nm) LPL stimulation can improve biomaterial osseointegration. After drilling holes, cylindrical implants of hydroxyapatite (HA) were placed into both distal femurs of 12 rabbits. From postoperative day 1 and for 5 consecutive days, the left femurs of all rabbits were submitted to LPL treatment (LPL group) with the following parameters: 300 J/cm2, 1 W, 300 Hz, pulsating emission, 10 min. The right femurs were sham-treated (control group). Three and 6 weeks after implantation, histomorphometric and microhardness measurements were taken. A higher affinity index was observed at the HA-bone interface in the LPL group at 3 (P<0.0005) and 6 weeks (P<0.001); a significant difference in bone microhardness was seen in the LPL group vs. the control group (P<0.01). These results suggest that LPL postoperative treatment enhances the bone-implant interface.  相似文献   

9.
PURPOSE: The surface properties of dental implants have been considered directly related to the success of the osseointegrated interface. Hydroxyapatite (HA)-coated implants promote a bioactive surface because they facilitate cellular migration and bone growth, resulting in a faster osseointegration. MATERIALS AND METHODS: This study analyzed and compared 2 different implant surfaces: a group composed of titanium implants and another group coated with HA. The HA coating was produced by the biomimetic process to reduce costs. RESULTS AND CONCLUSIONS: After histomorphometric analyses it was possible to demonstrate that there were no statistically significant differences between the groups.  相似文献   

10.
Objective: This study was designed to evaluate the effect of surface contamination on osseointegration of dental implants surrounded by a circumferential bone defect and to compare osseointegration around Osseotite® with that around Nanotite? implants. Materials and methods: The premolars on both sides of the mandible in four beagle dogs were extracted. Following 4 months healing, two Nanotite? implants and two Osseotite® implants were partially inserted in the left side of each mandible. Some threads protruded from the tissues into the oral cavity. Following a 5 week healing period, the implants were removed and the contaminated part of each implant was cleaned. They were then installed to the full implant length on the contra lateral side of the mandibles. The coronal 5 mm of each implant was surrounded by 1 mm circumferential bone defect. Following 12 weeks of healing period, the dogs were sacrificed and biopsies were obtained. Ground sections were prepared for histomorphometric analysis. Results: All implants were associated with direct bone‐to‐implant contact on the portion of the implant surface contaminated previously and surrounded by bone defect. Nanotite? implants performed better than Osseotite® implants. Conclusions: The results demonstrated that implant surfaces, which were contaminated previously and were surrounded by bone defects, can osseointegrate. To cite this article:
Mohamed S, Polyzois I, Renvert S, Claffey N. Effect of surface contamination on osseointegration of dental implants surrounded by circumferential bone defects. Clin. Oral Impl. Res. 21 , 2010; 513–519.
doi: 10.1111/j.1600‐0501.2010.01913.x  相似文献   

11.
PROCEDURE: Much research is directed at surface modifications to enhance osseointegration of implants. A new potential coating is the biopolymer, chitosan, the deacetylated derivative of the natural polysaccharide, chitin. Chitosan is biocompatible, degradable, nontoxic, and exhibits osteogenic properties. The aim of this research was to investigate the hypothesis that chitosan-coated titanium supports bone formation and osseointegration. MATERIALS AND METHODS: Chitosan (1 wt% of 92.3% deacetylated chitosan in 1% acetic acid) was solution cast and bonded to rough ground titanium pins (2-mm diameterx4-mm long) via silane reactions. Calcium phosphate sputter-coated titanium and uncoated titanium pins were used as controls. Two chitosan-coated pins, and 1 each of calcium phosphate coated and uncoated pins were implanted unilaterally in the tibia of 16 adult male New Zealand white rabbits. At 2, 4, 8, and 12 weeks, undecalcified sections were histologically evaluated for healing and bone formation. RESULTS: Histological evaluations of tissues in contact with the chitosan-coated pins indicated minimal inflammatory response and a typical healing sequence of fibrous, woven bone formation, followed by development of lamellar bone. These observations were similar to those for tissues interfacing the control calcium phosphate-coated and uncoated titanium implants. Quantitative comparisons of the bone-implant interface were not possible since 31% of the implants migrated into the tibial marrow space after implantation due to insufficient cortical bone thickness to hold pins in place during healing. CONCLUSION: These data support the hypothesis that chitosan-coatings are able to develop a close bony apposition or the osseointegration of dental/craniofacial and orthopedic implants.  相似文献   

