首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segmentation of organs or lesions from medical images plays an essential role in many clinical applications such as diagnosis and treatment planning. Though Convolutional Neural Networks (CNN) have achieved the state-of-the-art performance for automatic segmentation, they are often limited by the lack of clinically acceptable accuracy and robustness in complex cases. Therefore, interactive segmentation is a practical alternative to these methods. However, traditional interactive segmentation methods require a large number of user interactions, and recently proposed CNN-based interactive segmentation methods are limited by poor performance on previously unseen objects. To solve these problems, we propose a novel deep learning-based interactive segmentation method that not only has high efficiency due to only requiring clicks as user inputs but also generalizes well to a range of previously unseen objects. Specifically, we first encode user-provided interior margin points via our proposed exponentialized geodesic distance that enables a CNN to achieve a good initial segmentation result of both previously seen and unseen objects, then we use a novel information fusion method that combines the initial segmentation with only a few additional user clicks to efficiently obtain a refined segmentation. We validated our proposed framework through extensive experiments on 2D and 3D medical image segmentation tasks with a wide range of previously unseen objects that were not present in the training set. Experimental results showed that our proposed framework 1) achieves accurate results with fewer user interactions and less time compared with state-of-the-art interactive frameworks and 2) generalizes well to previously unseen objects.  相似文献   

2.
Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.  相似文献   

3.
Leveraging available annotated data is an essential component of many modern methods for medical image analysis. In particular, approaches making use of the “neighbourhood” structure between images for this purpose have shown significant potential. Such techniques achieve high accuracy in analysing an image by propagating information from its immediate “neighbours” within an annotated database. Despite their success in certain applications, wide use of these methods is limited due to the challenging task of determining the neighbours for an out-of-sample image. This task is either computationally expensive due to large database sizes and costly distance evaluations, or infeasible due to distance definitions over semantic information, such as ground truth annotations, which is not available for out-of-sample images.This article introduces Neighbourhood Approximation Forests (NAFs), a supervised learning algorithm providing a general and efficient approach for the task of approximate nearest neighbour retrieval for arbitrary distances. Starting from an image training database and a user-defined distance between images, the algorithm learns to use appearance-based features to cluster images approximating the neighbourhood structured induced by the distance. NAF is able to efficiently infer nearest neighbours of an out-of-sample image, even when the original distance is based on semantic information. We perform experimental evaluation in two different scenarios: (i) age prediction from brain MRI and (ii) patch-based segmentation of unregistered, arbitrary field of view CT images. The results demonstrate the performance, computational benefits, and potential of NAF for different image analysis applications.  相似文献   

4.

Objective

We propose a hybrid interactive approach for the segmentation of anatomic structures in medical images with higher accuracy at lower user interaction cost.

Materials and methods

Eighteen brain MR scans from the Internet Brain Segmentation Repository are used for brain structure segmentation. A MR scan and a CT scan of an old female are used for orbital structure segmentation. The proposed approach combines shape-based interpolation, radial basis function (RBF)-based warping and model-based segmentation. With this approach, to segment a structure in a 3D image, we first delineate the structure in several slices using interactive methods, and then use shape-based interpolation to automatically generate an initial 3D model of the structure from the segmented slices. To refine the initial model, we specify a set of additional points on the structure boundary in the image, and use a RBF to warp the model so that it passes the specified points. Finally, we adopt a point-anchored active surface approach to further deform the model for a better fitting of the model with its corresponding structure in image.

Results

Two brain structures and 15 orbital structures are segmented. For each structure, it needs only to semi- automatically segment three to five 2D slices and specify two to nine additional points on the structure boundary. The time cost for each structure is about 1–3 min. The overlap ratio of the segmentation results and the ground truth is higher than 96%.

