首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Elimination of superfluous or mutated somatic cells is provided by various mechanisms including apoptosis. Deregulation of apoptotic signaling pathways may contribute to oncogenesis. Aspartate specific cysteine proteases, termed caspases are the key effector molecules in apoptosis. The aim of this review is to summarize the various defects in caspase-dependent cell death machinery identified in the neoplastic cells. These include not only mutations, but also alterations of gene methylation, and altered mRNA stability. Among the molecules that we discuss are elements of the extrinsic death pathway like CD95 (APO-1/Fas), FADD, FLIPs, FLICE, other apical caspases, components of the intrinsic apoptotic pathway like Apaf-1, caspase-9, and modulators of apoptotic pathways like IAPs, Smac/DIABLO, OMI/HtrA2, and other apoptosis regulating proteins. We also discuss recent data on cancer-specific agents that target effector mechanisms of apoptosis. Particular emphasis is given to the prospects for combining cell suicide-activating approaches with classical cancer therapies.  相似文献   

2.
Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms tocontrol cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells froman organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases likecancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible forapoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity ofcancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include thosetargeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP),inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents havebeen assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory moleculesthat control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptoticpathways contribute to cancer, and list several agents being developed to target apoptosis.  相似文献   

3.
Lysosomes in cell death   总被引:14,自引:0,他引:14  
Guicciardi ME  Leist M  Gores GJ 《Oncogene》2004,23(16):2881-2890
For many years apoptosis research has focused on caspases and their putative role as sole executioners of programmed cell death. Accumulating information now suggests that lysosomal cathepsins are also pivotally involved in this process, especially in pathological conditions. In particular, the role of lysosomes and lysosomal enzymes in initiation and execution of the apoptotic program has become clear in several models, to the point that the existence of a 'lysosomal pathway of apoptosis' is now generally accepted. This pathway of apoptosis can be activated by death receptors, lipid mediators, and photodamage. Lysosomal proteases can be released from the lysosomes into the cytosol, where they contribute to the apoptotic cascade upstream of mitochondria. This review focuses on the players and the molecular mechanisms involved in the lysosomal pathway of apoptosis as well as on the importance of this pathway in development and pathology.  相似文献   

4.
5.
Physiological cell death, known as apoptosis, is an evolutionarily conserved process that is required for normal development and function of multicellular organisms. Abnormalities in cell death control are implicated as a cause or contributing factor in a range of diseases, including cancer, autoimmunity, and degenerative disorders. Importantly, the propensity of a cell to undergo apoptosis is one of the determinants of the sensitivity of tumor cells to antineoplastic therapy. Apoptosis can be triggered by stress-induced signals that arise from within the doomed cell or by signals that are elicited by binding of extracellular "death ligands" to their "death receptors." Cysteine proteases have been recognized as essential effectors of all pathways to apoptosis. Experiments with transgenic mice and gene knockout mice have shown that different caspases and their adaptor molecules are needed for "death receptor" signaling and apoptotic pathways elicited by cytokine withdrawal, DNA damage, or corticosteroids. These differences allow the pathways to be regulated by distinct inhibitors. It has been published that chemotherapeutic drugs and gamma-radiation induce apoptosis by "death ligand"-mediated activation of "death receptors," but this model has been challenged. Our review discusses this controversy in the light of current knowledge of the molecular control of apoptosis.  相似文献   

6.
Apoptosis regulators as targets for cancer therapy   总被引:9,自引:1,他引:9  
Apoptosis serves to remove excess or damaged cells and its dysregulation may lead to a number of pathological disorders including cancer. Studies during the last 20 years have unravelled much of the molecular mechanisms that control apoptosis. Whether a cell dies in response to diverse apoptotic stimuli, including DNA-damaging agents, is determined largely by interactions between proteins of the Bcl-2 family. A death signal is transmitted through the BH3-only proteins to Bax and Bak which in turn permeabilise the outer mitochondrial membrane allowing the release of apoptogenic factors, which triggers activation of cell-deathpromoting caspases. These proteolytic enzymes are tightly controlled by members of the inhibitor of apoptosis (IAP) family. Activation of the caspase cascade via cell death receptors also represents a key apoptotic pathway in both normal and tumour cells. Basic knowledge of these apoptosis regulators provides the basis for novel therapeutic strategies aimed at promoting tumour cell death or enhancing susceptibility to apoptotic inducers. This review focuses on these strategies.  相似文献   

