首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Islets》2013,5(5):213-223
Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.  相似文献   

2.
Children from diabetic pregnancies have a greater incidence of type 2 diabetes. Our objective was to determine if exposure to mild-moderate hyperglycemia, by modeling managed diabetic pregnancies, affects fetal β-cell function. In sheep fetuses, β-cell responsiveness was examined after 2 weeks of sustained hyperglycemia with 3 pulses/day, mimicking postprandial excursions, and compared to saline-infused controls (n = 10). Two pulsatile hyperglycemia (PHG) treatments were studied: mild (mPHG, n = 5) with +15% sustained and +55% pulse; and moderate (PHG, n = 10) with +20% sustained and +100% pulse. Fetal glucose-stimulated insulin secretion and glucose-potentiated arginine insulin secretion were lower (P < 0.05) in PHG (0.86 ± 0.13 and 2.91 ± 0.39 ng/ml plasma insulin) but not in mPHG fetuses (1.21 ± 0.08 and 4.25 ± 0.56 ng/ml) compared to controls (1.58 ± 0.25 and 4.51 ± 0.56 ng/ml). Islet insulin content was 35% lower in PHG and 35% higher in mPHG vs controls (P < 0.01). Insulin secretion and maximally stimulated insulin release were also reduced (P < 0.05) in PHG islets due to lower islet insulin content. Isolated PHG islets also had 63% greater (P < 0.01) reactive oxygen species (ROS) accumulation at 11.1 mmol/l glucose than controls (P < 0.01), but oxidative damage was not detected in islet proteins. PHG fetuses showed evidence of oxidative damage to skeletal muscle proteins (P < 0.05) but not insulin resistance. Our findings show that PHG induced dysregulation of islet ROS handling and decreased islet insulin content, but these outcomes are independent. The β-cell outcomes were dependent on the severity of hyperglycemia because mPHG fetuses had no distinguishable impairments in ROS handling or insulin secretion but greater insulin content.  相似文献   

3.
Effects of free fatty acids on insulin secretion in obesity   总被引:2,自引:0,他引:2  
The prevalence of obesity in Western society has reached epidemic proportions and its aetiological role in the development of type 2 diabetes has made finding an effective treatment for the condition of crucial importance. Of the many consequences of obesity, derangements in glucose metabolism present one of the greatest problems to health. While the role of obesity in causing insulin resistance has received much attention, the effect of obesity on β‐cell failure and the consequent development of type 2 diabetes requires re‐emphasis. In this review, the current understanding of the effects of elevated free‐fatty acids on β‐cell function will be examined, including a discussion of potential mechanisms. In particular, dysregulation of biochemical pathways and alterations in key enzymes, proteins and hormones will be considered as grounds for the progression to a diabetic phenotype.  相似文献   

4.
Insulin is secreted in discrete bursts. These pulses are also present when individual or groups of islets are perifused. Interpretation of the measured frequency and magnitude of pulsatile hormone secretion requires an examination of the sensitivity and specificity of the methods for pulse detection and validation of these for the experimental apparatus and hormone assay in which they are applied. In the present study we achieve these aims for a perfusion method for measurement of pulsatile insulin release by human islets. A deconvolution technique previously developed for measurement of pulsatile hormone secretion in vivo was specifically validated for in vitro pulse detection in the present study. Deconvolution analysis reliably (>90%) detected insulin pulses with an amplitude 20% or more above baseline and recovered quantitatively the insulin secretion profile, insulin secretion rate, and insulin pulse mass from single as well as multiple perifused islets. Cluster analysis was less sensitive, but was able to detect most (>80%) pulses with an amplitude of 40% or more above baseline. With this limitation, cluster analysis is potentially useful for groups, but not single perifused human islets. Analysis of single human islets showed that enhanced insulin secretion by increased glucose concentrations in the perfusate is achieved by enhancing insulin pulse mass with no change in pulse frequency. Perfused single or groups of human islets exhibited an interpulse interval ( approximately 6-8 min) comparable to that observed in humans in vivo. Dynamic in vitro perifusion should facilitate studies of the mechanisms driving pulsatile insulin secretion.  相似文献   

