首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of homeobox-containing genes in embryogenesis and organogenesis is well documented. Also, a sizeable body of evidence has accumulated and supports the fact that homeobox genes, when dysregulated, are involved in tumorigenesis. However, the precise mechanisms of homeobox gene functions are largely unknown. The mammary gland, in which most maturation occurs postnatally, provides an ideal model for studying the functions of homeobox genes in both development and tumorigenesis. The expression of many homeobox genes has been detected in both normal mammary gland and neoplastic breast tissues. In the normal mammary gland, the expression of homeobox genes is coordinately regulated by hormone and extracellular matrix (ECM) and other unknown factors in a spatial and temporal manner in both stromal and epithelial cells. Animals with misexpressed homeobox genes displayed different extents of defects in ductal proliferation, side branching, and alveoli formation, implying that homeobox genes are important for normal mammary gland development. Recent studies of homeobox genes in breast cancer cells and primary tumors indicate that they may also play a contributory or causal role in tumorigenesis by regulating the cell cycle, apoptosis, angiogenesis, and/or metastasis.  相似文献   

2.
3.
PEA3 is the founding member of a subfamily of closely related ets genes that includes ER81 and ERM. PEA3 is expressed in the epithelial cells of mammary buds at the time that these first appear during mouse embryogenesis, and it is differentially expressed during postnatal mammary gland development. PEA3 expression is highest at the onset of puberty and during early pregnancy, times of extensive epithelial outgrowth and branching. PEA3 is expressed in undifferentiated epithelial cap cells of terminal end buds, and in differentiated myoepithelial cells of ducts and alveoli. Loss-of-function mutations in the PEA3 gene compromise mammary ductal branching at the onset of puberty and early during pregnancy. PEA3 is overexpressed in the vast majority of human breast tumors and in nearly all of the HER2-positive subclass of such tumors. PEA3 is similarly overexpressed in transgenic mouse models of this malignancy. Expression of dominant-negative PEA3 in the mouse mammary gland of MMTV-HER2 transgenic mice dramatically delays the onset and reduces the incidence of mammary tumors. Hence PEA3 and/or its close relatives play key regulatory roles in both mammary gland development and oncogenesis.  相似文献   

4.
5.
6.
Cyclins and Breast Cancer   总被引:5,自引:0,他引:5  
  相似文献   

7.
8.
Mammary glands of adult human females are secretory organs comprised of interdependent epithelial and mesenchymal cells. These cells constitute an assemblage of collecting ducts that end in terminal duct lobular units with hollow alveolar ductules that can differentiate to produce and expel milk. Systemic and maternal hormones, autocrine and paracrine growth factors, and cytokines regulate virtually all phases of mammary gland development. During organogenesis, epithelial and mesenchymal cells interact to form precursors of the parenchyma and stroma in the mature gland. Organogenesis precedes five stages of postnatal development: puberty, pregnancy, lactation, involution, and menopause. Each stage requires a specific set of morphogenetic changes in glandular structure and function. Cycles of cell proliferation, differentiation, and involution may recur until menopause. In addition, physiological responses such as inflammation and pathological events such as tumorigenesis are remarkable for their similarities to embryonic morphogenesis. Here we take a succinct look at the ever-improving understanding of stroma–epithelial interactions and mesenchyme function in mammary gland biology.  相似文献   

9.
Mammary morphogenesis is orchestrated with other reproductive events by pituitary-driven changes to the systemic hormone environment, initiating the formation of a mammary ductal network during puberty and the addition of secretory alveoli during pregnancy. Prolactin is the major driver of development during pregnancy via regulation of ovarian progesterone production (in many species) and direct effects on mammary epithelial cells (in all species). Together these hormones regulate two aspects of development that are the subject of intense interest: (1) a genomic regulatory network that integrates many additional spatial and temporal cues to control gene expression and (2), the activity of a stem and progenitor cell hierarchy. Amalgamation of these two aspects will increase our understanding of cell proliferation and differentiation within the mammary gland, with clear application to our attempts to control breast cancer. Here we focus on providing an over-view of prolactin action during development of the model murine mammary gland. Samantha R. Oakes and Renee L. Rogers contributed equally to this work. Financial Support: Australian Research Council, National Health and Medical Research Council, The Cancer Institute NSW and Cancer Council NSW.  相似文献   

