共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了关节软骨组织工程中种子细胞、支架材料的研究现状以及生长因子在关节软骨组织工程中的应用进展,阐明了随着对细胞行为、支架材料特性、细胞与材料的组合构建研究的深入,组织工程在关节软骨修复方面应用前景十分广阔。 相似文献
2.
RGD-peptides for tissue engineering of articular cartilage 总被引:9,自引:0,他引:9
Jeschke B Meyer J Jonczyk A Kessler H Adamietz P Meenen NM Kantlehner M Goepfert C Nies B 《Biomaterials》2002,23(16):3455-3463
One keypoint in the development of a biohybrid implant for articular cartilage defects is the specific binding of cartilage cells to a supporting structure. Mimicking the physiological adhesion process of chondrocytes to the extracellular matrix is expected to improve cell adhesion of in vitro cultured chondrocytes. Our approach involves coating of synthetic scaffolds with tailor-made, cyclic RGD-peptides, which bind to specific integrin receptors on the cell surface. In this study we investigated the expression pattern of integrins on the cell surface of chondrocytes and their capability to specifically bind to RGD-peptide coated materials in the course of monolayer cultivation. Human chondrocytes expressed integrins during a cultivation period of 20 weeks. Receptors proved to be functionally active as human and pig chondrocytes attached to RGD-coated surfaces. A competition assay with soluble RGD-peptide revealed binding specificity to the RGD-entity. Chondrocyte morphology changed with increasing amounts of cyclic RGD-peptides on the surface. 相似文献
3.
背景:关节软骨缺损在临床上十分常见,随着分子生物学和组织工程学等学科的不断发展,为关节软骨缺损的修复提供了大量新的方法和思路,利用软骨组织工程学方法修复关节软骨缺损成为目前骨科领域研究的热点。
目的:总结并讨论目前软骨组织工程学方法修复关节软骨缺损的研究现状,综述应用软骨组织工程学方法修复关节软骨缺损的研究进展。
方法:由第一作者应用计算机检索中国期刊全文数据库(CNKI:2000/2010)和Medline(1990/2010)数据库中的相关文章,检索词分别为“关节软骨缺损,软骨组织工程”和“articular cartilage defects (ACD),cartilage tissue engineering”,语言分别设定为中文和英文。共检索得文章786篇,从中选取相关文章44篇,从软骨组织工程学方法修复关节软骨缺损过程中的种子细胞、支架材料和生物因子3个具体方面的研究进展进行归纳及总结。
结果与结论:支架、种子细胞和可调控细胞生长、增殖及分化的生物因子是软骨组织工程的3大要素。软骨组织工程方法主要包括利用体外培养、扩增后的种子细胞,将其种植于支架材料中,在相关调节因素的作用下形成组织工程化软骨,此方法已成为目前治疗关节软骨缺损的重要方法之一,并取得不错的疗效,但迄今为止尚未出现一种法被广泛认可的治疗方案。利用不同新型复合支架材料如修复治疗关节软骨缺损将成为今后研究的主要方向。 相似文献
4.
Thissen H Chang KY Tebb TA Tsai WB Glattauer V Ramshaw JA Werkmeister JA 《Journal of biomedical materials research. Part A》2006,77(3):590-598
Articular cartilage tissue engineering procedures require the transplantation of chondrocytes that have been expanded in vitro. The expansion is carried out for a considerable time and can lead to a modulation of cell phenotype. However, microcarrier cultures have been shown to allow cell expansion while maintaining the phenotype. Here, we have used the biodegradable polyester poly(lactide-co-glycolide) (PLGA) in the form of microspheres and irregular shaped microparticles with a diameter between 47 and 210 microm. Surface modification of particles was carried out by ammonia plasma treatment and subsequent adsorption of collagen. Alternatively, particles were modified by partial hydrolysis and subsequent immobilization of an amine-terminated dendrimer. Each surface modification step was characterized by X-ray photoelectron spectroscopy. The effectiveness of the surface modification procedures was demonstrated by in vitro cell culture experiments using sheep articular cartilage chondrocytes. A significant influence of both the particle shape and the surface chemistry on the proliferation rate was observed while the phenotype was maintained independent of the surface chemistry or particle shape. Chondrocytes cultured on PLGA microspheres were further assessed for cartilage tissue formation in collagen type I gels in nude mice. The tissue that were formed showed the appearance of a hyaline-like cartilage and the presence of the microspheres substantially reduced the degree of collagen gel contraction over 1-2 months. 相似文献
5.
