首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study measures the vascular wall shear rate at the vessel edge using decorrelation based ultrasound speckle tracking. Results for nine healthy and eight renal disease subjects are presented. Additionally, the vascular wall shear rate and circumferential strain during physiologic pressure, pressure equalization and hyperemia are compared for five healthy and three renal disease subjects. The mean and maximum wall shear rates were measured during the cardiac cycle at the top and bottom wall edges. The healthy subjects had significantly higher mean and maximum vascular wall shear rate than the renal disease subjects. The key findings of this research were that the mean vascular wall shear rates and circumferential strain changes between physiologic pressure and hyperemia that was significantly different between healthy and renal disease subjects.  相似文献   

2.
In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is “smeared”) if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method across a field of view and combination with an appropriate axial flow estimator.  相似文献   

3.
Recent computer simulations suggest that the presence of aggregates of red blood cells (RBCs), at random angles and lengths, does not affect the measurements of blood flow transverse to the ultrasound (US) beam direction using a correlation-based method and an intravascular (IV) US array catheter. However, in case of aggregates of RBCs aligned with the flow, measurements of simulated blood velocity are affected. Blood velocity gradients were also shown not to influence the correlation-based method for blood velocity estimation. The objective of this study was to quantify the influence of aggregates of RBCs and blood velocity gradients on the correlation-based method during in vitro experiments. For this purpose, measurements were performed on washed RBCs (no aggregation), normal human blood, and two types of diseased blood in which a lower or a higher level of aggregation was present. The decorrelation pattern of a circular US transducer as a function of transverse blood flow was studied using a Couette system. Changing the shear rate of the Couette system modified the aggregation level of RBCs and the velocity gradient. With the exception of the results at low shear rates and abnormally high aggregation levels, agreements were found between the autoconvolution of the acoustical beam (reference curve) and the radiofrequency (RF) decorrelation patterns. For the high shear rate present in coronary arteries, the correlation-based method for blood flow estimation should not be influenced by these phenomena.  相似文献   

4.
Micro particle image velocimetry (μPIV) is a common method to assess flow behavior in blood microvessels in vitro as well as in vivo. The use of red blood cells (RBCs) as tracer particles, as generally considered in vivo, creates a large depth of correlation (DOC), even as large as the vessel itself, which decreases the accuracy of the method. The limitations of μPIV for blood flow measurements based on RBC tracking still have to be evaluated. In this study, in vitro and in silico models were used to understand the effect of the DOC on blood flow measurements using μPIV RBC tracer particles. We therefore employed a μPIV technique to assess blood flow in a 15?μm radius glass tube with a high-speed CMOS camera. The tube was perfused with a sample of 40% hematocrit blood. The flow measured by a cross-correlating speckle tracking technique was compared to the flow rate of the pump. In addition, a three-dimensional mechanical RBC-flow model was used to simulate optical moving speckle at 20% and 40% hematocrits, in 15 and 20?μm radius circular tubes, at different focus planes, flow rates and for various velocity profile shapes. The velocity profiles extracted from the simulated pictures were compared with good agreement with the corresponding velocity profiles implemented in the mechanical model. The flow rates from both the in vitro flow phantom and the mathematical model were accurately measured with less than 10% errors. Simulation results demonstrated that the hematocrit (paired t tests, p = 0.5) and the tube radius (p = 0.1) do not influence the precision of the measured flow rate, whereas the shape of the velocity profile (p < 0.001) and the location of the focus plane (p < 0.001) do, as indicated by measured errors ranging from 3% to 97%. In conclusion, the use of RBCs as tracer particles makes a large DOC and affects the image processing required to estimate the flow velocities. We found that the current μPIV method is acceptable to estimate the flow rate on the condition that the measurement takes place at the equatorial plane of the vessel. Otherwise, it is not an appropriate method to estimate the shape of the velocity profile.  相似文献   

5.
Parameters of blood flow measured by ultrasound in radial and ulnar arteries, such as flow velocity, flow rate and wall shear rate, are widely used in clinical practice and clinical research. Investigation of these measurements is useful for evaluating accuracy and providing knowledge of error sources. A method for simulating the spectral Doppler ultrasound measurement process was developed with computational fluid dynamics providing flow-field data. Specific scanning factors were adjusted to investigate their influence on estimation of the maximum velocity waveform, and flow rate and wall shear rate were derived using the Womersley equation. The overestimation in maximum velocity increases greatly (peak systolic from about 10% to 30%, time-averaged from about 30% to 50%) when the beam–vessel angle is changed from 30° to 70°. The Womersley equation was able to estimate flow rate in both arteries with less than 3% error, but performed better in the radial artery (2.3% overestimation) than the ulnar artery (15.4% underestimation) in estimating wall shear rate. It is concluded that measurements of flow parameters in the radial and ulnar arteries with clinical ultrasound scanners are prone to clinically significant errors.  相似文献   

