首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work was to determine if the sub-bronchial epithelial cell model, Calu-3, expresses the functionally active P-glycoprotein (Pgp) efflux pump. Calu-3 cells express lower levels of Pgp than both Caco-2 and A549 cells as determined by Western Blot analysis. In Calu-3 cells, accumulation of the Pgp substrates rhodamine 123 (Rh123) and calcein acetoxymethyl ester (calcein-AM) was increased in the presence of the specific Pgp inhibitors cyclosporin A (CsA), vinblastine, and taxol. Significant inhibition of Pgp activity was not observed until after 2 h in both cell lines. The organic anion/multidrug resistance associated protein-1 (MRP1) inhibitors, probenecid and indomethacin, did not affect Rh123 accumulation, whereas an increase in calcein accumulation was observed by both agents. The metabolic inhibitor sodium azide decreased the efflux of Rh123 out of Calu-3 cells to the same degree as CsA, supporting inhibition of an active, efflux pathway. The basolateral-to-apical transport of Rh123 was significantly higher than that in the reverse direction, indicating a secretory pathway of efflux that was inhibited 25-fold by CsA. Basolateral-to-apical transport of Rh123 was inhibited slightly with both MRP1 inhibitors; however, no significant effect of Rh123 net secretion was observed. Mixed inhibitor studies demonstrated that Rh123 efflux was mainly Pgp mediated. These results support an energy-dependent Pgp efflux pump pathway that is sensitive to inhibition with CsA in Calu-3 cells.  相似文献   

2.
3.
4.
The purpose of this work was to investigate if P-glycoprotein (Pgp) efflux pump activity could be inhibited in the sub-bronchial epithelial cell line, Calu-3, by glucocorticosteroids and beta-ligands. The Pgp modulation efficiency of each compound was determined by its ability to increase the accumulation of the Pgp substrate rhodamine 123 (Rh123) accumulation in these cells. Pgp inhibition was observed at > or =100 microM steroids and beta-ligand. The modulation effectiveness of the beta-ligands increased with increasing hydrophobicity (logP(octanol/aqueous)) whereas an obvious correlation was not obtained with the complete set of steroids tested. Steroidal Pgp substrates did not affect Rh123 accumulation (e.g. aldosterone, dexamethasone, 11beta,17alpha,21-OH progesterone). In contrast, two hydrophobic non-Pgp steroidal substrates (testosterone and progesterone) displayed different effects on Rh123 accumulation, with progesterone being the more potent modulator. The most hydrophobic beta-ligand, propranolol, a known Pgp substrate, gave the largest increase in Rh123 accumulation in this therapeutic class. The beta-ligand modulation efficiency could also be correlated to Pgp structural recognition elements such as hydrogen bonding potential, the presence of a basic nitrogen and planar aromatic ring. No effect on Rh123 accumulation was observed with the formulation additives tested (ethanol, glycerol and palmitoyl carnitine) at concentrations previously reported to be non-toxic to Calu-3 cells.  相似文献   

5.
Carbamazepine is not a substrate for P-glycoprotein   总被引:19,自引:0,他引:19       下载免费PDF全文
AIMS: To determine whether the anticonvulsant carbamazepine (CBZ), a known CYP3A4 substrate, is also a substrate for the multidrug efflux transporter P-glycoprotein (Pgp). METHODS: The role of Pgp in the transport of CBZ was assessed in three systems: (a) in mdr1a/1b(-/-) and wild-type mice after administration of 2 mg kg-1 and 20 mg kg-1, which served as a model for brain penetration; (b) in Caco-2 cells, an in vitro model of the intestinal epithelium that is known to express high Pgp levels; and (c) by flow cytometry in lymphocytes using rhodamine 123, a fluorescent substrate for PgP. RESULTS: Brain penetration of both doses of CBZ at 1 h and 4 h was comparable in wild-type and mdr1a/1b(-/-) mice. Transport across the Caco-2 cell monolayer was Pgp-independent, and was not affected by the Pgp inhibitor PSC-833. CBZ had no effect on rhodamine 123 efflux from lymphocytes, in contrast to verapamil, which increased fluorescence intensity fivefold. CONCLUSION: CBZ is not a substrate for Pgp. Its efficacy is unlikely to be affected by Pgp over-expression in the brain. Furthermore, the interaction of CBZ with drugs that modulate both CYP3A4 and Pgp function such as verapamil is probably due to inhibition of CYP3A4 and not Pgp.  相似文献   