10.
MicroRNAs are master regulators of gene expression in many biological and pathological processes, including mammary gland development and breast cancer. The differentiation program termed the epithelial to mesenchymal transition (EMT) involves changes in a number of microRNAs. Some of these microRNAs have been shown to control cellular plasticity through the suppression of EMT-inducers or to influence cellular phenotype through the suppression of genes involved in defining the epithelial and mesenchymal cell states. This has led to the suggestion that microRNAs maybe a novel therapeutic target for the treatment of breast cancer. In this review, we will discuss microRNAs that are involved in EMT in mammary cells and breast cancer.  相似文献   

11.
12.
During puberty the mammary gland develops from a rudimentary tree to a branched epithelial network of ducts which can support alveolar development and subsequent milk production during pregnancy and lactation. This process involves growth, proliferation, migration, branching, invasion, apoptosis and above all, tight regulation which allows these processes to take place simultaneously during the course of just a few weeks to create an adult gland. The process is under hormonal control and is thus coordinated with reproductive development. Mouse models, with overexpressed or knocked-out genes, have highlighted a number of pubertal mammary gland phenotypes and given significant insight into the regulatory mechanisms controlling this period of development. Here we review the published findings of the wide range of gene-manipulated mammary mouse models, documenting the common pubertal mammary gland phenotypes observed, and summarizing their contribution to our current understanding of how pubertal mammary gland development occurs.  相似文献   

13.
EGF-Related Peptides in the Pathophysiology of the Mammary Gland   总被引:3,自引:0,他引:3  
Normal mammary gland development is the result of complex interactions between a number of hormones and growth factors. Normal and malignant human mammary epithelial cells are able to synthesize and to respond to various different, locally acting growth factors and growth inhibitors. Among these, the EGF-related peptides play an important role in regulating the proliferation and differentiation of human mammary epithelial cells. EGF4 and TGF are able to stimulate the lobulo-alveolar development of the mammary gland in vivo as well they are involved in the pathogenesis of human breast cancer. Experimental evidence suggests that estrogen-induced proliferation of breast carcinoma cells is mediated in part by EGF-related growth factors. It has also been demonstrated that activation of certain cellular protooncogenes such as c-Ha-ras in human mammary epithelial cells results in cellular transformation and in an increased production of several EGF-related growth factors such as TGF and amphiregulin. Coexpression of both EGF-related peptides and their own receptors frequently occurs in human breast carcinomas and in human breast cancer cell lines, suggesting that an autocrine pathway of uncontrolled cell growth sustains neoplastic transformation.  相似文献   

14.
The mammary gland can no longer be simply viewed as an organ composed of epithelial cells within a passive stromal microenvironment. Many lines of evidence have evolved to reinforce the notion that mammary epithelial cell growth, differentiation, lactation and progression to cancer involves bidirectional interactions between the epithelial population and its surrounding stroma. Within this stroma are numerous systems that are all capable of modulating epithelial function. In this context, the mammary stroma is not simply a depot of adipose tissue in which mammary epithelial cells undertake a unique growth and differentiation process, although adipocytes can impart numerous modulatory signals to epithelial cells, and vice versa. Rather, the stromal environment constitutes and supports a critical vasculature that supplies nutrients and endocrine cues, a lymphatic system that not only removes metabolites but also provides an intimate interface with the immune system, and an extracellular matrix scaffold in which epithelial cells grow, differentiate and regress. Ultimately all of these components play a critical role in directing the epithelial phenotype during normal mammary gland growth and function. An increasing appreciation for these different systems demands a view of mammary epithelial cells in a much different light, and further necessitates the development of model systems that incorporate and integrate increasing complexity.  相似文献   

15.
Concomitant with the extensive growth and differentiation of the mammary epithelium during pregnancy and lactation, and epithelial involution after weaning, the vasculature of the mammary gland undergoes repeated cycles of expansion and regression. Vascular expansion is effected by sprouting angiogenesis, intussusception and conceivably also vasculogenesis. The capacity of the epithelial cells to stimulate vascular growth and differentiation is dependent on the constellation of systemic and local hormones and growth factors as well as the changing demands for oxygenation and nutrient supply. This results in the release of angiogenic factors which stimulate endothelial cell growth and regulate vascular architecture. In contrast to the angiogenic phase of the mammary gland cycle, little is known about the control of vascular regression although this would possibly offer new insights into therapeutic possibilities against breast cancer. In this review we summarize knowledge regarding the mechanisms regulating the vasculature of the mammary gland and delineate the importance of the vasculature in the attainment of organ function. In addition, we discuss the angiogenic mechanisms observed during mammary carcinogenesis and their consequences for breast cancer therapy.  相似文献   