6.
Direct measurement of volumetric flow rate in the cardiovascular system with ultrasound is valuable but has been a challenge because most current 2-D flow imaging techniques are only able to estimate the flow velocity in the scanning plane (in-plane). Our recent study demonstrated that high frame rate contrast ultrasound and speckle decorrelation (SDC) can be used to accurately measure the speed of flow going through the scanning plane (through-plane). The volumetric flow could then be calculated by integrating over the luminal area, when the blood vessel was scanned from the transverse view. However, a key disadvantage of this SDC method is that it cannot distinguish the direction of the through-plane flow, which limited its applications to blood vessels with unidirectional flow. Physiologic flow in the cardiovascular system could be bidirectional due to its pulsatility, geometric features, or under pathologic situations. In this study, we proposed a method to distinguish the through-plane flow direction by inspecting the flow within the scanning plane from a tilted transverse view. This method was tested on computer simulations and experimental flow phantoms. It was found that the proposed method could detect flow direction and improved the estimation of the flow volume, reducing the overestimation from over 100% to less than 15% when there was flow reversal. This method showed significant improvement over the current SDC method in volume flow estimation and can be applied to a wider range of clinical applications where bidirectional flow exists.  相似文献   

7.
The existing computational model studies of pulsatile blood flow in arteries have assumed either rigid wall characteristics or elastic arterial wall behavior with wall movement limited to the radial direction. Recent in vivo studies have identified significant viscoelastic wall properties and longitudinal wall displacements over the cardiac cycle. Determining the nature of these movements is important for predicting the effects of ultrasound clutter in Doppler ultrasound measurements. It is also important for developing an improved understanding of the physiology of vessel wall motion. We present an analytically-based computational model based on the Womersley equations for pulsatile blood flow within elastic and viscoelastic arteries. By comparison with published in vivo data of the human common carotid artery as well as uncertainty and sensitivity analyses, it is found that the predicted waveforms are in reasonable quantitative agreement. Either a pressure, pressure gradient or volumetric flow rate waveform over a single cardiac cycle is used as an input. Outputs include the pressure, pressure gradient, radial and longitudinal fluid velocities and arterial wall displacements, volumetric flow rate and average longitudinal velocity. It is concluded that longitudinal wall displacements comparable to the radial displacements can be present and should be considered when studying the effects of tissue movement on Doppler ultrasound clutter.  相似文献   

8.
Arterial pulse waves contain clinically useful information about cardiac performance, arterial stiffness and vessel tone. Here we describe a novel method for non-invasively assessing wave properties, based on measuring changes in blood flow velocity and arterial wall diameter during the cardiac cycle. Velocity and diameter were determined by tracking speckles in successive B-mode images acquired with an ultrafast scanner and plane-wave transmission. Blood speckle was separated from tissue by singular value decomposition and processed to correct biases in ultrasound imaging velocimetry. Results obtained in the rabbit aorta were compared with a conventional analysis based on blood velocity and pressure, employing measurements obtained with a clinical intra-arterial catheter system. This system had a poorer frequency response and greater lags but the pattern of net forward-traveling and backward-traveling waves was consistent between the two methods. Errors in wave speed were also similar in magnitude, and comparable reductions in wave intensity and delays in wave arrival were detected during ventricular dysfunction. The non-invasive method was applied to the carotid artery of a healthy human participant and gave a wave speed and patterns of wave intensity consistent with earlier measurements. The new system may have clinical utility in screening for heart failure.  相似文献   

9.
We have developed a blood flow measurement system using Doppler ultrasound flow sensors fabricated of thin and flexible piezoelectric‐polymer films. These flow sensors can be wrapped around a blood vessel and accurately measure flow. The innovation that makes this flow sensor possible is the diffraction‐grating transducer. A conventional transducer produces a sound beam perpendicular to its face; therefore, when placed on the wall of a blood vessel, the Doppler shift in the backscattered ultrasound from blood theoretically would be 0. The diffraction‐grating transducer produces a beam at a known angle to its face; therefore, backscattered ultrasound from the vessel will contain a Doppler signal. Flow sensors were fabricated by spin coating a poly(vinylidene fluoride–trifluoroethylene) copolymer film onto a flexible substrate with patterned gold electrodes. Custom‐designed battery‐operated continuous wave Doppler electronics along with a laptop computer completed the system. A prototype flow sensor was evaluated experimentally by measuring blood flow in a flow phantom and the infrarenal aorta of an adult New Zealand White rabbit. The flow phantom experiment demonstrated that the error in average velocity and volume blood flow was less than 6% for 30 measurements taken over a 2.5‐hour period. The peak blood velocity through the rabbit infrarenal aorta measured by the flow sensor was 118 cm/s, within 1.7% of the measurement obtained using a duplex ultrasound system. The flow sensor and electronics operated continuously during the course of the 5‐hour experiment after the incision on the animal was closed.  相似文献   