12.
PURPOSE: One strategy to improve implant osseointegration is to control the quality of the bone reaction at the implant-bone tissue interface using an implant coated with biologically active substances. The purpose of this study was to investigate the effect of a tetra-cell adhesion molecule (T-CAM) coating composed of 4 cell-adhesion molecules-an arginine-glycine-aspartic acid (RGD) sequence, a proline-histidine-serine-arginine-asparagine (PHSRN) sequence, a tyrosine-histidine sequence (YH), and a glutamic acid-proline-aspartic acid-isoleucine-methionine (EPDIM)-on the rough-surfaced titanium implant on peri-implant bone formation in the rabbit femur with poor local bone conditions and minimal primary stability. MATERIALS AND METHODS: Seven T-CAM-coated (blasted/T-CAM) and uncoated (blasted) implants with a rough surface (hydroxyapatite-blasted; Ra = 1.8 microm) were placed in slightly oversized beds of the metaphyses of the right and left femurs of 7 New Zealand White rabbits with light tactile pressure, and minimal primary stability was obtained. To evaluate the effects of T-CAM coating on the peri-implant bone healing response, histomorphometric analysis was performed 8 weeks after surgery. The 2 groups were compared using the Student t test, with a significance level of P < .05. RESULTS: Compared to uncoated blasted implants at 8 weeks of healing, the blasted/T-CAM implants showed a significantly greater amount of bone-implant contact (BIC; P < .01) and new bone formation in the zones 0 to 100 microm and 0 to 500 microm lateral to the implant surface (P < .05) in the medullary space. CONCLUSION: The T-CAM coating on the rough-surfaced titanium implants significantly enhanced peri-implant bone formation in rabbit femurs with poor local bone condition.  相似文献   

13.
PURPOSE: This study was undertaken to evaluate ion beam-assisted deposition (IBAD) of hydroxyapatite (HA) on the grit-blasted surface of endosseous dental implants 6 weeks postplacement. MATERIALS AND METHODS: A total of 40 implants was placed in the tibiae of 10 New Zealand white rabbits. Twenty implants were grit-blasted only and the other 20 were grit-blasted and coated with HA by the IBAD method. After 6 weeks of healing, the rabbits were sacrificed and removal torque tests, histomorphometry, and morphometric analysis of microtomographic images were performed. RESULTS: The HA-coated group showed significantly higher removal torque, bone-to-implant contact, and bone volume than the other group. DISCUSSION AND CONCLUSION: In a previous study, the authors suggested that HA coating deposited on a machined surface by the IBAD method showed results comparable to or more favorable than the results obtained with a blasted surface. This study indicated that the HA coating produced by the IBAD method was also very effective on the aluminum oxide-blasted surface, as demonstrated by the early formation of osseointegration. Morphometric analysis by microtomography showed some promise in measuring the osseointegration rate. (More than 50 references.)  相似文献   

14.
Enhanced osseointegration and a shortened healing time are required for dental implant treatment. The aim of this study was to evaluate whether topical application of the osteogenic inducer (OI) sustained-release system over the implant promotes early bone remodeling around the implant. The mandibular canines of 15 New Zealand White rabbits were extracted. After 3 months of healing, implants coated with poly(lactic-co-glycolic acid) (PLGA)+OI, PLGA alone, or no material (control) were inserted into the canine sites. After 4 weeks, specimens were harvested from the three groups and evaluated. Implant stability recorded by Periotest revealed significantly higher values for the PLGA + OI group (?2.61 ± 0.43) than for the PLGA (?1.47 ± 0.45) and control groups (?1.08 ± 0.19) (P < 0.001). Moreover, the PLGA+OI group had improved bone volume and structural parameters around the implants at 4 weeks, as shown by significantly increased BV/TV, BSA/BV, Tb.Th, and BIC (P < 0.05), as well as decreased Tb.Sp (P = 0.010) compared with the other groups. The histological results showed more trabecular bone and bone matrix around the implants in the PLGA+OI group. Therefore, local application of the OI sustained-release system might be able to promote early bone remodeling around titanium implants and facilitate faster and better osseointegration.  相似文献   