16.
The Sprague-Dawley rat is highly regarded for studies designed to investigate the effects of endocrine modulation on mammary carcinogenesis. In this study, we further evaluate the validity of the Sprague-Dawley rat model for the study of human breast cancer by evaluating the effects of normal 4-day estrous cycling on mammary epithelial cell proliferation, differentiation, and apoptotic death. Trends in mammary gland development with stage of 4-day estrous cycle were evident. Mammary glands isolated from follicular and early luteal stages had predominantly ductal histoarchitecture, whereas glands isolated from mid-late luteal were predominantly lobuloalveolar. Quantitation of BrdU incorporation revealed that epithelial cell proliferation was eight-fold higher in metestrus and diestrus-1 than in proestrus. Expression of -casein and whey acidic protein (WAP)4 mRNA was also highly dependent on stage of estrous, with detection restricted to midcycle. Apoptotic cell death of mammary epithelium was found to be suppressed during the peak in cell proliferation. TRPM-2/clusterin mRNA was elevated when apoptosis was low and milk protein mRNA levels were high, consistent with putative roles for TRPM-2/clusterin in inhibiting cell death in regressing tissues and inducing mammary epithelial cell differentiation. Cell proliferation, differentiation, and death occurred only in a subset of epithelial cells per estrous cycle, and these cells appeared randomly distributed throughout multiple ductules and alveoli. These observations suggest that cellular response(s) to ovarian hormone-dependent signals is asynchronous. Cumulatively, these observations demonstrate that rat mammary epithelial cell proliferation, differentiation, and death are under the control of cycling ovarian hormones, similarly to the human mammary epithelium during the menstrual cycle.  相似文献   

17.
Ovarian steroid hormones play a critical role inregulating mammary gland growth and development. Themammary gland sequentially acquires and cyclicallyexhibits proliferative responses to estrogen and/or progesterone from birth to postmenopause. Thefocus of this review is to presentour currentunderstanding of estrogen and progesterone receptordistribution in epithelial and stromal cells and theirfunctions in relation to mammary gland development.Insights gained from the study of the normal mammarygland are relevant to our understanding of theconditions which may predispose women to the developmentof breast cancer as well as to alterations inhormonal regulation that occur in breastcancer.  相似文献   

18.
The ovarian hormones estrogen and progesterone and their respective receptors are essential for maintenance of postnatal developmental plasticity of the mammary gland and play a key role in mammary tumorigenesis. Mouse models in which expression of the progesterone receptors was genetically ablated have recently become available. Studies of these models have demonstrated that progesterone is specifically required for pregnancy associated ductal proliferation and lobuloalveolar differentiation of the mammary epithelium, but not for immediate postpubertal ductal morphogenesis. Use of these mice in combination with mammary gland transplantation indicates that developmental regulation by progesterone appears to occur through a paracrine mechanism in which progesterone receptor (PR)3 positive cells represent a subset of non-proliferating epithelial cells that are capable of directing proliferation and/or differentiation of neighboring receptor negative cells. The hierarchical organization of these receptors in the epithelium and their segregation from proliferating cells is a conserved feature in rodent and human mammary tissue. The identification of paracrine mediators of the progesterone response is now an imminent goal as is the delineation of the individual contributions of the two PR isoforms using similar approaches.  相似文献   

19.
The mammary gland is a dynamic tissue that undergoes epithelial expansion and invasion during puberty and cycles of branching and lobular morphogenesis, secretory differentiation, and regression during pregnancy, lactation, and involution. The alteration in the mammary gland epithelium during its postnatal differentiation is accompanied by changes in the multiple stromal cell types present in this complex tissue. The postnatal plasticity of the epithelium, endothelium, and stromal cells of the mammary gland may contribute to its susceptibility to carcinogenesis. The purpose of this review is to assist researchers in recognizing histological changes in the epithelium and stroma of the rat mammary gland throughout development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号