首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An investigation has been made of the effects of topically applied bicuculline, a reported gamma-aminobutyric acid (GABA) antagonist, on the isolated, hemisected frog spinal cord by recording ventral and dorsal root potentials and reflexes evoked by volleys to various spinal cord inputs. Bicuculline had potent excitatory effects causing depolarization, spontaneous potentials in ventral and dorsal roots, and an increased polysynaptic ventral root reflex. More importantly, the alkaloid blocked presynaptic inhibition of orthodromic reflex activity produced by preceding ventral root stimulation and primary afferent depolarization. These effects were attributed to a demonstrated antagonism of the direct depolarizing effects of GABA on dorsal root terminals by the alkaloid. These actions of bicuculline suggest that GABA may be the transmitter responsible for primary afferent depolarization and presynaptic inhibition in the amphibian.  相似文献   

2.
Experiments on cats determined that ammonium acetate injected intravenously (2-4 mM/kg) supressed the processes of primary afferent depolarization (PAD) which are thought to be responsible for the presynaptic inhibition of spinal reflexes. The supression was transient and proceeded in paralle to depression of postsynaptic inhibition of monosynaptic reflexes. Ammonium acetate slightly decreased the amplitude of the negative postsynaptic potentials recorded form the dorsal surface of lumbar cord in response to stimulation of hind limb afferent nerves and increased polysynaptic reflex discharges in appropriate ventral roots. These findings make it unlikely that the ammonium depression of PAD is a result of impairment of interneuronal activity. A suggestion is made that ammonium depression of PAD results from diminition of the EMF for synaptic currents producing PAD.  相似文献   

3.
In decerebrate-decerebellate cats, dorsal column stimulation (DCst) rostral to selective dorsal funicular cuts, to prevent antidromic activation of afferent DC fibers, produced primary afferent depolarization and modulated reflexes at the lower spinal level. These findings indicate the importance of a DC-brainstem-spinal loop in explaining the effects of DC stimulation in man and experimental animals.  相似文献   

4.
In precollicular decerebrate cats, experiments were performed to ascertain the presence of primary afferent depolarization at the slowly conducting fiber terminals of the sural nerve, in an attempt to substantiate our previous postulation of a possible presynaptic mechanism underlying acupuncture analgesia in the spinal cord. A well correlated temporal course has been observed to exist between the negativity of dorsal root potential, suppression of sural polysynaptic reflexes, and increased excitability of sural primary afferent terminals, under the influence of the same electroacupuncture to the left tsusanli point in the hindlimb. Furthermore, by a collision test and conduction velocity measurement, the acupuncture-evoked primary afferent depolarization thus indicated was found to occur solely at the terminals of the slowly conducting fibers of the sural nerve, fibers believed to transmit “pain” impulses. As primary afferent depolarization has powerful inhibitory actions and its existence is well demonstrated in the spinal cord and trigeminal system, we suggest that acupuncture can also utilize this well established mechanism in modulating “pain” information at the primary afferent level in the spinal cord. This spinal presynaptic inhibitory mechanism, however, is thought to be only a part of an overall process underlying the production of acupuncture analgesia.  相似文献   

5.
It has been shown previously that impulses in axons of the descending branches of myelinated afferents in rat dorsal columns may suffer a blockade of transmission along their course in the dorsal columns. This paper tests the effect of the mechanism of primary afferent depolarization on the orthodromic movement of impulses in descending dorsal column primary afferent axons originating in the L1 dorsal root. Orthodromic impulses were recorded in the L5 and 6 dorsal columns after stimulation of the L1 dorsal root. Twenty-seven out of 82 axons (33%) suffered a temporary transmission block if primary afferent depolarization had been induced by L5 stimulation before the L1 stimulus. The tendency to block peaked at 10–15 ms and persisted for up to 30–40 ms. The number of single unit orthodromic impulses originating from the L1 root and recorded during a search of the dorsal columns 15 mm caudal to L1 increased by a factor of 3.1 after the systemic administration of bicuculline (1 mg/kg). The number of single unit orthodromic impulses originating from the L1 root and recorded in axons descending in the dorsal columns 20 mm caudal to the root increased by a factor of 8.7 after the systemic administration of picrotoxin (5 mg/kg). It is concluded that the transmission of impulses in the long range caudally running axons from dorsal roots to dorsal columns may be blocked during primary afferent depolarization and that conduction may be restored by the administration of GABA antagonists.  相似文献   

