首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A meta‐analysis of 140 neuroimaging studies was performed using the activation‐likelihood‐estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus‐specific likelihood of being activated. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Very few studies have investigated to what extent different subtypes of specific phobia share the same underlying functional neuroanatomy. This study aims to investigate the potential differences in the anatomy and dynamics of the blood oxygen level-dependent (BOLD) responses associated with spider and blood-injection-injury phobias. We used an event-related paradigm in 14 untreated spider phobics, 15 untreated blood-injection-injury phobics and 17 controls. Phobic images successfully induced distress only in phobic participants. Both phobic groups showed a similar pattern of heart rate increase following the presentation of phobic stimuli, this being different from controls. The presentation of phobic images induced activity within the same brain network in all participants, although the intensity of brain responses was significantly higher in phobics. Only blood-injection-injury phobics showed greater activity in the ventral prefrontal cortex compared with controls. This phobia group also presented a lower activity peak in the left amygdala compared with spider phobics. Importantly, looking at the dynamics of BOLD responses, both phobia groups showed a quicker time-to-peak in the right amygdala than controls, but only spider phobics also differed from controls in this parameter within the left amygdala. Considering these and previous findings, both phobia subtypes show very similar responses regarding their immediate reaction to phobia-related images, but critical differences in their sustained responses to these stimuli. These results highlight the importance of considering complex mental processes potentially associated with coping and emotion regulation processes, rather than exclusively focusing on primary neural responses to threat, when investigating fear and phobias.  相似文献   

3.
BACKGROUND: Little is known about the functional neuroanatomy underlying the processing of emotional stimuli in social phobia. OBJECTIVES: To investigate specific brain activation that is associated with the processing of threat and safety signals in social phobics. METHODS: Using functional magnetic resonance imaging, brain activation was measured in social phobic and nonphobic subjects during the presentation of angry, happy and neutral facial expressions under free viewing conditions. RESULTS: Compared to controls, phobics showed increased activation of extrastriate visual cortex regardless of facial expression. Angry, but not neutral or happy, faces elicited greater insula responses in phobics. In contrast, both angry and happy faces led to increased amygdala activation in phobics. CONCLUSIONS: The results support the hypothesis that the amygdala is involved in the processing of negative and positive stimuli. Furthermore, social phobics respond sensitively not only to threatening but also to accepting faces and common and distinct neural mechanisms appear to be associated with the processing of threat versus safety signals.  相似文献   

4.
Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel‐based meta‐analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother–infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the ‘maternal brain’ by employing mother–infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel‐based meta‐analysis was performed on each database, whereas a multimodal voxel‐based meta‐analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the ‘maternal brain.’ We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother–infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta‐analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother–infant relationship.  相似文献   

5.
Objectives: Few studies have examined the abnormalities that underlie the neuroanatomy of bipolar disorder in youth. The aim of this study was to evaluate brain regions that are thought to modulate mood utilizing quantitative analyses of thin‐slice magnetic resonance imaging (MRI) scans of adolescents with bipolar disorder. We hypothesized that adolescents with bipolar disorder would exhibit abnormalities in brain regions that are involved in the regulation of mood including the amygdala, globus pallidus, caudate, putamen, and thalamus. Methods: Bipolar adolescents (n = 23) and healthy subjects (n = 20) matched for age, race, sex, socioeconomic status, IQ, education and Tanner stage, were evaluated using the Washington University at St Louis Kiddie‐Schedule for Affective Disorders and Schizophrenia (WASH‐U K‐SADS). Contiguous 1 mm axial T1‐weighted MRI slices were obtained using a GE 1.5 T MR scanner. Regions of interest (ROI) included total cerebral volume, amygdala, globus pallidus, caudate, putamen, and thalamus. Results: Total cerebral volume was smaller in bipolar adolescents than in healthy adolescents. A MANCOVA revealed a significant group difference in overall ROI volumes after adjusting for total cerebral volume. Specifically, adolescents with bipolar disorder exhibited smaller amygdala and enlarged putamen compared with healthy subjects. Conclusions: Our findings indicate that adolescents with bipolar disorder exhibit abnormalities in some of the brain regions that are thought to be involved in the regulation of mood. Additional structural and functional neuroimaging investigations of children, adolescents, and adults with bipolar disorder are necessary to clarify the role of these brain regions in the neurophysiology of adolescent bipolar disorder.  相似文献   