Conclusion

The proposed method for the segmentation of anatomic structure achieved higher accuracy at lower user interaction cost, and therefore promising in many applications such as surgery planning and simulation, atlas construction, and morphometric analysis of anatomic structures.  相似文献   

5.
Despite recent progress of automatic medical image segmentation techniques, fully automatic results usually fail to meet clinically acceptable accuracy, thus typically require further refinement. To this end, we propose a novel Volumetric Memory Network, dubbed as VMN, to enable segmentation of 3D medical images in an interactive manner. Provided by user hints on an arbitrary slice, a 2D interaction network is firstly employed to produce an initial 2D segmentation for the chosen slice. Then, the VMN propagates the initial segmentation mask bidirectionally to all slices of the entire volume. Subsequent refinement based on additional user guidance on other slices can be incorporated in the same manner. To facilitate smooth human-in-the-loop segmentation, a quality assessment module is introduced to suggest the next slice for interaction based on the segmentation quality of each slice produced in the previous round. Our VMN demonstrates two distinctive features: First, the memory-augmented network design offers our model the ability to quickly encode past segmentation information, which will be retrieved later for the segmentation of other slices; Second, the quality assessment module enables the model to directly estimate the quality of each segmentation prediction, which allows for an active learning paradigm where users preferentially label the lowest-quality slice for multi-round refinement. The proposed network leads to a robust interactive segmentation engine, which can generalize well to various types of user annotations (e.g., scribble, bounding box, extreme clicking). Extensive experiments have been conducted on three public medical image segmentation datasets (i.e., MSD, KiTS19, CVC-ClinicDB), and the results clearly confirm the superiority of our approach in comparison with state-of-the-art segmentation models. The code is made publicly available at https://github.com/0liliulei/Mem3D.  相似文献   

6.
While level sets have demonstrated a great potential for 3D medical image segmentation, their usefulness has been limited by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters which can be very difficult to correctly tune for specific applications. The second problem is compounded by the first. This paper describes a new tool for 3D segmentation that addresses these problems by computing level-set surface models at interactive rates. This tool employs two important, novel technologies. First is the mapping of a 3D level-set solver onto a commodity graphics card (GPU). This mapping relies on a novel mechanism for GPU memory management. The interactive rates level-set PDE solver give the user immediate feedback on the parameter settings, and thus users can tune free parameters and control the shape of the model in real time. The second technology is the use of intensity-based speed functions, which allow a user to quickly and intuitively specify the behavior of the deformable model. We have found that the combination of these interactive tools enables users to produce good, reliable segmentations. To support this observation, this paper presents qualitative results from several different datasets as well as a quantitative evaluation from a study of brain tumor segmentations.  相似文献   

7.
High performance of deep learning models on medical image segmentation greatly relies on large amount of pixel-wise annotated data, yet annotations are costly to collect. How to obtain high accuracy segmentation labels of medical images with limited cost (e.g. time) becomes an urgent problem. Active learning can reduce the annotation cost of image segmentation, but it faces three challenges: the cold start problem, an effective sample selection strategy for segmentation task and the burden of manual annotation. In this work, we propose a Hybrid Active Learning framework using Interactive Annotation (HAL-IA) for medical image segmentation, which reduces the annotation cost both in decreasing the amount of the annotated images and simplifying the annotation process. Specifically, we propose a novel hybrid sample selection strategy to select the most valuable samples for segmentation model performance improvement. This strategy combines pixel entropy, regional consistency and image diversity to ensure that the selected samples have high uncertainty and diversity. In addition, we propose a warm-start initialization strategy to build the initial annotated dataset to avoid the cold-start problem. To simplify the manual annotation process, we propose an interactive annotation module with suggested superpixels to obtain pixel-wise label with several clicks. We validate our proposed framework with extensive segmentation experiments on four medical image datasets. Experimental results showed that the proposed framework achieves high accuracy pixel-wise annotations and models with less labeled data and fewer interactions, outperforming other state-of-the-art methods. Our method can help physicians efficiently obtain accurate medical image segmentation results for clinical analysis and diagnosis.  相似文献   

8.
Conditional Random Fields (CRFs) are often used to improve the output of an initial segmentation model, such as a convolutional neural network (CNN). Conventional CRF approaches in medical imaging use manually defined features, such as intensity to improve appearance similarity or location to improve spatial coherence. These features work well for some tasks, but can fail for others. For example, in medical image segmentation applications where different anatomical structures can have similar intensity values, an intensity-based CRF may produce incorrect results. As an alternative, we propose Posterior-CRF, an end-to-end segmentation method that uses CNN-learned features in a CRF and optimizes the CRF and CNN parameters concurrently. We validate our method on three medical image segmentation tasks: aorta and pulmonary artery segmentation in non-contrast CT, white matter hyperintensities segmentation in multi-modal MRI, and ischemic stroke lesion segmentation in multi-modal MRI. We compare this with the state-of-the-art CNN-CRF methods. In all applications, our proposed method outperforms the existing methods in terms of Dice coefficient, average volume difference, and lesion-wise F1 score.  相似文献   

