首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Transforming growth factor beta: an autocrine regulator of chondrocytes   总被引:2,自引:0,他引:2  
Transforming growth factor beta (TGF-beta) is a ubiquitous regulator of cellular growth and differentiation. The present study investigated the effects of TGF-beta on chick growth plate chondrocyte proliferation, matrix synthesis, and alkaline phosphatase activity in short term cultures. TGF-beta markedly stimulated DNA synthesis in a dose-dependent manner, while collagen synthesis and cellular and matrix vesicle alkaline phosphatase activity were inhibited. Biologic effects of TGF-beta were correlated with binding to specific receptors, and both high and low affinity receptors were identified. Countercurrent centrifugal elutriation was used to fractionate growth plate chondrocytes to obtain populations of cells in different stages of maturation (effectively from different zones of the growth plate). TGF-beta showed increasing mitogenicity with increasing cellular maturation in the growth plate, with maximal stimulation in the proliferating and early hypertrophic cells. The smallest cells expressed only the high affinity receptor, while with hypertrophy there was increasing expression of the low affinity receptor and a progressive increase in the number of both receptors per cell. Furthermore, the dose-response curves for TGF-beta-stimulated DNA synthesis were not biphasic in the smaller cells, but became progressively more biphasic with cellular hypertrophy and expression of the low affinity receptor. Finally, TGF-beta activity was identified in partially purified chondrocyte conditioned medium by specific bioassay, indicating TGF-beta production by growth plate chondrocytes. The data suggests a potentially important autocrine function for TGF-beta in modulating chondrocyte proliferation and matrix synthesis in endochondral calcification.  相似文献   

2.
Tibial dyschondroplasia (TD) is a form of aberrant endochondral ossification in chickens, in that a plug of avascular cartilage (TD lesion) is formed within the growth plate. Histologically, the lesion is filled with apparently transitional chondrocytes that have been unable to differentiate to hypertrophic chondrocytes. We have examined the spatial expression of mRNAs for type X collagen, Indian hedgehog (Ihh) and Parathyroid Hormone-related protein (PTHrP) in the TD growth plate by in situ hybridization in order to ascertain at which stage chondrocyte differentiation is arrested in TD. In the normal growth plate, type X collagen mRNA was expressed by both prehypertrophic and hypertrophic chondrocytes. Indian Hedgehog mRNA was detected in a band of prehypertrophic chondrocytes and PTHrP expression was localized to a narrow band of prehypertrophic chondrocytes and in osteoblasts within the diaphysis. In TD sections, collagen X expression was seen within differentiating cells, within a small number of lesion cells, and within hypertrophic chondrocytes on the diaphyseal side of the lesion. Ihh expression was also seen within the differentiating cells and throughout the lesion. These data indicate that chondrocyte differentiation is arrested at the transitional stage just prior to hypertrophy. Contrary to the previously reported PTHrP expression patterns in TD chicks by immunohistochemistry, PTHrP mRNA was not detected in the TD lesion. This observation probably reflects the cessation of PTHrP gene expression by chondrocytes in the more severe TD lesions. The results from the present study also imply that the arrest of cell differentiation in TD is independent of PTHrP and that endochondral ossification in the post-hatch avian growth plate may involve additional regulatory pathways.  相似文献   

3.
The purpose of this research was to develop a serum-free culture system for the proliferation of articular chondrocytes. Various growth factors and hormones were tested for their ability to stimulate avian articular chondrocyte proliferation in a defined, serum-free media. Multiple members of the fibroblast growth factor (FGF) family (FGFs: 2, 4, and 9), insulin-like growth factor-1 (IGF-1) and transforming growth factor beta (TGF-beta) significantly stimulated H-thymidine uptake by chondrocytes grown in an adherent serum-free, culture system. Double or triple combinations of these mitogenic growth factors further stimulated cell proliferation to levels that were equivalent to, or surpassed those of cells grown in serum. Although proliferation was maximally stimulated, chondrocytes grown in the presence of FGF-2, IGF-1, and TGF-beta, began to exhibit changes in morphology and collagen II expression declined. This culture system could be used to rapidly expand a population of articular chondrocytes prior to transferring these cells to a non-adherent culture system, which could then stabilize the chondrocyte phenotype and maximize matrix synthesis and integrity.  相似文献   