5.
Aims/hypothesis Levels of uncoupling protein-2 (UCP2) are regulated in the pancreatic beta cells and an increase in the protein level has been associated with mitochondrial uncoupling and alteration in glucose-stimulated insulin secretion. However, it is not clear whether an increase in uncoupling protein-2 per se induces mitochondrial uncoupling and affects ATP generation and insulin secretion. Materials and methods Transgenic mice with beta cell-specific overexpression of the human UCP2 gene and INS-1 cells with doxycycline-inducible overproduction of the protein were generated and the consequences of increased levels of UCP2 on glucose-induced insulin secretion and on parameters reflecting mitochondrial uncoupling were determined. Results In transgenic mice, an increase in beta cell UCP2 protein concentration did not significantly modify plasma glucose and insulin levels. Glucose-induced insulin secretion and elevation in the ATP/ADP ratio were unaltered by an increase in UCP2 level. In INS-1 cells, a similar increase in UCP2 level did not modify glucose-induced insulin secretion, cytosolic ATP and ATP/ADP ratio, or glucose oxidation. Increased levels of UCP2 did not modify the mitochondrial membrane potential and oxygen consumption. Increased UCP2 levels decreased cytokine-induced production of reactive oxygen species. Conclusion/interpretation The results obtained in transgenic mice and in the beta cell line do not support the hypothesis that an increase in UCP2 protein per se uncouples the mitochondria and decreases glucose-induced insulin secretion. In contrast, the observation that increased UCP2 levels decrease cytokine-induced production of reactive oxygen species indicates a potential protective effect of the protein on beta cells, as observed in other cell types. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible to authorised users. N. Produit-Zengaffinen and N. Davis-Lameloise contributed equally to this work.  相似文献   

6.
7.
We have examined the effect of exogenous insulin on secretion vesicle margination and secretion vesicle lysis in isolated perifused rat pancreatic islets. Recruitment of somatostatin (SRIF) receptors to the plasma membrane was used as a marker of secretion vesicle margination, whereas insulin release reflected the process of secretion vesicle lysis. A newly designed perifusion protocol allows one to interrupt intermittently either secretion vesicle margination or secretion vesicle lysis. Islets were initially perifused with glucose (30, 100, 165, 200, or 300 mg/dl) in the presence of sodium isethionate. Sodium isethionate inhibits secretion vesicle lysis, but not the recruitment of SRIF receptors. Thus, the margination of secretion vesicles to the surface membrane continued without their lysis. Sodium isethionate was then removed, and islets were challenged with 400 microM isobutylmethylxanthine (IBMX). In the islets perifused with high glucose concentrations, IBMX lysed a greater number of vesicles and caused enhanced release of insulin. The presence of exogenous insulin during the initial phase of secretion vesicle margination did not affect subsequent IBMX-induced insulin secretion from the islets perifused with low glucose concentrations (30 or even 100 mg/dl). When the glucose concentration was increased to 165, 200, or 300 mg/dl, insulin significantly diminished IBMX-induced insulin release. In separate experiments, increasing concentrations of insulin (50, 100, and 200 microU/ml) reduced glucose-induced recruitment of SRIF receptors in a dose-dependent manner. Our observations strongly suggest the existence of a well balanced relationship between ambient glucose and insulin concentrations in terms of their positive and negative feedback actions on insulin release. Their influences seem to be exerted at the level of secretion vesicle margination at the plasma membrane.  相似文献   

8.
BACKGROUND: In rodents, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inactive 11-dehydrocorticosterone (DHC) into active corticosterone. The mRNA and activity of 11beta-HSD1 have been shown to be present in batch-incubated pancreatic islets from the ob/ob mouse. In other tissues, 11beta-HSD1 expression has been demonstrated to be regulated by glucocorticoids. In the present study, the influence of DHC on 11beta-HSD1 levels and glucose-induced changes in insulin secretion were studied in pancreatic islets isolated from the ob/ob mouse. METHODS: Western blotting with antiserum for 11beta-HSD1 verified the presence of 11beta-HSD1 in islets from obese ob/ob and normal C57BL/6J mice. Insulin secretion was determined by perifusing islets and assaying the perifusate with ELISA. RESULTS: Islets from the ob/ob mouse contained almost twofold more 11beta-HSD1 protein than islets from the C57BL/6J mouse. When islets from ob/ob mice were cultured with 50 nM DHC, the 11beta-HSD1 levels doubled compared with islets cultured in the absence of DHC. Selective inhibition of 11beta-HSD1 attenuated DHC-induced increase in 11beta-HSD1 levels, as did an antagonist of the glucocorticoid receptor. In individually perifused ob/ob mouse islets, early and late phases of glucose-stimulated insulin secretion (GSIS) were dose-dependently inhibited by 5, 50 and 500 nM DHC. Whereas inclusion of 11beta-HSD1 inhibitors restored, addition of the glucocorticoid receptor antagonist attenuated the DHC-mediated inhibition of GSIS. CONCLUSIONS: Levels of 11beta-HSD1 in islets from ob/ob mice are positively regulated by DHC and could be lowered by a selective 11beta-HSD1 inhibitor and a glucocorticoid receptor antagonist. Increased levels of 11beta-HSD1 were associated with impaired GSIS.  相似文献   