9.
Accurate segmentation in histopathology images at pixel-level plays a critical role in the digital pathology workflow. The development of weakly supervised methods for histopathology image segmentation liberates pathologists from time-consuming and labor-intensive works, opening up possibilities of further automated quantitative analysis of whole-slide histopathology images. As an effective subgroup of weakly supervised methods, multiple instance learning (MIL) has achieved great success in histopathology images. In this paper, we specially treat pixels as instances so that the histopathology image segmentation task is transformed into an instance prediction task in MIL. However, the lack of relations between instances in MIL limits the further improvement of segmentation performance. Therefore, we propose a novel weakly supervised method called SA-MIL for pixel-level segmentation in histopathology images. SA-MIL introduces a self-attention mechanism into the MIL framework, which captures global correlation among all instances. In addition, we use deep supervision to make the best use of information from limited annotations in the weakly supervised method. Our approach makes up for the shortcoming that instances are independent of each other in MIL by aggregating global contextual information. We demonstrate state-of-the-art results compared to other weakly supervised methods on two histopathology image datasets. It is evident that our approach has generalization ability for the high performance on both tissue and cell histopathology datasets. There is potential in our approach for various applications in medical images.  相似文献   

10.
This paper evaluates the effectiveness of an interactive, three-dimensional image segmentation technique that relies on watersheds. This paper presents two user-based case studies, which include two different groups of domain experts. Subjects manipulate a graphics-based front end to a hierarchy of segmented regions generated from a watershed segmentation algorithm, which is implemented in the Insight Toolkit. In the first study, medical students segment several different anatomical structures from the Visible Human Female head and neck color cryosection data. In the second study, radiologists use the interactive tool to produce models of brain tumors from MRI data. This paper presents a quantitative and qualitative comparison against hand contouring. To quantify accuracy, we estimate ground truth from the hand-contouring data using the Simultaneous Truth and Performance Estimation algorithm. We also apply metrics from the literature to estimate precision and efficiency. The watershed segmentation technique showed improved subject interaction times and increased inter-subject precision over hand contouring, with quality that is visually and statistically comparable. The analysis also identifies some failures in the watershed technique, where edges were poorly defined in the data, and note a trend in the hand-contouring results toward systematically larger segmentations, which raises questions about the wisdom of using expert segmentations to define ground truth.  相似文献   

11.
Over the last decade, convolutional neural networks have emerged and advanced the state-of-the-art in various image analysis and computer vision applications. The performance of 2D image classification networks is constantly improving and being trained on databases made of millions of natural images. Conversely, in the field of medical image analysis, the progress is also remarkable but has mainly slowed down due to the relative lack of annotated data and besides, the inherent constraints related to the acquisition process. These limitations are even more pronounced given the volumetry of medical imaging data. In this paper, we introduce an efficient way to transfer the efficiency of a 2D classification network trained on natural images to 2D, 3D uni- and multi-modal medical image segmentation applications. In this direction, we designed novel architectures based on two key principles: weight transfer by embedding a 2D pre-trained encoder into a higher dimensional U-Net, and dimensional transfer by expanding a 2D segmentation network into a higher dimension one. The proposed networks were tested on benchmarks comprising different modalities: MR, CT, and ultrasound images. Our 2D network ranked first on the CAMUS challenge dedicated to echo-cardiographic data segmentation and surpassed the state-of-the-art. Regarding 2D/3D MR and CT abdominal images from the CHAOS challenge, our approach largely outperformed the other 2D-based methods described in the challenge paper on Dice, RAVD, ASSD, and MSSD scores and ranked third on the online evaluation platform. Our 3D network applied to the BraTS 2022 competition also achieved promising results, reaching an average Dice score of 91.69% (91.22%) for the whole tumor, 83.23% (84.77%) for the tumor core and 81.75% (83.88%) for enhanced tumor using the approach based on weight (dimensional) transfer. Experimental and qualitative results illustrate the effectiveness of our methods for multi-dimensional medical image segmentation.  相似文献   