6.
Imaging studies using symptom-provocation paradigms in specific phobia have yielded contradictory results, possibly reflecting a failure to account for habituation processes. Given that a single session of exposure in vivo can result in significant improvement in specific phobia, we used prolonged exposure to phobic stimuli to identify CNS regions showing habituation. Eighteen subjects (12 with spider phobia, 6 healthy controls) underwent H(2)(15)O-positron emission tomography while being continuously presented with pictures of spiders or butterflies. Results showed main effects (spiders>butterflies) in the phobia group in the left fusiform gyrus (FG) and the right parahippocampal gyrus (PHG), with bilateral perirhinal cortex and right limbic areas approaching significance. Group x condition effects were found in the right amygdala and PHG. During spider scans, large habituation effects were observed in the anterior medial temporal lobe (MTL) bilaterally. Regression analyses demonstrated that state anxiety was correlated with activity in left amygdala, bilateral perirhinal cortex, right FG, and periaquaductal grey; by contrast, phobic fear was only associated with right-sided hippocampal activity. We conclude that prolonged exposure to phobic stimuli is associated with a significant decrease in bilateral anterior MTL regional cerebral blood flow. Right anterior MTL, identified when comparing phobic vs. neutral stimuli and habituation to phobic vs. neutral stimuli in the phobia group, implicates this region in phobic fear. Analyses of covariance suggest a further functional segregation with state anxiety being linked to enhanced activity in amygdala, perirhinal cortex, and tegmentum, and phobic fear with enhanced right hippocampal activity, suggesting a neuroanatomical differentiation between emotional-vegetative and cognitive aspects of (phobic) fear.  相似文献   

7.
Friedreich's ataxia (FRDA) is associated with a distributed pattern of neurodegeneration in the spinal cord and the brain secondary to selective neuronal loss. We used functional MR Imaging (fMRI) to explore brain activation in FRDA patients during two motor-sensory tasks of different complexity, i.e. continuous hand tapping and writing of "8" figure, with the right dominant hand and without visual feedback. Seventeen FRDA patients and two groups of age-matched healthy controls were recruited. Task execution was monitored and recorded using MR-compatible devices. Hand tapping was correctly performed by 11 (65%) patients and writing of the "8" by 7 (41%) patients. After correction for behavioral variables, FRDA patients showed in both tasks areas of significantly lower activation in the left primary sensory-motor cortex and right cerebellum. Also left thalamus and right dorsolateral prefrontal cortex showed hypo-activation during hand tapping. During writing of the "8" task FRDA patients showed areas of higher activation in the right parietal and precentral cortex, globus pallidus, and putamen. Activation of right parietal cortex, anterior cingulum, globus pallidus, and putamen during writing of the "8" increased with severity of the neurological deficit. In conclusion fMRI demonstrates in FRDA a mixed pattern constituted by areas of decreased activation and areas of increased activation. The decreased activation in the primary motor cortex and cerebellum presumably reflects a regional neuronal damage, the decreased activation of the left thalamus and primary sensory cortex could be secondary to deafferentation phenomena, and the increased activation of right parietal cortex and striatum might have a possible compensatory significance.  相似文献   

8.
Our understanding of altered emotional processing in social anxiety disorder (SAD) is hampered by a heterogeneity of findings, which is probably due to the vastly different methods and materials used so far. This is why the present functional magnetic resonance imaging (fMRI) study investigated immediate disorder‐related threat processing in 30 SAD patients and 30 healthy controls (HC) with a novel, standardized set of highly ecologically valid, disorder‐related complex visual scenes. SAD patients rated disorder‐related as compared with neutral scenes as more unpleasant, arousing and anxiety‐inducing than HC. On the neural level, disorder‐related as compared with neutral scenes evoked differential responses in SAD patients in a widespread emotion processing network including (para‐)limbic structures (e.g. amygdala, insula, thalamus, globus pallidus) and cortical regions (e.g. dorsomedial prefrontal cortex (dmPFC), posterior cingulate cortex (PCC), and precuneus). Functional connectivity analysis yielded an altered interplay between PCC/precuneus and paralimbic (insula) as well as cortical regions (dmPFC, precuneus) in SAD patients, which emphasizes a central role for PCC/precuneus in disorder‐related scene processing. Hyperconnectivity of globus pallidus with amygdala, anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) additionally underlines the relevance of this region in socially anxious threat processing. Our findings stress the importance of specific disorder‐related stimuli for the investigation of altered emotion processing in SAD. Disorder‐related threat processing in SAD reveals anomalies at multiple stages of emotion processing which may be linked to increased anxiety and to dysfunctionally elevated levels of self‐referential processing reported in previous studies. Hum Brain Mapp 37:1559‐1572, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
The role of the amygdala in human fear: automatic detection of threat   总被引:2,自引:0,他引:2  
Behavioral data suggest that fear stimuli automatically activate fear and capture attention. This effect is likely to be mediated by a subcortical brain network centered on the amygdala. Consistent with this view, brain imaging studies show that masked facial stimuli activate the amygdala as do masked pictures of threatening animals such as snakes and spiders. When the stimulus conditions allow conscious processing, the amygdala response to feared stimuli is enhanced and a cortical network that includes the anterior cingulate cortex and the anterior insula is activated. However, the initial amygdala response to a fear-relevant but non-feared stimulus (e.g. pictures of spiders for a snake phobic) disappears with conscious processing and the cortical network is not recruited. Instead there is activation of the dorsolateral and orbitofrontal cortices that appears to inhibit the amygdala response. The data suggest that activation of the amygdala is mediated by a subcortical pathway, which passes through the superior colliculi and the pulvinar nucleus of the thalamus before accessing the amygdala, and which operates on low spatial frequency information.  相似文献   