9.
Beta-endorphin inhibits insulin secretion from isolated pancreatic islets   总被引:1,自引:0,他引:1  
R L Schleicher 《Endocrinology》1989,124(3):1254-1258
Intravenous administration of small doses of beta-endorphin causes immediate suppression of basal and glucose-stimulated insulin secretion in normal rabbits. The purpose of the present study was to determine if beta-endorphin directly inhibits glucose-stimulated insulin secretion from rabbit pancreatic islets. Islets were isolated from male New Zealand White rabbits and perifused for 1 h with medium containing 100 mg/dl glucose (M100) followed by a 1-h challenge with medium containing 300 mg/dl glucose (M300) with or without beta-endorphin and/or the specific opioid antagonist naloxone. Samples were collected every 5 min during the last 30 min of the baseline perifusion with M100 and during the 1-h challenge with the stimulatory concentration of glucose (M300). Total insulin secretion for each 1-h period was calculated by adding the areas under the curves for twice the 30-min baseline period and for the 1-h challenge period. The mean +/- SE area for the control islets during perifusion with M100 was 5.9 +/- 0.8 microU/islet.h. M300 stimulated a 4.2-fold increase in the amount of insulin secreted (24.5 +/- 3.6 microU/islet.h). The stimulated rate of insulin release was sustained throughout the 1-h test period with M300, averaging 0.42 +/- 0.02 microU insulin/islet.min. beta-Endorphin inhibited glucose-stimulated insulin secretion in a concentration-dependent manner. Maximal suppression of insulin secretion to a level well below the baseline secretion rate was produced by 300 nM beta-endorphin (1.9 +/- 0.3 microU/islet.h). The first 15 min of glucose-stimulated insulin secretion was 6 times less sensitive to the inhibitory effect of beta-endorphin than was the next 45 min. The concentrations of beta-endorphin causing 50% inhibition of glucose-stimulated insulin secretion (IC50) for the 5- to 15-, 20- to 60-, and 5- to 60-min intervals were 1.96, 0.35, and 0.57 nM, respectively. Naloxone (3 microM) had no effect on glucose-stimulated insulin secretion, but partially antagonized the inhibitory effect of 30 nM beta-endorphin (10.2 +/- 2.9 microU/islet.h naloxone plus beta-endorphin vs. 2.6 +/- 1.1 microU/islet.h beta-endorphin; P less than 0.05). These data demonstrate that beta-endorphin, at low concentrations, has a direct inhibitory effect on insulin secretion, and they support the idea that a naloxone-sensitive beta-endorphin-binding component is present in pancreatic islets.  相似文献   

10.
Fatty acids have both stimulatory and inhibitory effects on insulin secretion. Long-term exposure to fatty acids results in impaired insulin secretion whilst acute exposure has generally been found to enhance insulin release. However, there are conflicting data in the literature as to the relative efficacy of various fatty acids and on the glucose dependency of the stimulatory effect. Moreover, there is little information on the responses of human islets in vitro to fatty acids. We have therefore studied the acute effects of a range of fatty acids on insulin secretion from rat and human islets of Langerhans at different glucose concentrations. Fatty acids (0.5 mM) acutely stimulated insulin release from rat islets of Langerhans in static incubations in a glucose-dependent manner. The greatest effect was seen at high glucose concentration (16.7 mM) and little or no response was elicited at 3.3 or 8.7 mM glucose. Long-chain fatty acids (palmitate and stearate) were more effective than medium-chain (octanoate). Saturated fatty acids (palmitate, stearate) were more effective than unsaturated (palmitoleate, linoleate, elaidate). Stimulation of insulin secretion by fatty acids was also studied in perifused rat islets. No effects were observed at 3.3 mM glucose but fatty acids markedly potentiated the effect of 16.7 mM glucose. The combination of fatty acid plus glucose was less effective when islets had been first challenged with glucose alone. The insulin secretory responses to fatty acids of human islets in static incubations were similar to those of rat islets. In order to examine whether the responses to glucose and to fatty acids could be varied independently we used an animal model in which lactating rats are fed a low-protein diet during early lactation. Islets from rats whose mothers had been malnourished during lactation were still able to respond effectively to fatty acids despite a lowered secretory response to glucose. These data emphasise the complex interrelationships between nutrients in the control of insulin release and support the view that fatty acids play an important role in glucose homeostasis during undernutrition.  相似文献   