12.
Semantic instance segmentation is crucial for many medical image analysis applications, including computational pathology and automated radiation therapy. Existing methods for this task can be roughly classified into two categories: (1) proposal-based methods and (2) proposal-free methods. However, in medical images, the irregular shape-variations and crowding instances (e.g., nuclei and cells) make it hard for the proposal-based methods to achieve robust instance localization. On the other hand, ambiguous boundaries caused by the low-contrast nature of medical images (e.g., CT images) challenge the accuracy of the proposal-free methods. To tackle these issues, we propose a proposal-free segmentation network with discriminative deep supervision (DDS), which at the same time allows us to gain the power of the proposal-based method. The DDS module is interleaved with a carefully designed proposal-free segmentation backbone in our network. Consequently, the features learned by the backbone network become more sensitive to instance localization. Also, with the proposed DDS module, robust pixel-wise instance-level cues (especially structural information) are introduced for semantic segmentation. Extensive experiments on three datasets, i.e., a nuclei dataset, a pelvic CT image dataset, and a synthetic dataset, demonstrate the superior performance of the proposed algorithm compared to the previous works.  相似文献   

13.
《Medical image analysis》2015,20(1):98-109
Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods only utilise the intensity information within a small patch during the label fusion process and may neglect other useful information such as gradient and contextual information (the appearance of surrounding regions). This paper proposes to combine the intensity, gradient and contextual information into an augmented feature vector and incorporate it into multi-atlas segmentation. Also, it explores the alternative to the K nearest neighbour (KNN) classifier in performing multi-atlas label fusion, by using the support vector machine (SVM) for label fusion instead. Experimental results on a short-axis cardiac MR data set of 83 subjects have demonstrated that the accuracy of multi-atlas segmentation can be significantly improved by using the augmented feature vector. The mean Dice metric of the proposed segmentation framework is 0.81 for the left ventricular myocardium on this data set, compared to 0.79 given by the conventional multi-atlas patch-based segmentation (Coupé et al., 2011; Rousseau et al., 2011). A major contribution of this paper is that it demonstrates that the performance of non-local patch-based segmentation can be improved by using augmented features.  相似文献   

14.
Recent work has shown that label-efficient few-shot learning through self-supervision can achieve promising medical image segmentation results. However, few-shot segmentation models typically rely on prototype representations of the semantic classes, resulting in a loss of local information that can degrade performance. This is particularly problematic for the typically large and highly heterogeneous background class in medical image segmentation problems. Previous works have attempted to address this issue by learning additional prototypes for each class, but since the prototypes are based on a limited number of slices, we argue that this ad-hoc solution is insufficient to capture the background properties. Motivated by this, and the observation that the foreground class (e.g., one organ) is relatively homogeneous, we propose a novel anomaly detection-inspired approach to few-shot medical image segmentation in which we refrain from modeling the background explicitly. Instead, we rely solely on a single foreground prototype to compute anomaly scores for all query pixels. The segmentation is then performed by thresholding these anomaly scores using a learned threshold. Assisted by a novel self-supervision task that exploits the 3D structure of medical images through supervoxels, our proposed anomaly detection-inspired few-shot medical image segmentation model outperforms previous state-of-the-art approaches on two representative MRI datasets for the tasks of abdominal organ segmentation and cardiac segmentation.  相似文献   

15.
Deep learning methods provide state of the art performance for supervised learning based medical image analysis. However it is essential that trained models extract clinically relevant features for downstream tasks as, otherwise, shortcut learning and generalization issues can occur. Furthermore in the medical field, trustability and transparency of current deep learning systems is a much desired property. In this paper we propose an interpretability-guided inductive bias approach enforcing that learned features yield more distinctive and spatially consistent saliency maps for different class labels of trained models, leading to improved model performance. We achieve our objectives by incorporating a class-distinctiveness loss and a spatial-consistency regularization loss term. Experimental results for medical image classification and segmentation tasks show our proposed approach outperforms conventional methods, while yielding saliency maps in higher agreement with clinical experts. Additionally, we show how information from unlabeled images can be used to further boost performance. In summary, the proposed approach is modular, applicable to existing network architectures used for medical imaging applications, and yields improved learning rates, model robustness, and model interpretability.  相似文献   