15.
This study evaluated the effects of Escherichia coli-derived rhBMP-2 (ErhBMP-2) coated onto anodized implants to stimulate bone formation, osseointegration and vertical bone growth in a vertical bone defect model. Six young adult beagle dogs were used. After a 2-month bone healing period, anodized titanium implants (8 mm in length) were placed 5.5 mm into the mandibular alveolar ridge. Eighteen implants coated with ErhBMP-2 (BMP group) and another 18 uncoated implants (control group) were installed using a randomized split-mouth design. The implant stability quotient (ISQ) values were measured. Specimens were fabricated for histometric analysis to evaluate osseointegration and bone formation. The ISQ values at 8 weeks after implant placement were significantly higher in the BMP group than in the control group (p < 0.05). Histological observations showed that the changes in bucco-lingual alveolar bone levels were higher in the BMP group than in the control group (p < 0.05). The ErhBMP-2 coated anodized implants can stimulate bone formation and increase implant stability significantly on completely healed alveolar ridges in dogs. Further studies evaluating the effects of ErhBMP-2 on osseointegration in the bone–implant interface are warranted.  相似文献   

16.
OBJECTIVE: Full osseointegration is necessary to achieve long-term success of dental implants. We aimed to find out the relative merits of immediate and delayed insertion of implants after dental extraction. STUDY DESIGN: We completed a histologic and histomorphometric examination of the tissue adjacent to delayed and immediate implants in 8 beagle dogs. In 4 dogs, implants were inserted immediately after the extraction of second premolars; in the remaining 4, the implants were inserted 6 months after the extraction. Fluorochrome bone markers were injected on 2 occasions before the dogs were killed 8 months after the implants had been inserted. Each implant and its surrounding tissue was examined macroscopically and microscopically. Both histologic dynamic and histologic static histomorphometry were used in this analysis. Statistical significance was tested by using the Student t test for paired and unpaired observations, the Dunnett t test, and Fisher's least significant difference method for multiple comparisons. RESULTS: The implants placed immediately had 76% of their surface covered with bone, whereas the implants placed after bony healing had 81% of their surface covered with bone. The fibrous tissue at the cervical end of the implant was more dense; the delayed implants also had a greater number of adhesive epithelial elements (hemidesmosomes). Use of dynamic and static histomorphometry revealed no significant differences between the 2 groups. CONCLUSION: We found new soft and hard tissue around dental implants 8 months after their insertion in both groups. Pseudoankylotic healing was seen in the osseous part. The lower level of osseointegration in the immediately placed implants was attributable to the early resorption of bone in the crestal part, resulting in a larger part of the implant being surrounded by soft tissue.  相似文献   

17.
Information concerning the effects of the implant cutting flute design on initial stability and its influence on osseointegration in vivo is limited. This study evaluated the early effects of implants with a specific cutting flute design placed in the sheep mandible. Forty-eight dental implants with two different macro-geometries (24 with a specific cutting flute design – Blossom group; 24 with a self-tapping design – DT group) were inserted into the mandibular bodies of six sheep; the maximum insertion torque was recorded. Samples were retrieved and processed for histomorphometric analysis after 3 and 6 weeks. The mean insertion torque was lower for Blossom implants (P < 0.001). No differences in histomorphometric results were observed between the groups. At 3 weeks, P = 0.58 for bone-to-implant contact (BIC) and P = 0.52 for bone area fraction occupied (BAFO); at 6 weeks, P = 0.55 for BIC and P = 0.45 for BAFO. While no histomorphometric differences were observed, ground sections showed different healing patterns between the implants, with better peri-implant bone organization around those with the specific cutting flute design (Blossom group). Implants with the modified cutting flute design had a significantly reduced insertion torque compared to the DT implants with a traditional cutting thread, and resulted in a different healing pattern.  相似文献   