10.
The intraobserver reproducibility of ultrasonic volume blood flow measurements in the human fetus was evaluated in this study. A new approach, simultaneous measurement of the vessel diameter and the flow velocity with a pulsed-wave Doppler ultrasound synchronized with a real-time ultrasound phase-locked echo-tracking system, was used to estimate volume blood flow (VBF) in the fetal descending aorta. Measurements were performed in a longitudinal study on 20 normally grown fetuses. Intraobserver reproducibility of repeated estimations of mean blood flow velocities throughout gestation was very good, with high values of intraclass correlation coefficient (IntraCC 0·80–0·91) and low values of coefficient of variation (CV 4–11%). The IntraCC of repeated vessel diameter measurements throughout gestation was low (0·30–0·68), whereas the values of CV were acceptable (< 12%), with the exception of the period between 140 and 167 gestational days (CV > 12%). The lower reproducibility of vessel diameter measurement contributed directly to the relatively low reproducibility of VBF estimations overall (IntraCC 0·25–0·70; CV 17–28%), as these are calculated from a formula using both flow velocity and vessel diameter. Nevertheless, the synchronized approach gives absolute values of vessel diameter, flow velocity and VBF comparable with values reported in the human fetus previously. The new method provides, by taking the vessel wall pulsations into consideration and by measuring diameter and velocity simultaneously, a more complete information on fetal haemodynamics and fetal physiology.  相似文献   

11.
Visualization and quantification of blood flow are considered important for early detection of atherosclerosis and patient-specific diagnosis and intervention. As conventional Doppler imaging is limited to 1-D velocity estimates, 2-D and 3-D techniques are being developed. We introduce an adaptive velocity compounding technique that estimates the 2-D velocity vector field using predominantly axial displacements estimated by speckle tracking from dual-angle plane wave acquisitions. Straight-vessel experiments with a 7.8-MHz linear array transducer connected to a Verasonics Vantage ultrasound system revealed that the technique performed with a maximum velocity magnitude bias and angle bias of –3.7% (2.8% standard deviation) and –0.16° (0.41° standard deviation), respectively. In vivo, complex flow patterns were visualized in two healthy and three diseased carotid arteries and quantified using a vector complexity measure that increased with increasing wall irregularity. This measure could potentially be a relevant clinical parameter which might aid in early detection of atherosclerosis.  相似文献   

12.
OBJECTIVES: To integrate methods for non-invasive assessment of vessel wall properties (diastolic diameter, distension waveform and intima-media thickness) and hemodynamic properties (blood flow velocity and shear rate distribution) of large arteries by means of dedicated ultrasound signal processing. METHODS: we have developed an arterial laboratory (ART-lab) system. ART-lab consists of software running on a standard personal computer, equipped with a data acquisition card for the acquisition of radio frequency (RF) ultrasound signals obtained with a conventional echo scanner. It operates either (1) off-line or (2) in real-time. Real-time operation is restricted to the assessment of vessel wall properties because of limitations in computational power. RESULTS: This paper provides an overview of ART-lab ultrasound radio frequency data acquisition and dedicated RF-signal processing methods. The capabilities of the system are illustrated with some typical applications. CONCLUSIONS: ART-lab in real-time mode is a useful tool for monitoring arterial vessel wall dynamics, while off-line it can be employed to investigate the elastic vessel wall properties in combination with hemodynamics, such as blood flow velocity and shear rate distribution.  相似文献   

13.
This Institutional Review Board–approved pilot study attempted to detect the correlation between ultrasound shear wave elastographic measures and tendon loads. Five male fresh‐frozen cadaveric Achilles tendons were loaded in 10‐N increments from 0 to 60 N. Shear wave velocity measurements within each Achilles tendon were obtained at each load in longitudinal and transverse orientations. Shear wave velocity measurements were correlated with tendon tension on both longitudinal and transverse plane imaging and showed moderate and strong positive correlation coefficients, respectively. Of note, limitations of the clinically available shear wave elastographic technology for measuring high velocities exist.  相似文献   