背景:软骨组织工程主要由种子细胞、生物支架、生长因子3方面组成,如何完善软骨组织工程修复一直是科研工作者研究的重点。
目的:全面了解应用软骨组织工程修复软骨损伤的研究现状。
方法:计算机检索PubMed和CNKI数据库中2005/2010相关文献。以“Cartilage, tissue engineering, repair”或“关节软骨、组织工程、修复”为检索词进行检索。纳入与软骨组织工程密切相关的文献,排除重复性研究。
结果与结论:共检索到167篇文献,排除无关重复的文献,保留20篇文献进行综述。研究认为种子细胞是软骨组织工程最关键的方面,包括软骨细胞、骨髓间充质干细胞、胚胎干细胞和通过基因工程得到的种子细胞。目前应用最多、应用前景最好的是骨髓间充质干细胞。生物支架经历了一个漫长的过程,趋向于复合性和功能性的方向发展。各种生长因子在组织工程中必不可少。转化生长因子、胰岛素样生长因子、骨形态发生蛋白等在软骨修复中发挥了重要的功能。 相似文献
6.
Review: tissue engineering for regeneration of articular cartilage 总被引:43,自引:0,他引:43
Joint pain due to cartilage degeneration is a serious problem, affecting people of all ages. Although many techniques, often surgical, are currently employed to treat this affliction, none have had complete success. Recent advances in biology and materials science have pushed tissue engineering to the forefront of new cartilage repair techniques. This review seeks to condense information for the biomaterialist interested in developing materials for this application. Articular cartilage anatomy, types of injury, and current repair methods are explained. The need for biomaterials, current commonly used materials for tissue-engineered cartilage, and considerations in scale-up of cell-biomaterial constructs are summarized. 相似文献
7.
Chou CH Cheng WT Lin CC Chang CH Tsai CC Lin FH 《Journal of biomedical materials research. Part B, Applied biomaterials》2006,77(2):338-348
Tri-co-polymer with composition of gelatin, hyaluronic acid and chondroitin-6-sulfate has been used to mimic the cartilage extracellular matrix as scaffold for cartilage tissue engineering. In this study, we try to immobilize TGF-beta1 onto the surface of the tri-co-polymer sponge to suppress the undesired differentiation during the cartilage growth in vitro. The scaffold was synthesized with a pore size in a range of 300-500 microm. TGF-beta1 was immobilized on the surface of the tri-co-polymer scaffold with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. Tri-co-polymer scaffolds with and without TGF-beta1 were seeded with porcine chondrocytes and cultured in a spinner flask for 2, 4, and 6 weeks. The chondrocytes were characterized by the methods of immunohistochemical staining with anti-type II collagen and anti-S-100 protein monoclonal antibody, and RT-PCR. After culturing for 4 weeks, chondrocytes showed positive in S-100 protein, Alcian blue, and type II collagen for the scaffold with TGF-beta1 immobilization. There is no observed type I and type X collagen expression in the scaffolds from the observation of RT-PCR. In addition, the scaffold without TGF-beta1 immobilization, type X collagen, can be detected after cultured for 2 weeks. Type I collagen was progressively expressed after 4 weeks. These results can conclude that TGF-beta1 immobilized scaffold can suppress chondrocytes toward prehypertrophic chondrocytes and osteolineage cells. The tri-co-polymer sponge with TGF-beta1 immobilization should have a great potential in cartilage tissue engineering in the future. 相似文献
8.
Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts 总被引:3,自引:0,他引:3
Barnewitz D Endres M Krüger I Becker A Zimmermann J Wilke I Ringe J Sittinger M Kaps C 《Biomaterials》2006,27(14):2882-2889
The objective of our study was to evaluate the integration of autologous cartilage tissue engineering transplants based on resorbable polyglactin/polydioxanone scaffolds into full-thickness cartilage defects of horses. Cartilage biopsies were taken from the non-load-bearing area of the lateral talus of the left tibiotarsal joint of eight healthy Haflinger horses. Tissue engineering cartilage transplants were generated by three-dimensional arrangement of autologous chondrocytes in biocompatible and resorbable polymer scaffolds. Full-thickness cartilage defects of 8 mm in diameter were created in the tubular bone condyle of the fetlock joint and cartilage grafts were fixed using an anchor system, while defects without grafting served as controls. After 6 and 12 months the repair tissue was evaluated histologically and showed formation of a cartilaginous tissue and good integration into the surrounding host tissue with firm bonding of the graft to the adjacent cartilage and the underlying subchondral bone. Biochemical analysis demonstrated that the content of glycosaminoglycans and hydroxyproline is comparable in repair tissue derived from treated and control defects. The use of three-dimensional autologous cartilage transplants based on resorbable polymer scaffolds ensures secure fixation, good integration of the graft into cartilage lesions, and is therefore suggested as a promising therapeutic option for the treatment of cartilage defects. 相似文献
9.