6.
Intra-axonal recordings were obtained in the dorsal columns of the rat lumbosacral spinal cord. Dorsal root or dorsal column stimulation at levels subthreshold for the impaled axon elicited a prolonged depolarization corresponding to the primary afferent depolarization (PAD). The depolarization was preceded by a brief hyperpolarizing potential during which excitability was decreased. The hyperpolarization corresponds temporally to the extracellularly recorded DRP IV component of the dorsal root potential described by Lloyd and McIntyre, and may represent the intracellular correlate of this potential. Possible mechanisms for this hyperpolarization include electrical interactions between neuronal elements, a biphasic GABA response, or attenuation of background afferent axonal depolarization.  相似文献   

7.
To study slowly conducted components of the orthodromic compound sensory action potential (CSAP), the response evoked at the lateral malleolus in the sural nerve was recorded through near-nerve needles at two to four sites along the nerve at midcalf. When 500 to 2000 responses were averaged at high gain, components with latencies of 30 to 80 ms were often recorded. In contrast to the main component and late components with latencies of less than 15 to 20 ms, the latencies of these extremely late components diminished the closer to the spinal cord that they were recorded. This suggested that the components were conducted antidromically from proximal to distal. This assumption was supported by abolishing the components by local anesthesia of the nerve proximal to the recording electrodes. These antidromic potentials therefore appear to be due to recurrent discharges in the sural nerve. Recurrent discharges were recorded from 65% of 60 subjects (18 normal subjects and 42 patients with peripheral or central nervous system disorders). The latencies of the recurrent discharges allowed conduction to and back from the spinal cord. Although the origin of these potentials remains unknown, we suggest that they are due to dorsal root reflexes within the spinal cord. In this case, the responses may be a direct expression of primary afferent depolarization (PAD) seen in presynaptic inhibition, and may be of value in further studies on the physiology and pathophysiology of presynaptic inhibition of cutaneous fibers in man.  相似文献   

8.
The depolarizing effect of gamma-aminobutyric acid (GABA) on rat lumbar dorsal roots was studied in a sucrose gap chamber following axotomy or crush injury of the sciatic nerve or dorsal root. The mean depolarization elicited by GABA on normal dorsal roots (3.96 +/- 0.71 mV, N = 14) was significantly reduced following chronic sciatic axotomy (2.02 +/- 0.99 mV, N = 15). Chronic sciatic crush injury had no significant effect on dorsal root GABA sensitivity. The amplitudes of the dorsal root compound action potentials were the same from rats with normal and injured sciatic nerves, indicating that axons proximal to the sciatic nerve lesion did not undergo appreciable degeneration. A marked loss of dorsal root GABA sensitivity was also seen following dorsal root axotomy or crush injury (1.02 +/- 0.98 mV (N = 10) and 0.69 +/- 0.70 mV (N = 9), respectively). These results indicate that GABA sensitivity of dorsal roots is attenuated following peripheral nerve lesions in which regeneration and functional reconnection with peripheral targets are prevented. Previous work indicates that the primary afferent depolarization is reduced under similar conditions. The reduction in GABA sensitivity of dorsal root fibers described here may have a contributory role in the reduced primary afferent depolarization that follows peripheral nerve transection, which has pathophysiologic implications in chronic pain syndromes.  相似文献   