4.
We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1.  相似文献   

5.
RGD-CAP (beta ig-h3), initially cloned as a transforming growth factor (TGF)-beta inducible gene in human lung adenocarcinoma cells, was demonstrated to have a negative regulatory function in mineralization in hypertrophic chondrocytes, and the expression was shown to be associated with mechanical stimulation. We hypothesized that mechanical stimulation may regulate the terminal chondrocyte differentiation through the TGF-beta pathway by enhancing the RGD-CAP expression. To test this hypothesis, we investigated the effects of mechanical strain on the terminal differentiation and mineralization of growth-plate chondrocytes and assessed the mechanical regulation of TGF-ss and RGD-CAP expression. A cyclic mechanical strain of 12% elongation was applied to the cultured pre-hypertrophic chondrocytes isolated from the rib cartilage of 4-week-old male rats at 30 cycles/min (loading and relaxation on every alternate second). The terminal differentiation and mineralization of chondrocytes were assessed by alkaline phosphatase (ALP) activity assay and alizarin red staining. The gene expressions of TGF-ss and RGD-CAP, as well as chondrocytic terminal differentiation markers such as type X collagen and ALP, were examined with real-time RT-PCR. Cyclic mechanical strain decreased the ALP activity and intensity of alizarin red staining in pre-hypertrophic chondrocytes, as well as the gene expressions of type X collagen and ALP. TGF-ss and RGD-CAP were upregulated in the pre-hypertrophic chondrocytes subjected to mechanical strain, whereas the level of PTHrP receptor mRNA was not affected by the mechanical strain. The neutralizing antibody for TGF-ss suppressed the reduction of the mineralization of chondrocyte cultures with the downregulation of RGD-CAP. These results suggest that mechanical strain negatively regulates the terminal differentiation of chondrocytes through the signal pathway of TGF-ss with the induction of RGD-CAP.  相似文献   

6.
Rabbit polyclonal antibodies to chicken transforming growth factor-beta 3 (TGF-/J3) and to insulin-like growth factor-I (IGF-I) were used to detect the two growth factors in normal and dyschondroplastic broiler growth plates (physes). Histo-morphometry was used to estimate the percentage of chondrocytes containing IGF-I and TGF-beta3 in the lower proliferative, transitional and hypertrophic zones of the growth plate. In the normal chick growth plates IGF-I was present in 63% of transitional chondrocytes and in 67% of hypertrophic chondrocytes and TGF-beta3 was present in 81% of transitional chondrocytes and in 93% of hypertrophic chondrocytes. Both growth factors were found to be deficient within transitional chondrocytes at sites of dyschondroplasia, a condition in which there is a local defect in chondrocyte differentiation and the subsequent replacement of the cartilage by bone. In addition, both growth factors were identified in chondrocytes within areas of repair, where chondrocyte differentiation and endochondral ossification have resumed. This supports the hypothysis that the reduction in TGF-beta3 and IGF-I in dyschondroplasia is integral to the aetiopathogenesis and indicative that both these growth factors are part of the cascade of events associated with chondrocyte differentiation during endochondral ossification.  相似文献   

7.
Parathyroid hormone (PTH) regulates calcium and phosphate homeostasis through the endocrine system. Parathyroid hormone-related peptide (PTHrP) is a heterogeneous polypeptide with sequence homology to PTH in its first 13 amino acid residues. Both bind and activate a common receptor, the type 1 PTH/PTHrP receptor (PTH1R). Activation of this G-protein-coupled receptor by PTHrP has been shown to regulate chondrogenesis in a manner that attenuates chondrocyte hypertrophy. Here, we report the dose-response (10(-7) to 10(-15) M) effects of PTH on chondrogenesis using an avian sternal organ culture model. PTH increased cartilaginous tissue length and downregulated the deposition of type X collagen and its mRNA expression. In addition, PTH increased chondrocyte cell diameter in prehypertrophic and proliferative regions while decreasing chondrocyte apoptosis in the hypertrophic zone. In conclusion, these experiments demonstrate that PTH regulates cartilage growth, chondrocytic apoptosis, deposition of type X collagen protein, and expression of type X collagen mRNA. Type X collagen mRNA expression was downregulated by PTH in this organ culture model, but cell size, another marker for terminal differentiation, increased.  相似文献   