目的利用组织工程技术建立体外软骨缺损实验模型,研究修复区人工软骨和宿主软骨的力学特性。方法采用一种琼脂糖凝胶作为人工软骨,制作猪软骨深层缺损,在缺损处仿临床植入人工软骨,用生物胶黏接,建立组织工程修复膝关节软骨缺损的体外模型;在压缩载荷作用下,通过数字图像相关技术研究组织工程软骨植入缺损后修复区即刻力学行为。结果压缩过程中界面处没有出现开裂现象,压缩分别为软骨层厚度的3.5%、5.6%、7.04%和9.0%时获得了修复区中间层应变分布图和应变变化曲线。压缩量从3.5%增加到9%时,在垂直软骨面方向上宿主软骨最大压应变增加75.9%,人工软骨最大拉应变增加226.99%;在平行软骨表面方向,交界面处最大拉应变增加116.9%,增加量远高于宿主软骨区和人工软骨区;对于修复区剪应变,随着压缩量增加交界处剪应变方向发生相反的改变。结论软骨组织工程修复缺损效果有很大的不确定性,这与修复区的力学环境有关。组织工程软骨植入缺损后,修复区受到复杂应变状态,随着压缩量增加,界面处、宿主软骨、人工软骨都发生较大的应变变化,界面处垂直软骨面方向的应变由压应变可转化为拉应变,平行软骨表面方向的拉应变有显著增加,交界处剪应变方向甚至发生了相反的改变,而且剪应力数值迅速增加。这种复杂应变状态造成修复区细胞力学环境的较大变化,还可能引起界面的开裂,影响缺损修复过程,这些力学环境变化应受到临床治疗的重视。 相似文献
10.
In this study we investigated the use of a fibrin hydrogel to improve the potential of a polyurethane (PU) scaffold-based system for articular cartilage tissue engineering. PU-only ("no-fibrin") and PU-fibrin ("fibrin") composites were cultured for up to 28 days and analyzed for DNA content, glycosaminoglycan (GAG) content, type II collagen content, GAG release, and gene expression of aggrecan, collagen I, and collagen II. The use of fibrin allowed for higher viable cell-seeding efficiency (10% higher DNA content on day 2 in fibrin versus no-fibrin composites) and more even cell distribution on seeding, a more than 3-fold increase in the percentage of newly synthesized GAG retained in the constructs, and 2- to 6-fold higher levels of type II collagen and aggrecan gene expression through day 14. Addition of aprotinin to the medium inhibited fibrin degradation, most noticeably in the center of the constructs, but had little effect on biochemical composition or gene expression. Short-term mechanical compression (0-10% sinusoidal strain at 0.1 Hz for 1 h, applied twice daily for 3 days) doubled the rate of GAG release from the constructs, but had little effect on gene expression, regardless of the presence of fibrin. Although further work is needed to optimize this system, the addition of fibrin hydrogel to encapsulate cells in the stiff, macroporous PU scaffold is a step forward in our approach to articular cartilage tissue engineering. 相似文献
11.
背景:力学状态对软骨的正常生理有重要影响,若应力集中过大将造成人工软骨退变和原宿主软骨退化,影响治疗效果。目前的各种力学手段很难实现活体软骨力学状态测量,而有限元动态分析能有效地模拟修补后软骨的受力情况。
目的:通过有限元仿真研究组织工程修复膝关节软骨缺损后人工软骨和宿主软骨的力学状态。
方法:以人体膝关节软骨受滚压部分为研究对象,建立滚动运动下关节软骨的有限元模型。根据行走过程中股骨与胫骨间的滚压边界条件,对软骨在取不同弹性模量、不同压缩量、不同载荷速度及不同缺损大小的情况进行了滚压受力分析。
结果与结论:在滚压载荷下,植入人工软骨弹性模量和软骨压缩量的不同都使人工软骨和宿主软骨受到的Mises应力值变化,二者对修复缺损处软骨Mises应力分布的影响比较明显,是临床治疗软骨缺损和术后康复阶段值得注意的因素。模拟中使用的载荷速度和缺损大小对软骨应力值的影响不明显。当人工软骨弹性模量取某个值时,人工软骨和宿主软骨的Mises应力差别可以达到很小值,二者趋于吻合。应力差别还和个体宿主软骨的力学性能有关,据此,应针对不同病例选择最佳弹性模量的人工软骨植入。 相似文献
12.