6.
Peng YM  Wang N  Wang YF  Han L  Zhang Y  Jiang JH  Zhou YB  Wang QD 《药学学报》2012,47(5):594-599
研究盐酸千金藤碱(cepharanthine hydrochloride,CH)逆转K562/ADR细胞多药耐药性及其机制。采用MTT法检测多柔比星(adriamycin,ADR)单用及分别与CH、维拉帕米(verapamil,VER)合用的细胞毒作用;采用流式细胞仪,测定CH对细胞内ADR蓄积、罗丹明123(Rho123)蓄积和泵出及P糖蛋白(P-gp)表达的影响。结果表明,CH(4μmol.L1)使K562/ADR细胞对ADR的敏感性增加7.43倍,逆转活性是VER的3.19倍,但对K562敏感株基本无影响。同时CH浓度依赖性地增加K562/ADR细胞内ADR和Rho123的蓄积,减少Rho123的泵出,抑制P糖蛋白的表达,但对K562细胞均无明显影响。CH在体外逆转肿瘤细胞多药耐药性的作用可能与其抑制P糖蛋白的功能和表达有关。  相似文献   

7.
P-Glycoprotein (Pgp) inhibition by three sets of four isomers of N,N-bis(cyclohexanol)amine aryl esters was assessed on rhodamine 123 (R123) efflux in human MDR1-gene transfected mouse T-lymphoma L5178 cells and on Sf9 ATPase activity. The most active compounds inhibited Pgp with IC50 values much lower than those of either cyclosporin A (CSA) or GF120918. As to R123 efflux inhibition, the role of the bond present in the second aryl moiety appeared important since the triple bond derivatives (3a–d) were the most powerful as compared to the double bond (2a–d) and the single bond (1a–d) counterparts. Concentration–inhibition curves of 2c and 3d exhibited a biphasic behaviour suggesting the existence of two binding sites in the recognition domain of Pgp. Persistence of inhibition by these compounds resulted to be intermediate between that caused by CSA and GF120918. R123 exhibited positive interaction with CSA, 1d, 1c, 2d, 2c and 3c, the concentration–inhibition curves being shifted leftward when R123 concentration was increased, while it exhibited negative interaction with 3d and no effect with GF120918. Sf9 ATPase activity was stimulated in an increasing order of potency by 2c, 3c, 2d, CSA, epirubicin and 3d. In a decreasing order of potency 3d, 2c, GF120918, CSA, 2d and 3c inhibited at sub-nanomolar concentrations epirubicin-stimulated ATPase activity. In conclusion, isomeric geometry and restriction of molecular flexibility of N,N-bis(cyclohexanol)amine aryl esters were crucial for their presentation to and inhibition of Pgp as transport substrates, R123 and epirubicin cooperating with them to this inhibition.  相似文献   

8.
《Biochemical pharmacology》2012,83(12):1822-1831
P-Glycoprotein (Pgp) inhibition by three sets of four isomers of N,N-bis(cyclohexanol)amine aryl esters was assessed on rhodamine 123 (R123) efflux in human MDR1-gene transfected mouse T-lymphoma L5178 cells and on Sf9 ATPase activity. The most active compounds inhibited Pgp with IC50 values much lower than those of either cyclosporin A (CSA) or GF120918. As to R123 efflux inhibition, the role of the bond present in the second aryl moiety appeared important since the triple bond derivatives (3a–d) were the most powerful as compared to the double bond (2a–d) and the single bond (1a–d) counterparts. Concentration–inhibition curves of 2c and 3d exhibited a biphasic behaviour suggesting the existence of two binding sites in the recognition domain of Pgp. Persistence of inhibition by these compounds resulted to be intermediate between that caused by CSA and GF120918. R123 exhibited positive interaction with CSA, 1d, 1c, 2d, 2c and 3c, the concentration–inhibition curves being shifted leftward when R123 concentration was increased, while it exhibited negative interaction with 3d and no effect with GF120918. Sf9 ATPase activity was stimulated in an increasing order of potency by 2c, 3c, 2d, CSA, epirubicin and 3d. In a decreasing order of potency 3d, 2c, GF120918, CSA, 2d and 3c inhibited at sub-nanomolar concentrations epirubicin-stimulated ATPase activity. In conclusion, isomeric geometry and restriction of molecular flexibility of N,N-bis(cyclohexanol)amine aryl esters were crucial for their presentation to and inhibition of Pgp as transport substrates, R123 and epirubicin cooperating with them to this inhibition.  相似文献   