14.
Longitudinal motion of the intima–media and adventitia layers of the common carotid artery (CCA) wall were assessed with ultrasound speckle tracking in seven individuals with spinal cord injury (SCI), who are considered at increased risk of cardiovascular disease, and in seven able-bodied participants. CCA longitudinal wall displacement and intramural shear strain were compared to traditional markers of arterial health, including CCA stiffness and intima–media thickness (IMT). For each cardiac cycle, longitudinal CCA wall motion was characterized by bidirectional movement patterns containing motion retrograde to blood flow during systole, followed by antegrade motion during diastole. Relative displacement of the intima–media versus the adventitia was used to calculate longitudinal intramural shear strain and provided insight to local arterial wall properties. The retrograde intramural shear strain was smaller in individuals with SCI by 60·2% (P<0·05) compared to able-bodied participants, showing smaller peak displacements in both the intima–media (P<0·05) and adventitia (P<0·05). In the antegrade direction, there were no group differences in either longitudinal displacements or shear strain. The group differences observed in the retrograde wall motion phase were greater than those observed for CCA stiffness or IMT and were found to be independent of both indices, indicating indices of the retrograde phase intramural shear strain may be a novel and sensitive marker of vascular health. Our findings demonstrate that assessment of longitudinal arterial wall shear strain may provide valuable insight into vascular structure and function and may hold potential for the early detection of cardiovascular disease.  相似文献   

15.
Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical masking of a vessel position and measurements of it’s diameter from laser speckle images. This approach demonstrates high reliability and stability.OCIS codes: (120.6150) Speckle imaging, (170.1470) Blood or tissue constituent monitoring, (170.5380) Physiology  相似文献   

16.
The feasibility of estimating urinary flow velocity from the decorrelation of radiofrequency (RF) signals was investigated in soft tissue-mimicking models of obstructed and unobstructed urethras. The decorrelation was studied in the near field, focal zone and far field of the ultrasound beam. Furthermore, the effect of beam width was investigated. The results of this study suggest that it is feasible to estimate flow velocity in models of the urethra by quantifying the decorrelation of RF ultrasound signals. The decorrelation slope increased more rapidly and more linearly with increasing velocity in the focal zone than in the near and far field. A preliminary example of an in vivo measurement in a healthy volunteer illustrated that this method has potential for clinical use in the future.  相似文献   

17.
The objective of this study was to compare tissue Doppler imaging and speckle tracking ultrasound to assess the relative motion of flexor tendon and surrounding subsynovial connective tissue (SSCT). Twenty normal human wrists were imaged with an ultrasound scanner. The two ultrasound methods measured the excursion and maximum velocity of the tendon and SSCT while subjects gripped three different sized acrylic tubes and these were correlated with tendon excursions estimated from finger joint angle changes. The maximum velocity ratio (=SSCT/tendon velocity) and the shear index (=[(Tendon excursion–SSCT excursion)/Tendon excursion]×100%) were calculated. The intraclass correlation coefficient was higher for joint angle/speckle tracking tendon excursion (0.642) than for joint angle/tissue Doppler excursion (0.377). The speckle tracking method could also discriminate differences in maximum velocity ratio and shear index for different tube sizes. We conclude that speckle tracking may be useful in assessing the relative motion of tendon and SSCT. (E-mail: pamadio@mayo.edu)  相似文献   

18.
Ultrasound imaging is the most widely used method for visualising and quantifying blood flow in medical practice, but existing techniques have various limitations in terms of imaging sensitivity, field of view, flow angle dependence, and imaging depth. In this study, we developed an ultrasound imaging velocimetry approach capable of visualising and quantifying dynamic flow, by combining high-frame-rate plane wave ultrasound imaging, microbubble contrast agents, pulse inversion contrast imaging and speckle image tracking algorithms. The system was initially evaluated in vitro on both straight and carotid-mimicking vessels with steady and pulsatile flows and in vivo in the rabbit aorta. Colour and spectral Doppler measurements were also made. Initial flow mapping results were compared with theoretical prediction and reference Doppler measurements and indicate the potential of the new system as a highly sensitive, accurate, angle-independent and full field-of-view velocity mapping tool capable of tracking and quantifying fast and dynamic flows.  相似文献   

19.
A novel technique has been developed for the noninvasive real-time simultaneous assessment of both blood velocity profile and wall displacements in human arteries. The novel technique is based on the use of two ultrasound beams, one set at optimal angle for wall motion measurements and the other for blood velocity profile measurements. The technique was implemented on a linear array probe divided into two subapertures. A modified commercial ultrasound machine and a custom PC board based on a high-speed digital signal processor was used to process the quadrature demodulated echo signals and display results in realtime. Flow phantom experiments demonstrated the validity of the technique, providing wall shear rate (WSR) estimates within 10% of the theoretical values. The system was also tested in the common carotid arteries of 16 healthy volunteers (age 30 to 53 y). Results of simultaneous diameter distension and WSR measurements were in agreement with published data.  相似文献   

20.
High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49–0.56 m/s for the ventricular septal defect of patient 1 and 0.38–0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号