7.
Non small cell lung carcinoma (NSCLC) is a highly lethal malignancy that often becomes resistant to chemotherapy. To determine whether alterations in apoptotic signaling might contribute to such resistance, we established in vitro and in vivo models for sensitive and resistant human NSCLC. We found that resistance is due to multiple defects found in expression of CD95-L, CD95 and members of the Bcl-2 and IAP family, as well as caspase-8, -9 and -3 as examined by immunohistochemistry, Western blot analysis, gene array analysis and functional assays. Failure to activate death receptor, as well as mitochondrial apoptosis signaling, points to a central role of caspases. To restore apoptosis signaling we transfected NSCLC xenografts on nude mice with caspase-8 and -9. This treatment strongly induced apoptosis per se and sensitized the tumors to cisplatin-induced cell death. Thus, these findings indicate that re-expression of caspases might be an effective strategy to restore sensitivity for chemotherapy in NSCLC in vivo.  相似文献   

8.
There is considerable evidence that ionizing radiation (IR) and chemotherapeutic drugs mediate apoptosis through the intrinsic death pathway via the release of mitochondrial cytochrome c and activation of caspases -9 and -3. Here we show that MCF-7 cells that lack caspase-3 undergo a caspase-dependent apoptotic cell death in the absence of DNA fragmentation and alpha-fodrin cleavage following treatment with etoposide or doxorubicin, but not after exposure to IR. Re-expression of caspase-3 restored DNA fragmentation and alpha-fodrin cleavage following drug treatment, but it did not alter the radiation-resistant phenotype of these cells. In contrast to the anticancer drugs, IR failed to induce the intrinsic death pathway in MCF-7/casp-3 cells, an event readily observed in IR-induced apoptosis of HeLa cells. Although IR-induced DNA double-strand breaks were repaired with similar efficiencies in all cell lines, cell cycle analyses revealed a persistent G2/M arrest in the two MCF-7 cell lines, but not in HeLa cells. Together, our data demonstrate that caspase-3 is required for DNA fragmentation and alpha-fodrin cleavage in drug-induced apoptosis and that the intrinsic death pathway is fully functional in MCF-7 cells. Furthermore, they show that the radiation-resistant phenotype of MCF-7 cells is not due to the lack of caspase-3, but is caused by the failure of IR to activate the intrinsic death pathway. We propose (1) different signaling pathways are induced by anticancer drugs and IR, and (2) IR-induced G2/M arrest prevents the generation of an apoptotic signal required for the activation of the intrinsic death pathway.  相似文献   

9.
Apoptotic deficiency is one of the mechanisms leading to chemoresistance due to the potential of many chemotherapeutic drugs to induce apoptosis. We have examined drug-induced apoptosis in the chemosensitive human melanoma cell line MeWo, as well as in its resistant sublines, which were selected by continuous exposure to etoposide (MeWo(Eto1)) and cisplatin (MeWo(Cis1)). In former studies, activation of the mitochondrial pro-apoptotic pathway could not be demonstrated in etoposide-resistant cells after exposure to etoposide. A significant reduction of PARP [poly (ADP-ribose) polymerase] cleavage and caspase activation, but unimpaired DNA fragmentation, was seen in cisplatin-resistant cells after treatment with cisplatin. In the current study, we investigated effects of chemotherapeutic drugs different from the selecting agents cisplatin and etoposide on the observed modulations of the mitochondrial apoptotic pathway. We analysed dose-dependent release of cytochrome c, caspase-9 activation, cleavage of PARP and activation of effector caspases in etoposide and cisplatin-resistant cells after exposure to etoposide, teniposide, cisplatin or fotemustine. In analogy to etoposide exposure, we could not demonstrate any activation of the apoptotic pathway in etoposide-resistant cells after exposure to teniposide, another topoisomerase-II inhibitor. In contrast, exposure to cisplatin and fotemustine led to apoptotic cell death in these cells. This suggests that the deficiency of apoptosis in etoposide-resistant cells is dependent on the trigger by topoisomerase-II inhibitors. Analysis of cisplatin-resistant cells after etoposide and fotemustine exposure revealed an increased activity of the apoptotic pathway when compared with cisplatin exposure at corresponding survival rates in these cells. These results suggest that the observed modulations of the apoptotic pathway in resistant melanoma cell lines are specific for an anti-neoplastic drug and are not fixed at the molecular level, as different chemotherapeutic drugs are capable of overcoming these alterations.  相似文献   