9.
N Seno  K Saito 《Brain research》1985,349(1-2):11-16
The development of the dorsal root potential (DRP) and the responsiveness of primary afferent fibers to gamma-aminobutyric acid (GABA) were investigated in the isolated spinal cord of rat fetuses. At embryonic day 15.5, stimulation of the lumbar dorsal root was first effective in eliciting the DRP, which was not inhibited by bicuculline. A bicuculline-sensitive component of the DRP appeared at embryonic day 17.5. GABA (10 microM to 1 mM) caused a dose-dependent depolarization of the primary afferent fibers from embryonic day 13.5. The amplitude of the depolarization gradually increased with age until embryonic day 17.5 and was maintained thereafter. If the bicuculline-sensitive DRP solely reflects GABAergic activity, it is suggested that GABAergic activity develops at embryonic day 17.5 and the development of the responsiveness of primary afferent fibers to GABA precedes the functional onset of GABAergic neurons.  相似文献   

10.
Innervation of the female reproductive system provides an important signal for a variety of neuroendocrine reflexes and behaviors in the female rat. Although some studies suggest that afferent feedback from the gonads is involved in the hypothalamic control of gonadal function and pituitary hormone release, the extent and function of afferent feedback from the gonads in these neuroendocrine reflexes has yet to be clarified. Deafferentation studies have provided only partial support for the afferent control of the gonads. Some studies even suggest functional asymmetries in the neural control of the gonads, but knowledge regarding the neuroanatomical substrate for these possible neurogonadal interactions remains incomplete. Studies with retrograde tract tracers indicate that the ovaries receive a substantial afferent supply from lower thoracic-upper lumbar dorsal root ganglia. Despite stringent precautions to prevent diffusion of tracers following injections into the ovary or related nerves, many of the retrogradely labeled cell bodies identified by these studies may represent an overestimation of the extent of afferent innervation. We have reexamined the afferent innervation of the female reproductive tract by means of the anterograde transport of horseradish peroxidase (HRP) from thoracic, lumbar and sacral dorsal root ganglion to pelvic visceral organs and have studied the effects of unilateral ganglionectomy on substance P containing fibers in the ovary, oviduct and uterus. The neuroanatomical results show that the T13 and L1 dorsal root ganglia provide major afferent innervation to the cranial portion of the reproductive tract and the L6 and S1 dorsal root ganglia provide primary afferent fibers to the caudal portion of the reproductive tract as well as the bladder, rectum and perineum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The isolated frog spinal cord was used to investigate the synaptic effects of the convulsant agent catechol. Addition of the compound to the superfusate consistently enhanced orthodromic reflex activity recorded from ventral roots and augmented primary afferent depolarization. Concomitantly catechol altered the polarization changes produced in ventral and dorsal roots by putative neurotransmitter amino acids when these compounds were applied in Mg2+-containing Ringer. Catechol reduced the hyperpolarizations induced in motoneurons by the neutral amino acids, GABA, beta-alanine, taurine and glycine, but did not affect the depolarizations produced by the dicarboxylic amino acids, L-glutamate and L-aspartate. In contrast, catechol increased the dorsal root depolarizations elicited by both neutral and dicarboxylic amino acids and also the depolarizations produced by elevated potassium concentrations. Catechol did not bring about significant changes in the passive electrical properties of motoneurons or dorsal root fibers. In addition, it did not alter either the high affinity uptake or the depolarization-evoked release of tritiated GABA, glycine, L-glutamate and L-aspartate. It appears that the postsynaptic actions of catechol explain its ability to enhance spinal reflexes.  相似文献   

12.
Afferent-induced primary afferent depolarization (PAD) was depressed for 2-5 min following concussive head injury in the cat, as assessed by dorsal root potentials and augmentation of antidromic dorsal root potentials, both evoked by stimulation of adjacent dorsal roots. These changes in PAD were abolished by spinal cord transection but not affected by midpontine transection. Spontaneous dorsal root potentials, resting amplitudes of antidromic dorsal root potentials and reductions of antidromic dorsal root potentials following tetanic root stimulation were not substantially altered by injury. These findings suggest that concussive head injury depresses spinal interneuronal transmission by neurally mediated processes involving the bulbar brainstem.  相似文献   