9.
P-glycoprotein (Pgp, ABCB1) is an ATP-dependent drug efflux pump linked to development of multidrug resistance (MDR) in cancer cells. Previously [Biochem Pharmacol 2002;64:573-82], we reported that a curcumin mixture could modulate both function and expression of Pgp. This study focuses on the effect of three major curcuminoids--curcumin I, II and III purified from a curcumin mixture--on modulation of Pgp function in a multidrug resistant human cervical carcinoma cell line (KB-V1). The similar IC(50) values for cytotoxicity of curcuminoids of KB-V1, and KB-3-1 (parental drug sensitive cell line) suggest that these curcuminoids may not be substrates for Pgp. Treating the cells with non-toxic doses of curcuminoids increased their sensitivity to vinblastine only in the Pgp expressing drug resistant cell line, KB-V1, and curcumin I retained the drug in KB-V1 cells more effectively than curcumin II and III, respectively. Effects of each curcuminoid on rhodamine123, calcein-AM, and bodipy-FL-vinblastine accumulation confirmed these findings. Curcumin I, II and III increased the accumulation of fluorescent substrates in a dose-dependent manner, and at 15 microM, curcumin I was the most effective. The inhibitory effect in a concentration-dependent manner of curcuminoids on verapamil-stimulated ATPase activity and photoaffinity labeling of Pgp with the [(125)I]-iodoarylazidoprazosin offered additional support; curcumin I was the most potent modulator. Taken together, these results indicate that curcumin I is the most effective MDR modulator among curcuminoids, and may be used in combination with conventional chemotherapeutic drugs to reverse MDR in cancer cells.  相似文献   

10.
Multidrug resistance (MDR) mediated by the overexpression of the drug efflux protein P-glycoprotein is one of the major obstacles to successful cancer chemotherapy. The development of safe and effective MDR-reversing agents is an important approach to addressing this problem clinically. In this study, we evaluated the P-gp-modulatory potential of O-(4-ethoxyl-butyl)-berbamine (EBB), a novel calmodulin antagonist and derivative of bisbenzylisoquinoline alkaloid, which significantly improved the chemosensitivity of P-glycoprotein-mediated multidrug-resistant cells to doxorubicin compared with the efficacy of a conventional P-glycoprotein inhibitor, verapamil. EBB not only blocked the function of P-glycoprotein confirmed by the fact that EBB increased intracellular accumulation of rhodamine 123 and doxorubicin but also inhibited the expression of P-glycoprotein actualized by downregulating P-glycoprotein. Furthermore, our results showed that cotreatment with EBB and doxorubicin resulted in marked G2/M arrest and apoptosis of MCF-7/ADR cells, accompanied by down-regulation of the proteins cdc2/p34 and cyclin B1 and increased the levels of calcium ions. Taken together, these results suggest that cotreatment with EBB and doxorubicin could strongly potentiate the antitumor activity of doxorubicin, thus may have significant clinical application in cancer chemotherapy.  相似文献   

11.
12.
目的研究洛美利嗪衍生物CJZ3对K562/DOX细胞阿霉素耐药的逆转作用。方法应用流式细胞仪和MTT法观察了CJZ3对K562/DOX细胞P-糖蛋白(P-glycoprotein,P-gp)的抑制作用及对K562/DOX细胞阿霉素耐药的逆转作用。结果CJZ3能剂量相关性地增加K562/DOX细胞对罗丹明123(rhodamine123,Rh123)的摄取以及细胞内罗丹明Rh123的累计,明显抑制P-gp介导的Rh123外排,增强阿霉素对K562/DOX细胞的细胞毒作用,提高阿霉素诱导的K562/DOX细胞凋亡率,提高细胞Caspase-3活性,增加K562/DOX细胞内阿霉素水平。结论洛美利嗪衍生物CJZ3体外能明显抑制P-gp的外排功能,逆转P-gp介导的K562/DOX细胞的多药耐药性。  相似文献   