10.
Mistletoe lectin I (ML-I) is a major active component in plant extracts of Viscum album that is increasingly used in adjuvant cancer therapy. ML-I exerts potent immunomodulating and cytotoxic effects, although its mechanism of action is largely unknown. We show that treatment of leukemic T- and B-cell lines with ML-I induced apoptosis, which required the prior activation of proteases of the caspase family. The involvement of caspases is demonstrated because (a) a peptide caspase inhibitor almost completely prevented ML-I-induced cell death and (b) proteolytic activation of caspase-8, caspase-9, and caspase-3 was observed. Because caspase-8 has been implicated as a regulator of apoptosis mediated by death receptors, we further investigated a potential receptor involvement in ML-I-induced effects. Cell death triggered by ML-I was neither attenuated in cell clones resistant to CD95 nor in cells that were rendered refractory to other death receptors by overexpressing a dominant-negative FADD mutant. In contrast, ML-I triggered a receptor-independent mitochondria-controlled apoptotic pathway because it rapidly induced the release of cytochrome c into the cytosol. Because ML-I was also observed to enhance the cytotoxic effect of chemotherapeutic drugs, these data may provide a molecular basis for clinical trials using MLs in anticancer therapy.  相似文献   

11.
12.
Apoptosis, a tightly controlled multi-step mechanism of cell death, is important for anti-cancer therapy-based elimination of tumor cells. However, this process is not always efficient. Small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC) cells display different susceptibility to undergo apoptosis induced by anticancer treatment. In contrast to SCLC, NSCLC cells are cross-resistant to a broad spectrum of apoptotic stimuli, including receptor stimulation, cytotoxic drugs and gamma-radiation. Since resistance of tumor cells to treatment often accounts for the failure of traditional forms of cancer therapy, in the present study attempts to find a potent broad-range apoptosis inductor, which can kill therapy-resistant NSCLC cells were undertaken and the mechanism of apoptosis induction by this drug was investigated in detail. We found that staurosporine (STS) had cell killing effect on both types of lung carcinomas. Release of cytochrome c, activation of apical and effector caspases followed by cleavage of their nuclear substrates and morphological changes specific for apoptosis were observed in STS-treated cells. In contrast to treatment with radiation or chemotherapy drugs, STS induces mitochondrial dysfunction followed by translocation of AIF into the nuclei. These events preceded the activation of nuclear apoptosis. Thus, in lung carcinomas two cell death pathways, caspase-dependent and caspase-independent, coexist. In NSCLC cells, where the caspase-dependent pathway is less efficient, the triggering of an AIF-mediated caspase-independent mechanism circumvents the resistance of these cells to treatment.  相似文献   

13.
Actin is a major cytoskeletal protein which is involved in many physiological cellular functions such as motility, cell shape, and adhesion. Recently, actin has also been reported to be cleaved by apoptotic proteases (i.e., caspases) and this cleavage is thought to contribute to the apoptotic process. However, conflicting data also exists as to whether actin represents a true caspase substrate during apoptosis induction in vivo (i.e., inside the cells). In this study, we critically examined the actin cleavage patterns during apoptosis of several tumor cell lines derived from three different species (i.e., mouse, rat, and human). Our findings demonstrate that: 1) actin cleavage in vivo is not a common phenomenon since apoptosis caused by multiple inducers in most cell types examined occurs without evidence of actin degradation; and 2) in certain cell types (e.g., U937), spontaneous, actin cleavage is observed which is not prevented by various specific chemical/peptide inhibitors of proteases such as caspases or serine proteases although apoptosis per se is retarded by some of these inhibitors. Our results conclude that actin is not a critical substrate for apoptotic proteases in vivo during apoptosis.  相似文献   

14.
Death receptors in chemotherapy and cancer   总被引:18,自引:0,他引:18  
Debatin KM  Krammer PH 《Oncogene》2004,23(16):2950-2966
Apoptosis, the cell's intrinsic death program, is a key regulator of tissue homeostasis. An imbalance between cell death and proliferation may result in tumor formation. Also, killing of cancer cells by cytotoxic therapies such as chemotherapy, gamma-irradiation or ligation of death receptors is predominantly mediated by triggering apoptosis in target cells. In addition to the intrinsic mitochondrial pathway, elements of death receptor signaling pathways have been implied to contribute to the efficacy of cancer therapy. Failure to undergo apoptosis in response to anticancer therapy may lead to resistance. Also, deregulated expression of death receptor pathway molecules may contribute to tumorigenesis and tumor escape from endogenous growth control. Understanding the molecular events that regulate apoptosis induced by anticancer therapy and how cancer cells evade apoptosis may provide new opportunities for pathway-based rational therapy and for drug development.  相似文献   