13.
Acetylcholine (ACh) caused two types of depolarizations of the soma membrane of bullfrog primary afferent neurons (dorsal root ganglion cells); the one, a rapid transient depolarization, was nicotinic and other, a long-lasting one, as muscarinic in nature, respectively. The rapid transient depolarization was due to a simultaneous increase in sodium and potassium conductance, whereas the slow one was caused by a decrease in membrane potassium conductance. These results indicate that the soma of bullfrog primary afferent neuron is endowed with nicotinic and muscarinic receptors.  相似文献   

14.
R A Levy 《Brain research》1975,92(1):21-34
(1) The effect of intravenously administered gamma-aminobutyric acid (GABA) on afferent fiber polarization in the feline spinal cord was ascertained from fluctuations induced in the DC level of dorsal root filaments. (2) A dose-related depolarization of the filament, with a concomitant reduction in the magnitude of the dorsal root potential, was observed after 50 and 100 mg/kg GABA. (3) GABA also depolarized filaments of preparations in which interneuronal activity was suppressed by pretreatment with tetrodotoxin. Since the magnitude of the depolarization induced in these preparations was equal to that observed in nonpretreated animals, it is likely that the depolarization in the latter preparations reflects a direct effect on afferent terminals or fibers rather than an action on interneurons. (4) GABA failed to depolarize filaments in animals pretreated with bicuculline. This suggests that intravenously administered GABA interacted with receptors that are identical with or similar to those involved in neurally evoked primary afferent depolarization (PAD). (5) The direct depolarization of afferent fibers by intravenous GABA and the blockade thereof by bicuculline are characteristics compatible with those of the endogenous axo-axonic transmitter operating in pathways mediating neurally evoked PAD. These data, therefore, support the involvement of GABA at this synapse in the mammalian spinal cord.  相似文献   

15.
To assess the extent to which depolarization by accumulated K+ contributes to the generation of primary afferent depolarization (PAD), the isolated bullfrog spinal cord was superfused with K+-rich Ringer solutions and the resultant dorsal root depolarizations were recorded extracellularly. Action potential blockade (with tetrodotoxin) did not reduce the K+-induced depolarization of primary afferents, indicating that the depolarization was generated locally in the region around the afferents. In this respect superfusion with K+-rich solutions adequately models the localized K+ accumulation which occurs physiologically during afferent activity. K+-induced depolarizations were decreased in the presence of 20 mM Mg2+; this effect was due to a direct decrease in the membrane response to K+ and not to blockade of K+-induced transmitter release onto primary afferents. The depolarization caused by a K+ concentration comparable to a maximum estimate of the K+ accumulating around afferent terminals following a single afferent volley was found to account for no more than about one-third of the DRP height. However, higher K+ levels, comparable to those resulting from high frequency afferent stimulation, caused large depolarizations of primary afferents, sometimes greater than the DRP amplitude. Therefore, K+-induced depolarization may contribute more significantly to PAD evoked by high frequency afferent activity.  相似文献   

16.
Changes in depolarization of primary afferents and their correlation with afferent impulsation and limb movement were studied in the lumbar spinal cord during real scratching of decerebrated cats. Two components in rhythmic dorsal root potential were observed. First--centrally evoked, retained during fictitive scratching after immobilization; second--evoked by afferent discharge, coming to the spinal cord during the scratching phase of the limb movement.  相似文献   