13.
P-glycoprotein (Pgp) participates in the export of numerous toxins, drugs, and physiological compounds. To examine the involvement of Pgp in smoke-induced oral cell insult, the effects of extracts of the mainstream tobacco smoke (TS) on Pgp were studied in an oral epidermal carcinoma cell line, OECM-1. TS was first extracted with cyclohexane (CTS) and the residues were further extracted with isopropanol (ITS). For comparison, cells were exposed to CTS and ITS at the concentrations according to their relative extraction yield. ITS but not CTS decreased the efflux of a Pgp substrate, rhodamine (Rh) 123, in a concentration- and time-dependent manner. The efflux was also decreased by co-exposure to CTS and ITS. However, immunoblot analysis revealed that the protein level of Pgp was not affected by ITS. Naphthalene, mainly detected in the ITS, decreased Rh 123 efflux. However, the efflux activity was not affected by benzo(a)pyrene and nicotine, which were present in the CTS and both extracts, respectively. Co-exposure to CTS in combination with ITS, naphthalene, or verapamil enhanced cell insult compared to single exposure. These results demonstrated that smoke and its constituent, naphthalene, diminished Pgp-mediated efflux. The reduction in Pgp function could be a stimulatory factor of TS-induced oral cell insult.  相似文献   

14.

Purpose

The expression of P-glycoprotein (Pgp) is increased in brain capillary endothelial cells (BCECs) of patients with pharmacoresistant epilepsy. This may restrict the penetration of antiepileptic drugs (AEDs) into the brain. However, the mechanisms underlying increased Pgp expression in epilepsy patients are not known. One possibility is that AEDs induce the expression and functionality of Pgp in BCECs. Several older AEDs that induce human cytochrome P450 enzymes also induce Pgp in hepatocytes and enterocytes, but whether this extends to Pgp at the human BBB and to newer AEDs is not known.

Methods

This prompted us to study the effects of various old and new AEDs on Pgp functionality in the human BCEC line, hCMEC/D3, using the rhodamine 123 (Rho123) efflux assay. For comparison, experiments were performed in two rat BCEC lines, RBE4 and GPNT, and primary cultures of rat and pig BCECs. Furthermore, known Pgp inducers, such as dexamethasone and several cytostatic drugs, were included in our experiments.

Results

Under control conditions, GPNT cells exhibited the highest and RBE4 the lowest Pgp expression and Rho123 efflux, while intermediate values were determined in hCMEC/D3. Known Pgp inducers increased Rho123 efflux in all cell lines, but marked inter-cell line differences in effect size were observed. Of the various AEDs examined, only carbamazepine (100 μM) moderately increased Pgp functionality in hCMEC/D3, while valproate (300 μM) inhibited Pgp.

Conclusions

These data do not indicate that treatment with AEDs causes a clinically relevant induction in Pgp functionality in BCECs that form the BBB.  相似文献   

15.
The bidirectional permeation characteristics of rhodamine 123 and Hoechst 33342, fluorescence probes of the binding sites on P-glycoprotein (P-gp), across monolayers of MDCK cells transfected with the human MDR1 gene (MDCK-MDR1) were investigated. The ratios of the apparent permeability coefficients (P(app)) of rhodamine 123 and Hoechst 33342 flux measured in the basolateral (BL) to apical (AP) direction versus the flux in the AP-to-BL direction (P(app BL-to-AP)/P(app AP-to-BL)) were 115 and 177, respectively. The P-gp inhibitor GF-120918 could significantly reduce the polarized efflux of both rhodamine 123 and Hoechst 33342. Rhodamine 123 appeared to "stimulate" the polarized efflux of Hoechst 33342 across MDCK-MDR1 cell monolayers. In contrast, Hoechst 33342 partially inhibited the polarized efflux of rhodamine 123 across these cell monolayers whereas daunorubicin partially inhibited the polarized efflux of both rhodamine 123 and Hoechst 33342. The uptake characteristics of rhodamine 123 and Hoechst 33342 in MDCK-MDR1 cells were measured in the absence and presence of GF-120918 and known P-gp substrates (Hoechst 33342, rhodamine 123, and daunorubicin). The uptake of rhodamine 123 and Hoechst 33342 in MDCK-MDR1 cells was enhanced more than twofold by inclusion of GF-120918 (2 microM) in the incubation medium. Daunorubicin (160 microM) increased the relative fluorescence unit (RFU) values of cytoplasm-associated rhodamine 123 by up to 30%. However, daunorubicin (40 microM) and rhodamine 123 (5 microM) decreased the RFU values of cell membrane-associated Hoechst 33342 by 70% and 40%, respectively. To further explore what appears to be a "stimulatory" effect of daunorubicin and rhodamine 123 on the uptake of Hoechst 33342 and a stimulatory effect of daunorubicin on Hoechst 33342 transport across cell monolayer, uptake of Hoechst 33342 into liposomes in the presence and absence of GF-120918, daunorubicin, and rhodamine 123 was determined. GF-120918 exhibited no effect on the RFU values of liposome-associated Hoechst 33342. In contrast, rhodamine 123 and daunorubicin decreased the fluorescence of liposome-associated Hoechst 33342 suggesting these molecules were either quenching the fluorescence of this chemical probe or displacing it from the lipid bilayer. In conclusion, these bidirectional transport data indicate that rhodamine 123 and Hoechst 33342 are excellent substrates of P-gp in MDCK-MDR1 cells. The ability of Hoechst 33342 to partially inhibit the polarized efflux of rhodamine 123 is consistent with these substrates binding to the same site on P-gp. In contrast, the ability of rhodamine 123 to apparently "stimulate" the efflux of Hoechst 33342 in both the transport and uptake experiments suggests the substrates might bind to different sites on P-gp. However, experimental results using liposomes suggested that this "stimulation" phenomenon by rhodamine 123 on Hoechst 33342 uptake and efflux might simply be an artifact. Thus, the use of Hoechst 33342 to probe the binding sites on a membrane-bound protein such as P-gp might be problematic.  相似文献   