15.
He Q  Montalbano J  Corcoran C  Jin W  Huang Y  Sheikh MS 《Oncogene》2003,22(17):2674-2679
Thapsigargin (TG), by inducing perturbations in cellular Ca(2+) homeostasis, can induce apoptosis, but the molecular mechanisms remain to be fully elucidated. We have recently reported that TG-induced apoptosis appears to involve the DR5-dependent apoptotic pathway that cross talks with the mitochondrial pathway via TG-induced Bid cleavage. In this study, we have utilized Bax-proficient and -deficient HCT116 human colon cancer cells to investigate the effect of Bax deficiency on TG-induced apoptosis and TG regulation of the DR5 and mitochondrial pathways. Our results indicate that Bax-deficient cells are less sensitive to undergo apoptosis following TG treatment. Our results further demonstrate that TG-induced apoptosis is coupled with DR5 upregulation and caspases 8 and 3 activation, as well as Bid cleavage in both Bax-proficient and -deficient cells, although caspase 3 activation was reduced in Bax-deficient cells. TG also promoted the release of cytochrome c into cytosol and caspase 9 activation in Bax-proficient cells but not in Bax-deficient cells. These findings suggest that although Bax is not absolutely required for death receptor (DR)-dependent signals, it appears to be a key molecule in TG-regulated mitochondrial events. Bax-deficient cells were relatively more resistant to Apo2L/TRAIL than the Bax-proficient counterparts. However, the combination of Apo2L/TRAIL and TG was more effective in mediating apoptosis in both Bax-proficient and -deficient cells and that was coupled with activation of caspases 8 and 3. Although both agents in combination also induced cytochrome c release into cytosol and caspase 9 activation in Bax-proficient cells, these events were abrogated in Bax-deficient cells. Our results thus suggest that the combination of Apo2L/TRAIL and TG appears to bypass the Bax deficiency-induced defects in the mitochondrial (intrinsic) pathway by engaging the DR5-dependent apoptotic signals (extrinsic pathway).  相似文献   

16.
Cytokines such as Fas-ligand (Fas-L) and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) can induce human colon cancer cell apoptosis through engagement of their death domain receptors. All the cancer cells are not sensitive to these cytokines. We have shown recently that low doses of cytotoxic drugs could restore TRAIL-induced cell death in resistant colon cancer cell lines. The present work further explores the death pathway triggered by the cytotoxic drug/TRAIL combination in HT-29 colon cancer cells (www.alexis-corp.com). Clinically relevant concentrations of cisplatin, doxorubicin and 5-fluorouracil synergize with TRAIL to trigger HT-29 cell death. Activation of this pathway leads to apoptosis that involves both caspases and the mitochondria. An increased recruitment of Fas-associated death domain (FADD) and procaspase-8 to the TRAIL-induced death-inducing signaling complex (DISC) was shown in cells exposed to anticancer drugs. Following caspase-8 activation at the DISC level, the mitochondria-dependent death pathway is activated, as demonstrated by the cleavage of Bid, the dissipation of DeltaPsi(m), the release of mitochondrial proteins in the cytosol and the inhibitory effect of Bcl-2 expression. Importantly, besides mitochondrial potentiation, we show here that cytotoxic drugs sensitize HT-29 colon cancer cells to TRAIL-induced cell death by enhancing FADD and procaspase-8 recruitment to the DISC, a novel mechanism whose efficacy could depend partly on Bcl-2 expression level.  相似文献   

17.
A defect in apoptosis is almost always linked to many pathologies, including cancer. Carcinogenesis has been linked to abnormalities in the apoptotic pathway, and many drugs that are targeted at different parts of this pathway are being developed. There have been many promising drugs that target the extrinsic death receptor pathway as well as the intrinsic mitochondrial apoptotic pathway. There have also been developments in targeting initiator and effector caspases, as well as the death domains that are involved in transducing the apoptotic signals. In this review, the authors will briefly explain how apoptosis deregulation can lead to cancer and discuss drugs that promise success in targeting this anomaly. This article shall also explain how co-treatments with chemotherapy can increase survival of cancer patients. There is a problem of acquired resistance in some of these therapies but there may be ways to overcome this.  相似文献   