关节软骨缺损是临床上常见的一种关节病损,由于关节内机械力的影响以及血液供应的缺乏,软骨自身修复能力有限,对于其组织重建和功能恢复的探讨一直是最具有挑战性的课题之一.组织工程学作为一门新兴的学科,其应用生命科学和工程学再生软骨的原理和方法,为解决这一问题提供了新的思路,其中对于支架材料的研究开发在关节软骨组织工程修复中占有重要的地位.将支架材料分为天然生物材料和人工合成材料两大类进行重点阐述,并从支架材料的作用、要求以及空间结构等方面介绍了当前研究比较集中的几类支架的优缺点和发展状况. 相似文献
13.
背景:目前临床上虽有多种方法用于治疗软骨缺损,但没有从根本上解决关节软骨缺损修复问题。
目的:通过组织学研究进一步评价柚皮苷结合组织工程软骨修复兔关节软骨缺损的效果。
方法:取兔骨髓间充质干细胞体外增殖后,复合于改建后的脱细胞真皮基质载体上,制成组织工程软骨,植入到兔膝关节软骨缺损,并以柚皮苷汤灌胃,于 4,8周后分别对修复组织进行苏木精-伊红、Masson三色染色、甲苯胺蓝染色、Ⅱ型胶原染色、Ⅹ型胶原染色等组织学检查。
结果与结论:术后8周, 柚皮苷结合干细胞复合体组缺损处修复组织变成乳白色,半透明光滑组织,缺损修复组织与周围正常软骨已基本难区分,表面光滑。组织学检查发现修复缺损处基本为新生软骨填充。结果证实,柚皮苷结合组织工程软骨能提高家兔膝关节软骨缺损的修复质量。
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程全文链接: 相似文献
14.
Rabbit articular chondrocytes seeded on collagen-chitosan-GAG scaffold for cartilage tissue engineering in vivo 总被引:4,自引:0,他引:4
Yan J Qi N Zhang Q 《Artificial cells, blood substitutes, and immobilization biotechnology》2007,35(4):333-344
In this study, we prepared a tri-copolymer porous matrices by natural polymer, collagen (Col), Chitosan (Chi) and Chondroitin (CS). Rabbit articular chondrocytes were isolated from the shoulder articular joints of a rabbit, seeded in Col-Chi-CS scaffold, and implanted subcutaneously in the dorsum of athymic nude mice to tissue engineer articular cartilage in vivo. In vitro studies show that Chondrocytes adhered to the scaffold, where they proliferated and secreted extracellular matrices with time, filling the space within the scaffold. The results of hematoxylin and eosin staining scanning electron microscopy revealed that most of the chondrocytes maintained their typically rounded morphology. After 28 days of culture within Col-Chi-CS scaffold in vitro, the results of histological staining showed forming of cartilage-specific morphological appearance and structural characteristics such as lacunae. Subcutaneous implantation studies in nude mice demonstrated that a homogeneous cartilaginous tissue, which was similar to those of natural cartilage, formed when chondrocytes were seeded in Col-Chi-CS matrix after implant 12 weeks. The tri-copolymer matrix could therefore have potential applications as a three-dimensional scaffold for cartilage tissue engineering. 相似文献
15.