16.
Cellular expression of ATP-binding cassette (ABC) transport proteins, such as P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), or ABCG2, is known to confer a drug-resistant phenotype. Thus, the development of effective transporter inhibitors could be of value to cancer treatment. CBT-1 is a bisbenzylisoquinoline plant alkyloid currently in development as a Pgp inhibitor. We characterized its interactions with the three major ABC transporters associated with drug resistance - Pgp, MRP1 and ABCG2 - and compared it to other known inhibitors. CBT-1 completely inhibited rhodamine 123 transport from Pgp-overexpressing cells at a concentration of 1muM. Additionally, 1 microM completely reversed Pgp-mediated resistance to vinblastine, paclitaxel and depsipeptide in SW620 Ad20 cells. CBT-1 was found to compete [(125)I]-IAAP labeling of Pgp with an IC(50) of 0.14 microM, and low concentrations of CBT-1 (<1 microM) stimulated Pgp-mediated ATP hydrolysis. In MRP1-overexpressing cells, 10 microM CBT-1 was found to completely inhibit MRP1-mediated calcein transport. CBT-1 at 25 microM did not have a significant effect on ABCG2-mediated pheophorbide a transport. Serum levels of CBT-1 in samples obtained from eight patients receiving CBT-1 increased intracellular rhodamine 123 levels in CD56+ cells 2.1- to 5.7-fold in an ex vivo assay. CBT-1 is able to inhibit the ABC transporters Pgp and MRP1, making it an attractive candidate for clinical trials in cancers where Pgp and/or MRP1 might be overexpressed. Further clinical studies with CBT-1 are warranted.  相似文献   

17.
Purpose. The effect of drugs on P-glycoprotein (P-gp) is normally studied in transfected or overexpressing cell lines derived from tumor cells or animal tissue. We wanted to develop an assay using normal healthy human tissue to study and characterize the drug-transporter interaction.Methods. Lymphocytes were isolated from healthy human blood. The effect of inhibitors of P-gp (cyclosporine, tacrolimus, verapamil, quinidine, vinblastine) and of other transporters (indomethacin, probenecid, sulfinpyrazone) on intracellular accumulation of rhodamine 123 was evaluated by flow cytometry.Results. The efflux of rhodamine 123 was inhibited by P-gp inhibitors in a saturable, concentration-dependent manner. The potency of inhibition of P-gp was cyclosporine > tacrolimus > quinidine > verapamil > vinblastine. Vinblastine inhibited P-gp at lower concentrations, whereas at high concentrations, there was an activation of rhodamine 123 efflux from lymphocytes. The multidrug resistance associated protein (MRP) inhibitors, sulfinpyrazone and probenecid, did not have any significant effect on intracellular accumulation of rhodamine 123, but indomethacin caused a concentration-dependent increase in retention of rhodamine 123, indicating the involvement of other uncharacterized transporters.Conclusions. Lymphocytes can serve as a model tissue for studying modulation of P-gp activity by drugs. Both inhibitors and inducers of P-gp activity can be evaluated.  相似文献   