18.
TRAIL/Apo-2L (tumor necrosis factor-related apoptosis-inducing ligand or Apo-2 ligand) was discovered by its sequence homology to tumor necrosis factor (TNF) and CD95 ligand (Fas ligand). Recombinant soluble human TRAIL/Apo-2L is a candidate for clinical research in cancer therapy because it induces apoptosis in a broad spectrum of human cancer cell lines but not in many normal cells. It is now well-known that either ligands of death receptors or chemotherapeutic drugs can induce apoptosis in tumor cells through a common apoptotic machinery. Central to this process is a family of intracellular proteases, known as caspases. During apoptosis, they can act either as initiators in response to apoptotic signals or as effectors that finally cleave a number of vital proteins and lead to the demise of the cell. The activation of caspases is controlled via multiple signaling pathways that are described in this review. There are multiple kinases involved in survival signaling that may be targeted by novel agents. There are several compounds targeting the protein kinase Akt/PKB that may inhibit apoptosis at several levels of the caspase cascade, which are also described in this review. Akt is the major kinase which phosphorylates the proapoptotic Bcl-2 member Bad and thereby converts Bad into an anti-apoptotic form that does not induce cytochromec release. Chemotherapeutic drugs trigger the death pathway through the release of cytochromec from damaged mitochondria. Besides TRAIL/Apo-2L, several novel agents are described that can lead to extend the therapeutic threshold. Hopefully, clinical trials will be begun very soon to elucidate the possibility of enhancing the therapeutic effect in terms of response and, especially, survival. It is thus essential for clinical investigators to understand the distinct pathways of apoptosis and caspase activation when deciding to participate in these trials.   相似文献   

19.
The apoptotic machinery plays a key role in hematopoietic cell homeostasis. Terminally differentiated cells are eliminated, at least in part, by apoptosis, whereas part of the apoptotic machinery, including one or several caspases, is required to go through very specific steps of the differentiation pathways. A number of hematological diseases involve a deregulation of this machinery, which in most cases is a decrease in cell sensitivity to pro-apoptotic signals through over-expression of anti-apoptotic molecules. In some situations however, e.g. in the erythroid lineage of low grade myelodysplastic syndromes, cell sensitivity to apoptosis is increased in a death receptor-dependent manner and cell death pathways are inhibited only when these diseases progress into high grade and acute leukemia. Therapeutic strategies targeting the apoptotic machinery specifically block cell death inhibitors that are over-expressed in transformed cells, mainly Bcl-2-related proteins and Inhibitor of Apoptosis Proteins (IAPs). Another strategy is the activation of the extrinsic pathway to apoptosis, mainly through the death receptor agonist Tumor necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) or agonistic antibodies targeting TRAIL receptors. The use of inhibitors of death receptors could make sense when these receptors are involved in excessive cell death or activation of survival pathways. Most of the drugs targeting apoptotic pathways introduced in clinics have demonstrated their tolerability. Their efficacy, either alone or in combination with other drugs such as demethylating agents and histone deacetylase inhibitors, is currently tested in both myeloid and lymphoid hematological diseases.  相似文献   

20.
The antitumor effect of immuno- and chemotherapeutic agents is executed through stimulation of apoptotic programs in susceptible cells. Apoptosis induced in tumor cells requires activation of members of the caspase family of proteases. Deficient expression or activation of caspases may account in part for the failure of many current anticancer therapies. However, recent studies suggest that cell death can proceed in the absence of caspases. We investigated the susceptibility of human renal cell carcinoma (RCC) lines to two distinct modes of cell death, apoptosis and necrosis. RCC lines displayed almost complete resistance to apoptosis in response to the intracellular zinc chelator, N,N,N'N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), which instead induced dramatic accumulation of nonapoptotic necrotic cells. Conversely, TPEN was a potent inducer of apoptosis in caspase-competent normal kidney cells (NK-72) and Jurkat T lymphocytes. Resistance to apoptosis in RCC lines correlated with almost complete loss of caspase-3 expression and variable down-regulation of caspase-7, caspase-8, and caspase-10. These data may explain the resistance of RCC to drugs inducing apoptosis and have important consequences for further attempts to manipulate tumor cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号