17.
R G Auger 《Neurology》1992,42(4):875-878
In Friedreich's ataxia, the muscle stretch reflexes are absent or hypoactive in the upper and lower extremities because of pathologic involvement of the dorsal root ganglion cells. Paradoxically, the masseter reflex remains unaffected and may even be hyperactive in some cases. The masseter reflex is hypothesized as unique among stretch reflexes in that its afferent nerve cell body (the mesencephalic nucleus) is located intra-axially within the brainstem rather than in the craniospinal ganglia, where the afferent nerve cell bodies subserving the other stretch reflexes are located. This study supported this hypothesis by demonstrating that the masseter reflex is (1) usually absent in patients who are areflexic as a result of primary disorders of peripheral nerve axons or myelin, and (2) preserved in other disorders that primarily involve the dorsal root ganglion cells.  相似文献   

18.
Yamamoto S  Honda M  Tanabe M  Ono H 《Brain research》2006,1082(1):115-123
Nociceptive signals are transmitted to the spinal dorsal horn via primary afferent fibers, and the signals induce withdrawal reflexes by activating spinal motoneurons in the ventral horn. Therefore, nociceptive stimuli increase motoneuronal firing and ventral root discharges. This study was aimed to develop a method for the study of pain mechanisms and analgesics by recording ventral root discharges. Spinalized rats were laminectomized in the lumbo-sacral region. The fifth lumbar ventral root was sectioned and placed on a pair of wire electrodes. Multi unit efferent discharges from the ventral root were increased by mechanical stimulation using a von Frey hair applied to the plantar surface of the hindpaw. The low-intensity mechanical stimuli increased the discharges during stimulation (during-discharges) without increasing the discharges after cessation of stimulation (after-discharges), and the high-intensity mechanical stimuli increased both during- and after-discharges. Pretreatment with resiniferatoxin, an ultrapotent analogue of capsaicin, halved during-discharges and eliminated after-discharges, suggesting that after-discharges are generated by heat- and mechanosensitive polymodal nociceptors. Ezlopitant, a neurokinin-1 (NK-1) receptor antagonist, but not its inactive enantiomer, selectively reduced the after-discharges. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, preferentially reduced the after-discharges, demonstrating that NK-1 and NMDA receptors mediate the after-discharges. Morphine reduced the after-discharges without affecting during-discharges. By contrast, mephenesin, a centrally acting muscle relaxant, reduced both during- and after-discharges. There results suggest that simultaneous recordings of during- and after-discharges are useful to study pain mechanisms and analgesics as well as to discriminate the analgesic effects from the side effects such as muscle relaxant effects.  相似文献   

19.
Dorsal root potentials (DRP) recorded from spinal cord of 7-14-days old rats have two waves of depolarization. The fast wave of DRP is GABA-ergic in nature and the slow wave is evoked mainly by increasing of extracellular K+-ion concentration near the primary afferent terminals. The possible mechanisms of increasing extracellular K+-ion concentration evoked by dorsal root stimulation are discussed.  相似文献   

20.
Electrophysiological recordings were obtained from rat dorsal roots in a sucrose gap chamber to study changes in Na(+) currents following nerve injury. Application of 4-aminopyridine unmasks a prominent and well-characterized depolarization (delayed depolarization) following the action potential. In our previous studies, this potential, which is only present in cutaneous afferent axons, has been shown to correlate with activation of a slow Na(+) current. The delayed depolarization in the dorsal root was reduced 1 week after sciatic nerve ligation, suggesting a reduction in the kinetically slow Na(+) currents on dorsal root axons [control: 44. 2+/-7.3% (n=5); injury: 7.3+/-4.7% (n=5), P<0.001]. The refractory period of the action potential was reduced following nerve injury, in agreement with biophysical studies indicating faster "repriming" of fast Na(+) currents on cutaneous afferent cell bodies. Dorsal root ligation near the spinal cord also results in a reduction in the delayed depolarization. These results indicate that changes in Na(+) channel organization occur on dorsal root axons following either central or peripheral target disconnection, suggesting trophic support can be derived from either the CNS or the PNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号