18.
19.
Nitric oxide (NO) is known to affect synaptic plasticity in various regions of the brain via the cGMP-cGMP-dependent protein kinase (PKG) pathway. We found that a novel compound 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole (YC-1), a drug known to modulate the response of soluble guanylyl cyclase to NO, greatly potentiates long-term potentiation (LTP). This compound markedly enhanced the induction of LTP in rat hippocampal and amygdala slices by weak tetanic stimulation. The potentiation of LTP by YC-1 was greatly reduced by NO synthase inhibitor Ng-nitro-l-arginine-methylester, guanylyl cyclase inhibitor 1 H-[1,2,4]-oxadiazolo(4,3-a)-quinoxalin-1-one, and PKG inhibitor (9S,10R,12R)-2,3,9,10,11,12, hexahydro-10-methoxy-2,9-dimethyl-1-ox0-9.12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-I][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT5823). In addition, mitogen-activated protein kinase kinase inhibitor 2'-amino-3'-methoxyflavone (PD98059) also markedly inhibited LTP potentiating action of YC-1. Intracellular increase of Ca2+ concentration derived from N-methyl-d-aspartate and glutamate metabotropic receptors contributes to the potentiating action of YC-1. Concurrent perfusion of YC-1 and NO donor sodium nitroprusside for a short time period resulted in the induction of LTP by stimuli at a frequency as low as 0.02 Hz. Incubation of unstimulated hippocampal slices with YC-1 plus nitroprusside increased the immunofluorescence of phospho-extracellular signal-regulated kinase (ERK) and phospho-cAMP response element binding protein (CREB). Furthermore, the Western blot shows that the phosphorylation of ERKs 1 and 2 and CREB of unstimulated hippocampal slices was increased by YC-1 plus nitroprusside, which was inhibited by KT5823. The NO-cGMP-PKG-ERK signaling pathway thus plays important role in the potentiation of LTP by YC-1.  相似文献   

20.
Effects of various surfactants on the transport of rhodamine123, a P-glycoprotein (P-gp) substrate, across the isolated rat intestinal membranes were examined by an in vitro diffusion chamber system. The jejunal serosal-to-mucosal transport (Jsm) of rhodamine123 was more than threefold greater than its mucosal-to-serosal transport (Jms), suggesting that the net movement of rhodamine123 across the rat jejunum was preferentially secretory direction. There exists a regional difference in the intestinal transport of rhodamine123 and the secretory directed transport was remarkably observed in the jejunum. The Jsm/Jms ratio of rhodamine123 decreased in the presence of 0.3 mM verapamil and 10 mM sodium azide (NaN3) + 1 mM sodium fluoride (NaF), confirming that rhodamine123 might be secreted from the intestinal tissue into the lumen by a P-gp-mediated efflux system. Nonionic surfactants [0.1% Cremophor EL, Tween 80 and n-dodecyl-beta-D-maltopyranoside (LM)] reduced the Jsm/Jms ratio of rhodamine123, whereas its ratio was not influenced in the presence of 0.1% cationic surfactant (hexadecyltrimethylammonium bromide, C16TAB) and anionic surfactant (sodium dodecyl sulfate, SDS). Therefore, these findings suggested that charge of surfactants was possibly related to the action of these surfactants on the intestinal absorption of P-gp substrates. On the other hand, the transfer of rhodamine123 was not affected by the addition of Cremophor EL to the serosal side. Because the c.m.c. of Cremophor EL is 0.0095 w/v%, interactions between rhodamine123 and the micellar form of Cremophor EL may decrease the P-gp-mediated efflux of rhodamine123 at higher concentrations. In the kinetic analysis, the Vmax value (nmol/min/g wet tissue) of rhodamine123 decreased, although the Km value (mM) was constant in the presence of Cremophor EL. Therefore, Cremophor EL inhibited the efflux transport of rhodamine123 in a noncompetitive manner. Cremophor EL did not affect the transport of [14C]Gly-Sar and [3H]3-O-methyl-D-glucose, suggesting that the action of Cremophor EL might be P-gp specific. These findings indicated that nonionic surfactants including Cremophor EL and Tween 80 may be useful pharmaceutical excipients for inhibiting the function of P-gp, thereby increasing the intestinal absorption of various drugs, which are secreted by a P-gp-mediated efflux system in the intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号