8.
《Connective tissue research》2013,54(1-4):295-301
Transforming growth factor beta (TGF-β) is a ubiquitous regulator of cellular growth and differentiation. The present study investigated the effects of TGF-β on chick growth plate chondrocyte proliferation, matrix synthesis, and alkaline phosphatase activity in short term cultures. TGF-β markedly stimulated DNA synthesis in a dose-dependent manner, while collagen synthesis and cellular and matrix vesicle alkaline phosphatase activity were inhibited. Biologic effects of TGF-β were correlated with binding to specific receptors, and both high and low affinity receptors were identified. Countercurrent centrifugal elutriation was used to fractionate growth plate chondrocytes to obtain populations of cells in different stages of maturation (effectively from different zones of the growth plate). TGF-β showed increasing mitogenicity with increasing cellular maturation in the growth plate, with maximal stimulation in the proliferating and early hypertrophic cells. The smallest cells expressed only the high affinity receptor, while with hypertrophy there was increasing expression of the low affinity receptor and a progressive increase in the number of both receptors per cell. Furthermore, the dose-response curves for TGF-β-stimulated DNA synthesis were not biphasic in the smaller cells, but became progressively more biphasic with cellular hypertrophy and expression of the low affinity receptor. Finally, TGF-β activity was identified in partially purified chondrocyte conditioned medium by specific bioassay, indicating TGF-β production by growth plate chondrocytes. The data suggests a potentially important autocrine function for TGF-B in modulating chondrocyte proliferation and matrix synthesis in endochondral calcification.  相似文献   

9.
10.
Growth plate chondrocytes undergo a coordinated differentiation process resulting in terminal differentiation and new bone formation. Enchondromas are pre-malignant, benign cartilaginous lesions that arise from growth plate chondrocytes that fail to undergo terminal differentiation. NOV (nephroblastoma overexpressed) is a member of the CCN family of proteins, which share a common multi-modular organization. While the role of NOV in chondrocyte development and cartilage neoplasia is not known, other CCN family members play a role in chondrocyte differentiation, or are differentially regulated in cartilage neoplasia. In embryonic murine growth plates, NOV was expressed in pre-hypertrophic and early hypertrophic chondrocytes. PTHrP treatment (which inhibits terminal differentiation) decreased NOV expression in murine femurs maintained in organ culture, and decreased the activity of a NOV reporter construct in vitro. Expression of the CCN family members NOV, CTGF, CYR61, and WISP-1 was examined in 15 chondrosarcomas of various grades and in three enchondromas. Expression of all of the family members was lower in the higher-grade tumours. As identification of the grade of cartilage neoplasia can sometimes be difficult using histology alone, the level of expression of CCN family members could be a useful adjunct in the determination of tumour grade.  相似文献   

11.
12.
Parathyroid hormone (PTH)-related peptide (PTHrP) and the PTH/PTHrP receptor (PPR) play an essential role in controlling growth plate development. The aim of the present study was to use the deer antler as a model to determine whether PTHrP and PPR may also have a function in regulating cartilage and bone regeneration in an adult mammal. Antlers are the only mammalian appendages that are able to undergo repeated cycles of regeneration, and their growth from a blastema involves a modified endochondral process. Immunohistochemistry was used to establish sites of localization of PTHrP and PPR in antlers at different stages of development. The pattern of Indian Hedgehog (IHH) and transforming growth factor-beta1 (TGF beta1) distribution was also investigated, because PTHrP expression in the developing limb is regulated by IHH and during embryonic growth plate formation TGF beta1 acts upstream of PTHrP to regulate the rate of chondrocyte differentiation. In the antler blastema (<10 days of development), PTHrP, PPR, and TGF beta1 were localized in epidermis, dermis, regenerating epithelium, and in mesenchymal cells but IHH expression was not detected. In the rapidly growing antler (weeks 4-8 of development), PTHrP, PPR, and TGF beta1 were localized in skin, perichondrium, undifferentiated mesenchyme, recently differentiated chondrocytes, and in perivascular cells in cartilage but not in fully differentiated hyperytrophic chondrocytes. IHH was restricted to recently differentiated chondrocytes and to perivascular cells in cartilage. In mineralized cartilage and bone, PTHrP, PPR, IHH, and TGF beta1 were immunolocalized in perivascular cells and differentiated osteoblasts. PTHrP and PPR were also present in the periosteum. TGF beta1 in vitro stimulated PTHrP synthesis by cells from blastema, perichondrium, and cartilage. The findings of this study suggest that molecules which regulate embryonic skeletal development and postnatal epiphyseal growth may also control blastema formation, chondrogenesis, and bone formation in the regenerating deer antler. This finding is further evidence that developmental signaling pathways are recapitulated during adult mammalian bone regeneration.  相似文献   