11.
The type of dietary fat affects the action of insulin by changes induced in the fatty acid composition of cell membranes. Little is known, however, about the effects of dietary fatty acids on insulin secretion or the possible relation between the fatty acid composition of the membrane phospholipids and insulin secretion. We therefore studied the effects of dietary fatty acids on insulin secretion stimulated by glucose, forskolin and arginine, and on the insulin content of isolated pancreatic islets, as well as on the fatty acid composition of muscle phospholipids, which were used as markers of the diet-induced modifications in the cell membranes. Five groups of rats were fed for one month with diets varying only in their fat composition: olive oil, sunflower oil, soybean oil, fish oil and palmitic acid (16:0) + soybean oil (SAT). The SAT group had higher insulin secretion, independently of the secretagogue used. No significant differences were found in insulin content between the groups. The dietary fatty acids modified the fatty acid composition of the muscle phospholipids, both in endogenously synthesized fatty acids and in those which were unable to be synthesized by the organism. No statistically significant relation was found between insulin secretion and the content of certain fatty acids in the muscle phospholipids.  相似文献   

12.
13.
Glucokinase activity is increased in pancreatic islets during pregnancy and in vitro by prolactin (PRL). The underlying mechanisms that lead to increased glucokinase have not been resolved. Since glucose itself regulates glucokinase activity in beta-cells, it was unclear whether the lactogen effects are direct or occur through changes in glucose metabolism. To clarify the roles of glucose metabolism in this process, we examined the interactions between glucose and PRL on glucose metabolism, insulin secretion, and glucokinase expression in insulin 1 (INS-1) cells and rat islets. Although the PRL-induced changes were more pronounced after culture at higher glucose concentrations, an increase in glucose metabolism, insulin secretion, and glucokinase expression occurred even in the absence of glucose. The presence of comparable levels of insulin secretion at similar rates of glucose metabolism from both control and PRL-treated INS-1 cells suggests the PRL-induced increase in glucose metabolism is responsible for the increase in insulin secretion. Similarly, increases in other known PRL responsive genes (e.g. the PRL receptor, glucose transporter-2, and insulin) were also detected after culture without glucose. We show that the upstream glucokinase promoter contains multiple STAT5 binding sequences with increased binding in response to PRL. Corresponding increases in glucokinase mRNA and protein synthesis were also detected. This suggests the PRL-induced increase in glucokinase mRNA and its translation are sufficient to account for the elevated glucokinase activity in beta-cells with lactogens. Importantly, the increase in islet glucokinase observed with PRL is in line with that observed in islets during pregnancy.  相似文献   

14.
15.
Monomethyladenines have effects on DNA repair, G-protein-coupled receptor antagonism and autophagy. In islet ß-cells, 3-methyladenine (3-MA) has been implicated in DNA-repair and autophagy, but its mechanism of action is unclear. Here, the effect of monomethylated adenines was examined in rat islets. 3-MA, N6-methyladenine (N6-MA) and 9-methyladenine (9-MA), but not 1- or 7-monomethylated adenines, specifically potentiated glucose-induced insulin secretion (3-4 fold; p ≤ 0.05) and proinsulin biosynthesis (∼2-fold; p ≤ 0.05). Using 3-MA as a ‘model’ monomethyladenine, it was found that 3-MA augmented [cAMP]i accumulation (2-3 fold; p ≤ 0.05) in islets within 5 minutes. The 3-, N6- and 9-MA also enhanced glucose-induced phosphorylation of the cAMP/protein kinase-A (PKA) substrate cAMP-response element binding protein (CREB). Treatment of islets with pertussis or cholera toxin indicated 3-MA mediated elevation of [cAMP]i was not mediated via G-protein-coupled receptors. Also, 3-MA did not compete with 9-cyclopentyladenine (9-CPA) for adenylate cyclase inhibition, but did for the pan-inhibitor of phosphodiesterase (PDE), 3-isobutyl-1-methylxanthine (IBMX). Competitive inhibition experiments with PDE-isoform specific inhibitors suggested 3-MA to have a preference for PDE4 in islet ß-cells, but this was likely reflective of PDE4 being the most abundant PDE isoform in ß-cells. In vitro enzyme assays indicated that 3-, N6- and 9-MA were capable of inhibiting most PDE isoforms found in ß-cells. Thus, in addition to known inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3′K)/m Target of Rapamycin (mTOR) signaling, 3-MA also acts as a pan-phosphodiesterase inhibitor in pancreatic ß-cells to elevate [cAMP]i and then potentiate glucose-induced insulin secretion and production in parallel.  相似文献   