18.
Objectives: The surface properties of titanium dental implants are key parameters for rapid and intimate bone–implant contact. The osseointegration of four implant surfaces was studied in the femoral epiphyses of rabbits. Material and methods: Titanium implants were either grit‐blasted with alumina or biphasic calcium phosphate (BCP) ceramic particles, coated with a thin octacalcium phosphate (OCP) layer, or prepared by large‐grit sand blasting and acid‐etched (SLA). After 2 and 8 weeks of implantation, the bone‐implant contact and bone growth inside the chambers were compared. Scanning electron microscopy (SEM) and profilometry showed distinct microtopographies. Results: The alumina‐Ti, BCP‐Ti and OCP‐Ti groups had similar average surface roughness in the 1–2 μm range whereas the SLA surface was significantly higher with a roughness averaging 4.5 μm. Concerning the osseointegration, the study demonstrated a significantly greater bone‐to‐implant contact for both the SLA and OCP‐Ti surfaces as compared with the grit‐blasted surfaces, alumina‐ and BCP‐Ti at both 2 and 8 weeks of healing. Conclusion: In this animal model, a biomimetic calcium phosphate coating gave similar osseointegration to the SLA surface. This biomimetic coating method may enhance the apposition of bone onto titanium dental implants.  相似文献   

19.
Objectives: To determine the effect of magnetron-sputtered calcium phosphate coating of implants on the later stages of osseointegration in a non-human primate model.
Material and methods: Eighteen and 20 implants with a 0.1 μm amorphous calcium phosphate coating and a turned surface, respectively, were inserted in the anterior upper and lower jaw of adult non-human primates. Following a 7.5 months healing period, one part of the implants remained in the submerged position. The other part of implants was connected to healing abutments to allow peri-implant inflammation to occur. After another 20 months, histologic and histomorphometric analysis of the peri-implant area was performed.
Results: Submerged implants with a calcium phosphate coating and a turned surface showed no signs of an inflammatory reaction. The histomorphometric parameters 'bone volume per tissue volume' (BV/TV) and 'bone-to-implant contacts' (BIC) were not affected by calcium phosphate coating. Non-submerged implants of both groups showed occasionally signs of inflammation at the implant–abutment junction. Histomorphometric analysis revealed that the distance between the implant–abutment junction and the most coronal level (where bone was attached to the implant) as well as BV/TV and BIC were independent from the surface modification.
Conclusion: Our results show that dental implants with calcium phosphate coating behave similar to turned implants independently whether they are connected to healing abutments or remain submerged. Ultra-thin calcium phosphate coating can combine the positive effects of calcium phosphate during the early stage of osseointegration without causing impairment of the later stages.  相似文献   

20.
Our aim was to try and find out whether contamination with saliva during insertion of dental implants affects osseointegration in bone that has been augmented with different grafts. Six bony defects were created in each of the calvaria of six sheep, and then augmented with three different materials (autogenous bone, bovine bone, and resorbable biphasic ceramic bone substitute) After five weeks of healing, three implants contaminated with saliva (contaminated group) and three not contaminated (uncontaminated group) were placed in the centre of the augmented areas. For histomorphometric analysis, bone implant contact, bone area fraction occupancy, bone and material area, and bony area were measured after a healing period of five weeks. There was a significant difference between the contaminated and uncontaminated groups (p = 0.036) for bone implant contact only in the augmented areas, but there were no significant differences in bone area fraction occupancy, bone and material area, and bony area. We conclude that contamination with saliva during placement of dental implants can significantly compromise bone implant contact in augmented areas, but had no significant effect on the formation of bone in areas more distant from the surface of the implant. We suggest that salivary contamination should be avoided during placement of dental implants in augmented areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号