13.
The mammalian Target Of Rapamycin (mTOR) is a nutrient-sensing protein kinase that regulates numerous cellular processes. Fetal rat metatarsal explants were used as a physiological model to study the effect of mTOR inhibition on chondrogenesis. Insulin significantly enhanced their growth. Rapamycin significantly diminished this response to insulin through a selective effect on the hypertrophic zone. Cell proliferation (bromodeoxyuridine incorporation) was unaffected by rapamycin. Similar observations were made when rapamycin was injected to embryonic day (E) 19 fetal rats in situ. In the ATDC5 chondrogenic cell line, rapamycin inhibited proteoglycan accumulation and collagen X expression. Rapamycin decreased content of Indian Hedgehog (Ihh), a regulator of chondrocyte differentiation. Addition of Ihh to culture medium reversed the effect of rapamycin. We conclude that modulation of mTOR signaling contributes to chondrocyte differentiation, perhaps through its ability to regulate Ihh. Our findings support the hypothesis that nutrients, acting through mTOR, directly influence chondrocyte differentiation and long bone growth.  相似文献   

14.
CTRP3/cartducin, a novel C1q family protein, is expressed in proliferating chondrocytes in the growth plate and has an important role in regulating the growth of both chondrogenic precursors and chondrocytes in vitro. We examined the expression of CTRP3/cartducin mRNA in Meckel's cartilage and in condylar cartilage of the fetal mouse mandible. Based on in situ hybridization studies, CTRP3/cartducin mRNA was not expressed in the anlagen of Meckel's cartilage at embryonic day (E)11.5, but it was strongly expressed in Meckel's cartilage at E14.0, and then reduced in the hypertrophic chondrocytes at E16.0. CTRP3/cartducin mRNA was not expressed in the condylar anlagen at E14.0, but was expressed in the upper part of newly formed condylar cartilage at E15.0. At E16.0, CTRP3/cartducin mRNA was expressed from the polymorphic cell zone to the upper part of the hypertrophic cell zone, but was reduced in the lower part of the hypertrophic cell zone. CTRP3/cartducin-antisense oligodeoxynucleotide (AS-ODN) treatment of Meckel's cartilage and condylar anlagen from E14.0 using an organ culture system indicated that, after 4-day culture, CTRP3/cartducin abrogation induced curvature deformation of Meckel's cartilage with loss of the perichondrium and new cartilage formation. Aggrecan, type I collagen, and tenascin-C were simultaneously immunostained in this newly formed cartilage, indicating possible transformation from the perichondrium into cartilage. Further, addition of recombinant mouse CTRP3/cartducin protein to the organ culture medium with AS-ODN tended to reverse the deformation. These results suggest a novel function for CTRP3/cartducin in maintaining the perichondrium. Moreover, AS-ODN induced a deformation of the shape, loss of the perichondrium/fibrous cell zone, and disorder of the distinct architecture of zones in the mandibular condylar cartilage. Additionally, AS-ODN-treated condylar cartilage showed reduced levels of mRNA expression of aggrecan, collagen types I and X, and reduced BrdU-incorporation. These results suggest that CTRP3/cartducin is not only involved in the proliferation and differentiation of chondrocytes, but also contributes to the regulation of mandibular condylar cartilage.  相似文献   

15.
16.
Sung LY  Lo WH  Chiu HY  Chen HC  Chung CK  Lee HP  Hu YC 《Biomaterials》2007,28(23):3437-3447
Baculovirus has emerged as a new gene delivery vector thanks to a number of advantages. This study demonstrated that baculovirus conferred efficient gene delivery and mediated expression of growth factors (TGF-beta1, IGF-1 and BMP-2) to therapeutic levels in rabbit chondrocytes. Interestingly, the cellular response to growth factor stimulation was dependent on the cell passage. The highly de-differentiated passage 5 (P5) chondrocytes failed to respond to the stimulation by either growth factor. The de-differentiated P3 cells also failed to maintain the chondrocyte phenotype, but baculovirus-mediated BMP-2 expression remarkably reversed the de-differentiation and enhanced the aggrecan and collagen II production in 2D and 3D cultures, as evidenced by cell morphology, histological staining and gene expression analyses. Baculovirus-mediated TGF-beta1 expression modestly enhanced the cartilage-specific matrix production, although to a lesser extent. Intriguingly, IGF-1, a well-known chondroinductive protein, failed to stimulate the P3 cells likely due to the loss of IGF-1 receptor expression. In summary, this study proved for the first time the potentials of baculovirus in modulating the differentiation status of chondrocytes in the context of cartilage tissue engineering, but also highlighted the importance of selecting appropriate cell passage and growth factor for genetic manipulation.  相似文献   