Gene expression profiling of human articular cartilage grafts generated by tissue engineering 总被引:3,自引:0,他引:3
Kaps C Frauenschuh S Endres M Ringe J Haisch A Lauber J Buer J Krenn V Häupl T Burmester GR Sittinger M 《Biomaterials》2006,27(19):3617-3630
Cartilage tissue engineering is applied clinically to cover and regenerate articular cartilage defects. In this study autologous human cartilage tissue engineering grafts based on bioresorbable polyglactin/polydioxanone scaffolds were analyzed on the broad molecular level. RNA from freshly isolated, primary and expanded adult articular chondrocytes and from three-dimensional cartilage grafts were used for gene expression profiling using oligonucleotide microarrays. The capacity of cartilage grafts to form cartilage matrix was evaluated after subcutaneous transplantation into nude mice. Gene expression profiling showed reproducibly the regulation of 905 genes and documented that chondrocytes undergo fundamental changes during cartilage tissue engineering regarding chondrocyte metabolism, growth, and differentiation. Three-dimensional assembly of expanded, dedifferentiated chondrocytes initiated the re-differentiation of cells that was accompanied by the reversal of the expression profile of multiple players of the transforming growth factor (TGF) signaling pathway including growth and differentiation factor-5 and inhibitor of differentiation-1 as well as by the induction of typical cartilage-related matrix genes such as type II collagen and cartilage oligomeric matrix protein. Cartilage grafts formed a cartilaginous matrix after transplantation into nude mice. Three-dimensional tissue culture of expanded articular chondrocytes initiates chondrocyte re-differentiation in vitro and leads to the maturation of cartilage grafts towards hyaline cartilage in vivo. 相似文献
16.
A surface modification technique based on poly(dopamine) deposition developed from oxidative polymerization of dopamine is known to promote cell adhesion to several cell-resistant substrates. In this study this technique was applied to articular cartilage tissue engineering. The adhesion and proliferation of rabbit chondrocytes were evaluated on poly(dopamine)-coated polymer films, such as polycaprolactone, poly(L-lactide), poly(lactic-co-glycolic acid) and polyurethane, biodegradable polymers that are commonly used in tissue engineering. Cell adhesion was significantly increased by merely 15 s of dopamine incubation, and 4 min incubation was enough to reach maximal cell adhesion, a 1.35-2.69-fold increase compared with that on the untreated substrates. Cells also grew much faster on the poly(dopamine)-coated substrates than on untreated substrates. The increase in cell affinity for poly(dopamine)-coated substrates was demonstrated via enhancement of the immobilization of serum adhesive proteins such as fibronectin. When the poly(dopamine)-coating technique was applied to three-dimensional (3-D) polyurethane scaffolds, the proliferation of chondrocytes and the secretion of glycosaminoglycans were increased compared with untreated scaffolds. Our results show that the deposition of a poly(dopamine) layer on 3-D porous scaffolds is a simple and promising strategy for articular cartilage tissue engineering, and may be applied to other types of tissue engineering. 相似文献
17.
Galler KM Hartgerink JD Cavender AC Schmalz G D'Souza RN 《Tissue engineering. Part A》2012,18(1-2):176-184
Root canal therapy is common practice in dentistry. During this procedure, the inflamed or necrotic dental pulp is removed and replaced with a synthetic material. However, recent research provides evidence that engineering of dental pulp and dentin is possible by using biologically driven approaches. As tissue engineering strategies hold the promise to soon supersede conventional root canal treatment, there is a need for customized scaffolds for stem cell delivery or recruitment. We hypothesize that the incorporation of dental pulp-derived stem cells with bioactive factors into such a scaffold can promote cell proliferation, differentiation, and angiogenesis. In this study, we used a cell adhesive, enzyme-cleavable hydrogel made from self-assembling peptide nanofibers to encapsulate dental pulp stem cells. The growth factors (GFs) fibroblast growth factor basic, transforming growth factor β1, and vascular endothelial growth factor were incorporated into the hydrogel via heparin binding. Release profiles were established, and the influence of GFs on cell morphology and proliferation was assessed to confirm their bioactivity after binding and subsequent release. Cell morphology and spreading in three-dimensional cultures were visualized by using cell tracker and histologic stains. Subcutaneous transplantation of the hydrogel within dentin cylinders into immunocompromised mice led to the formation of a vascularized soft connective tissue similar to dental pulp. These data support the use of this novel biomaterial as a highly promising candidate for future treatment concepts in regenerative endodontics. 相似文献
18.
Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering 总被引:12,自引:0,他引:12
It has previously been demonstrated that dynamic deformational loading of chondrocyte-seeded agarose hydrogels over the course of 1 month can increase construct mechanical and biochemical properties relative to free-swelling controls. The present study examines the manner in which two mediators of matrix biosynthesis, the growth factors TGF-beta1 and IGF-I, interact with applied dynamic deformational loading. Under free-swelling conditions in control medium (C), the [proteoglycan content][collagen content][equilibrium aggregate modulus] of cell-laden (10 x 10(6) cells/mL) 2% agarose constructs reached a peak of [0.54% wet weight (ww)][0.16% ww][13.4 kPa]c, whereas the addition of TGF-beta1 or IGF-I to the control medium led to significantly higher peaks of [1.18% ww][0.97% ww][23.6 kPa](C-TGF) and [1.00% ww][0.63% ww][19.3 kPa](C-IGF), respectively, by day 28 or 35 (p<0.01). Under dynamic loading in control medium (L), the measured parameters were [1.10% ww][0.52% ww][24.5 kPa]L, and with the addition of TGF-beta1 or IGF-I to the control medium these further increased to [1.49% ww][1.07% ww][50.5 kPa](L-TGF) and [1.48% ww][0.81% ww][46.2 kPa](L-IGF), respectively (p<0.05). Immunohistochemical staining revealed that type II collagen accumulated primarily in the pericellular area under free-swelling conditions, but spanned the entire tissue in dynamically loaded constructs. Applied in concert, dynamic deformational loading and TGF-beta1 or IGF-I increased the aggregate modulus of engineered constructs by 277 or 245%, respectively, an increase greater than the sum of either stimulus applied alone. These results support the hypothesis that the combination of chemical and mechanical promoters of matrix biosynthesis can optimize the growth of tissue-engineered cartilage constructs. 相似文献
19.
Fisher JP Jo S Mikos AG Reddi AH 《Journal of biomedical materials research. Part A》2004,71(2):268-274
Articular cartilage has limited potential for repair. Current clinical treatments for articular cartilage damage often result in fibrocartilage and are associated with joint pain and stiffness. To address these concerns, researchers have turned to the engineering of cartilage grafts. Tissue engineering, an emerging field for the functional restoration of articular cartilage and other tissues, is based on the utilization of morphogens, scaffolds, and responding progenitor/stem cells. Because articular cartilage is a water-laden tissue and contains within its matrix hydrophilic proteoglycans, an engineered cartilage graft may be based on synthetic hydrogels to mimic these properties. To this end, we have developed a polymer system based on the hydrophilic copolymer poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)]. Solutions of this polymer are liquid below 25 degrees C and gel above 35 degrees C, allowing an aqueous solution containing cells at room temperature to form a hydrogel with encapsulated cells at physiological body temperature. The objective of this work was to determine the effects of the hydrogel components on the phenotype of encapsulated chondrocytes. Bovine articular chondrocytes were used as an experimental model. Results demonstrated that the components required for hydrogel fabrication did not significantly reduce the proteoglycan synthesis of chondrocytes, a phenotypic marker of chondrocyte function. In addition, chondrocyte viability, proteoglycan synthesis, and type II collagen synthesis within P(PF-co-EG) hydrogels were investigated. The addition of bone morphogenetic protein-7 increased chondrocyte proliferation with the P(PF-co-EG) hydrogels, but did not increase proteoglycan synthesis by the chondrocytes. These results indicate that the temperature-responsive P(PF-co-EG) hydrogels are suitable for chondrocyte delivery for articular cartilage repair. 相似文献
20.
Kafienah W Jakob M Démarteau O Frazer A Barker MD Martin I Hollander AP 《Tissue engineering》2002,8(5):817-826
Adult chondrocytes are less chondrogenic than immature cells, yet it is likely that autologous cells from adult patients will be used clinically for cartilage engineering. The aim of this study was to compare the postexpansion chondrogenic potential of adult nasal and articular chondrocytes. Bovine or human chondrocytes were expanded in monolayer culture, seeded onto polyglycolic acid (PGA) scaffolds, and cultured for 40 days. Engineered cartilage constructs were processed for histological and quantitative analysis of the extracellular matrix and mRNA. Some engineered constructs were implanted in athymic mice for up to six additional weeks before analysis. Using adult bovine tissues as a cell source, nasal chondrocytes generated a matrix with significantly higher fractions of collagen type II and glycosaminoglycans as compared with articular chondrocytes. Human adult nasal chondrocytes proliferated approximately four times faster than human articular chondrocytes in monolayer culture, and had a markedly higher chondrogenic capacity, as assessed by the mRNA and protein analysis of in vitro-engineered constructs. Cartilage engineered from human nasal cells survived and grew during 6 weeks of implantation in vivo whereas articular cartilage constructs failed to survive. In conclusion, for adult patients nasal septum chondrocytes are a better cell source than articular chondrocytes for the in vitro engineering of autologous cartilage grafts. It remains to be established whether cartilage engineered from nasal cells can function effectively when implanted at an articular site. 相似文献