16.
Free fatty acids and insulin secretion in humans   总被引:3,自引:0,他引:3  
Acute increases in plasma levels of long-chain fatty acids raise plasma insulin levels by stimulating insulin secretion or by decreasing insulin clearance. In normal subjects, longterm elevations of fatty acids also stimulate insulin secretion. In fact, they increase insulin precisely to the degree needed to compensate for the fatty acid-induced insulin resistance. In contrast, in individuals who are genetically predisposed to develop type 2 diabetes (prediabetic subjects), the free fatty acid (FFA) stimulation of insulin secretion is not sufficient to fully compensate for the FFAinduced insulin resistance. Therefore, obesity, if associated with elevated fatty acid levels, may lead to hyperglycemia in prediabetic but not in normal individuals.  相似文献   

17.
《Islets》2013,5(2)
Monomethyladenines have effects on DNA repair, G-protein-coupled receptor antagonism and autophagy. In islet ß-cells, 3-methyladenine (3-MA) has been implicated in DNA-repair and autophagy, but its mechanism of action is unclear. Here, the effect of monomethylated adenines was examined in rat islets. 3-MA, N6-methyladenine (N6-MA) and 9-methyladenine (9-MA), but not 1- or 7-monomethylated adenines, specifically potentiated glucose-induced insulin secretion (3-4 fold; p ≤ 0.05) and proinsulin biosynthesis (~2-fold; p ≤ 0.05). Using 3-MA as a ‘model’ monomethyladenine, it was found that 3-MA augmented [cAMP]i accumulation (2-3 fold; p ≤ 0.05) in islets within 5 minutes. The 3-, N6- and 9-MA also enhanced glucose-induced phosphorylation of the cAMP/protein kinase-A (PKA) substrate cAMP-response element binding protein (CREB). Treatment of islets with pertussis or cholera toxin indicated 3-MA mediated elevation of [cAMP]i was not mediated via G-protein-coupled receptors. Also, 3-MA did not compete with 9-cyclopentyladenine (9-CPA) for adenylate cyclase inhibition, but did for the pan-inhibitor of phosphodiesterase (PDE), 3-isobutyl-1-methylxanthine (IBMX). Competitive inhibition experiments with PDE-isoform specific inhibitors suggested 3-MA to have a preference for PDE4 in islet ß-cells, but this was likely reflective of PDE4 being the most abundant PDE isoform in ß-cells. In vitro enzyme assays indicated that 3-, N6- and 9-MA were capable of inhibiting most PDE isoforms found in ß-cells. Thus, in addition to known inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3′K)/m Target of Rapamycin (mTOR) signaling, 3-MA also acts as a pan-phosphodiesterase inhibitor in pancreatic ß-cells to elevate [cAMP]i and then potentiate glucose-induced insulin secretion and production in parallel.  相似文献   

18.
线粒体反应氧体系与脂肪肝   总被引:13,自引:0,他引:13  
线粒体是真核细胞的重要细胞器,是生成ATP的主要场所,在脂质氧化中起重要作用。近年大量研究发现线粒体尤其是线粒体反应性氧体系(reactive oxygen species,ROS)与脂肪肝的发生密切相关。现就线粒体ROS和脂肪肝的关系及其作用机制进行阐述。 一、线粒体ROS与线粒体损伤 线粒体是细胞内ROS的主要来源,线粒体功能失常可导致肝细胞线粒体ROS泄漏,使体内氧自由基增加。研究发现:脂肪性肝炎患者存在线粒体超微结构损伤,表现为肿胀线粒体内  相似文献   

19.
20.
Activin A is a dimeric glycoprotein showing a high sequence homology with transforming growth factor-beta (TGF-beta) and playing autocrine/paracrine actions in reproductive tissues. However, since the synthesis of activin is ubiquitous it may have a role in regulating cell growth and differentiation in several tissues. Previous studies showed that activin A is expressed by insulin-positive B cells of human pancreatic islets, and women with gestational diabetes have higher serum activin A levels than healthy pregnant women at the same gestational age. The present study aimed to evaluate the effect of activin A on insulin secretion from cultured human pancreatic islets. With this purpose human pancreatic islets were incubated with varying concentrations of activin A (0.1 to 10.0 nM). In absence of glucose, activin A did not modify insulin secretion at the different concentrations used. In absence of activin A, 8.3 mM and 16.7 mM glucose significantly increased insulin secretion, with a dose-dependent pattern. In presence of a non stimulatory concentration of glucose (3.3 mM), activin A significantly increased insulin secretion starting from low concentration (0.1 nM). Furthermore, the addition of activin A to 8.3 mM and 16.7 mM glucose induced an additional effect of the dose-dependent glucose-mediated insulin secretion (p<0.001). The present data could support a role for activin A in human endocrine pancreas in modulating insulin response to different glucose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号