17.
The purpose of this research was to develop a serum-free culture system for the proliferation of articular chondrocytes. Various growth factors and hormones were tested for their ability to stimulate avian articular chondrocyte proliferation in a defined, serum-free media. Multiple members of the fibroblast growth factor (FGF) family (FGFs: 2, 4, and 9), insulin-like growth factor-1 (IGF-1) and transforming growth factor β (TGF-β) significantly stimulated 3H-thymidine uptake by chondrocytes grown in an adherent serum-free, culture system. Double or triple combinations of these mitogenic growth factors further stimulated cell proliferation to levels that were equivalent to, or surpassed those of cells grown in serum. Although proliferation was maximally stimulated, chondrocytes grown in the presence of FGF-2, IGF-1, and TGF-β, began to exhibit changes in morphology and collagen II expression declined. This culture system could be used to rapidly expand a population of articular chondrocytes prior to transferring these cells to a non-adherent culture system, which could then stabilize the chondrocyte phenotype and maximize matrix synthesis and integrity.  相似文献   

18.
Hedgehog proteins exert critical roles in embryogenesis and require heparan sulfate proteoglycans (HS-PGs) for action. Indian hedgehog (Ihh) is produced by prehypertrophic chondrocytes in developing long bones and regulates chondrocyte proliferation and other events, but it is not known whether it requires HS-PGs for function. Because the HS-PG syndecan-3 is preferentially expressed by proliferating chondrocytes, we tested whether it mediates Ihh action. Primary chick chondrocyte cultures were treated with recombinant Ihh (rIhh-N) in absence or presence of heparinase I or syndecan-3 neutralizing antibodies. While rIhh-N stimulated proliferation in control cultures, it failed to do so in heparinase- or antibody-treated cultures. In reciprocal gain-of-function studies, chondrocytes were made to overexpress syndecan-3 by an RCAS viral vector. Cells became more responsive to rIhh-N, but even this response was counteracted by heparinase or antibody treatment. To complement the in vitro data, RCAS viral particles were microinjected in day 4-5 chick wing buds and effects of syndecan-3 misexpression were monitored over time. Syndecan-3 misexpression led to widespread chondrocyte proliferation and, interestingly, broader expression and distribution of Ihh. In addition, the syndecan-3 misexpressing skeletal elements were short, remained cartilaginous, lacked osteogenesis, and exhibited a markedly reduced expression of collagen X and osteopontin, products characteristic of hypertrophic chondrocytes and bone cells. The data are the first to indicate that Ihh action in chondrocyte proliferation involves syndecan-3 and to identify a specific member of the syndecan family as mediator of hedgehog function.  相似文献   

19.
Collagen II is the major fibril-forming collagen in cartilage. Complete absence of collagen II in mice is not compatible with life and in humans mutations in the COL2A1 gene lead to osteochondrodysplasias with diverse phenotypes. However, mechanistic studies on how chondrocytes respond to a lack of collagen II in their extracellular matrix are limited. Primary mouse chondrocytes were isolated from knee joints of newborn mice and transfected with siRNA targeting Col2α1 to suppress collagen II expression. The expression of integrin receptors and matrix proteins was investigated by RT-PCR and immunoblots. The localization of matrix components was evaluated by immunostaining. Signaling pathways and the differentiation state of chondrocytes was monitored by RT-PCR and flow cytometry. We demonstrate that in the absence of collagen II chondrocytes start to produce collagen I. Some binding partners of collagen II are partially lost from the matrix while other proteins, e.g. COMP, were still found associated with the newly formed collagen network. The lack of collagen II induced changes in the expression profile of integrins. Further, we detected alterations in the Indian hedgehog/parathyroid hormone-related protein (Ihh/PTHrP) pathway that were accompanied by changes in the differentiation state of chondrocytes. Collagen II seems not to be essential for chondrocyte survival in culture but it plays an important role in maintaining chondrocyte differentiation. We suggest that a crosstalk between extracellular matrix and cells via integrins and the Ihh/PTHrP pathway is involved in regulating the differentiation state of chondrocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号