16.
Thoroughly designed, open-source toolkits emerge to boost progress in medical imaging. The Insight Toolkit (ITK) provides this for the algorithmic scope of medical imaging, especially for segmentation and registration. But medical imaging algorithms have to be clinically applied to be useful, which additionally requires visualization and interaction. The Visualization Toolkit (VTK) has powerful visualization capabilities, but only low-level support for interaction. In this paper, we present the Medical Imaging Interaction Toolkit (MITK). The goal of MITK is to significantly reduce the effort required to construct specifically tailored, interactive applications for medical image analysis. MITK allows an easy combination of algorithms developed by ITK with visualizations created by VTK and extends these two toolkits with those features, which are outside the scope of both. MITK adds support for complex interactions with multiple states as well as undo-capabilities, a very important prerequisite for convenient user interfaces. Furthermore, MITK facilitates the realization of multiple, different views of the same data (as a multiplanar reconstruction and a 3D rendering) and supports the visualization of 3D+t data, whereas VTK is only designed to create one kind of view of 2D or 3D data. MITK reuses virtually everything from ITK and VTK. Thus, it is not at all a competitor to ITK or VTK, but an extension, which eases the combination of both and adds the features required for interactive, convenient to use medical imaging software. MITK is an open-source project (www.mitk.org).  相似文献   

17.
18.
Liver segmentation from abdominal CT images is an essential step for liver cancer computer-aided diagnosis and surgical planning. However, both the accuracy and robustness of existing liver segmentation methods cannot meet the requirements of clinical applications. In particular, for the common clinical cases where the liver tissue contains major pathology, current segmentation methods show poor performance. In this paper, we propose a novel low-rank tensor decomposition (LRTD) based multi-atlas segmentation (MAS) framework that achieves accurate and robust pathological liver segmentation of CT images. Firstly, we propose a multi-slice LRTD scheme to recover the underlying low-rank structure embedded in 3D medical images. It performs the LRTD on small image segments consisting of multiple consecutive image slices. Then, we present an LRTD-based atlas construction method to generate tumor-free liver atlases that mitigates the performance degradation of liver segmentation due to the presence of tumors. Finally, we introduce an LRTD-based MAS algorithm to derive patient-specific liver atlases for each test image, and to achieve accurate pairwise image registration and label propagation. Extensive experiments on three public databases of pathological liver cases validate the effectiveness of the proposed method. Both qualitative and quantitative results demonstrate that, in the presence of major pathology, the proposed method is more accurate and robust than state-of-the-art methods.  相似文献   

19.
Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks. The success of machine learning, in particular supervised learning, depends on the availability of manually annotated datasets. For medical imaging applications, such annotated datasets are not easy to acquire, it takes a substantial amount of time and resource to curate an annotated medical image set. In this paper, we propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate. We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation. Experiments show that for brain tumour segmentation task on the BraTS 2019 dataset, training a segmentation model with only 7% suggestively annotated image samples can achieve a performance comparable to that of training on the full dataset. For whole brain segmentation on the MALC dataset, training with 42% suggestively annotated image samples can achieve a comparable performance to training on the full dataset. The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.  相似文献   

20.
Deep neural networks enable highly accurate image segmentation, but require large amounts of manually annotated data for supervised training. Few-shot learning aims to address this shortcoming by learning a new class from a few annotated support examples. We introduce, a novel few-shot framework, for the segmentation of volumetric medical images with only a few annotated slices. Compared to other related works in computer vision, the major challenges are the absence of pre-trained networks and the volumetric nature of medical scans. We address these challenges by proposing a new architecture for few-shot segmentation that incorporates ‘squeeze & excite’ blocks. Our two-armed architecture consists of a conditioner arm, which processes the annotated support input and generates a task-specific representation. This representation is passed on to the segmenter arm that uses this information to segment the new query image. To facilitate efficient interaction between the conditioner and the segmenter arm, we propose to use ‘channel squeeze & spatial excitation’ blocks – a light-weight computational module – that enables heavy interaction between both the arms with negligible increase in model complexity. This contribution allows us to perform image segmentation without relying on a pre-trained model, which generally is unavailable for medical scans. Furthermore, we propose an efficient strategy for volumetric segmentation by optimally pairing a few slices of the support volume to all the slices of the query volume. We perform experiments for organ segmentation on whole-body contrast-enhanced CT scans from the Visceral Dataset. Our proposed model outperforms multiple baselines and existing approaches with respect to the segmentation accuracy by a significant margin. The source code is available at https://github.com/abhi4ssj/few-shot-segmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号