10.
Specific phobias (SPs) are common, with lifetime prevalence estimates of 10%. Our current understanding of their pathophysiology owes much to neuroimaging studies, which enabled us to construct increasingly efficient models of the underlying neurocircuitry. We provide an updated, comprehensive review and analyze the relevant literature of functional neuroimaging studies in specific phobias. Findings are presented according to the functional neuroanatomy of patients with SPs. We performed a careful search of the major medical and psychological databases by crossing SP with each neuroimaging technique. Functional neuroimaging, mostly using symptom provocation paradigms, showed abnormal activations in brain areas involved in emotional perception and early amplification, mainly the amygdala, anterior cingulate cortex, thalamus, and insula. The insula, thalamus and other limbic/paralimbic structures are particularly involved in SPs with prominent autonomic arousal. Emotional modulation is also impaired after exposure to phobic stimuli, with abnormal activations reported for the prefrontal, orbitofrontal and visual cortices. Other cortices and the cerebellum also appear to be involved in the pathophysiology of this disorder. Functional neuroimaging identified neural substrates that differentiate SPs from other anxiety disorders and separate SP subtypes from one another; the results support current Diagnostic and Statistical Manual of Mental Disorders, 4th edition-Text Revision (DSM-IV-TR) diagnostic subtyping of SPs. Functional neuroimaging shows promise as a means of identifying treatment-response predictors. Improvement in these techniques may help in clarifying the neurocircuitry underlying SP, for both research and clinical-therapeutic purposes.  相似文献   

11.
The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or blood‐injection‐injury (BII) phobics) and controls (n = 17) to both type of experimental paradigms. Results showed that there was a clear anatomical overlap in the Blood Oxygen Level‐Dependent (BOLD) responses within the anterior insula and ACC elicited during phobic symptom provocation and during interoceptive awareness. The activity within these two brain structures also showed to be correlated in the spider phobia group, but not in the BII phobic participants. Our results seem to support the idea that the activity within these two brain areas would be associated with the integration of perceived stimuli characteristics and bodily responses that lead to what we label as “fear.” However, that seems not to be the case in BII phobia, where more research is needed in order to clarify to what extent that could be associated with the idiosyncratic physiological response that these patients present in front of phobic stimuli (i.e., drop in heart rate and blood pressure). Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Sensory preconditioning (SPC; also known as behaviorally silent learning) consists of a combination of two neutral stimuli, none of which elicits an unconditional response. After one of them is later paired with an unconditional stimulus (US), the other neutral stimulus also yields a conditional response although it has never been paired with the US. In this study, an event‐related functional magnetic resonance imaging (fMRI) paradigm was used to specify brain regions involved in SPC. The results demonstrated that SPC was associated with significant changes in activity of several regions, notably, the left amygdala, the left hippocampus, the bilateral thalamus, the bilateral medial globus pallidus, the bilateral cerebellum, the bilateral premotor cortex, and the bilateral middle frontal gyrus. This is a first effort to use fMRI to examine the effects of SPC on brain activation. Our data suggest that there is a distributed network of structures involved in SPC including both cortical and subcortical regions, therefore add to our understanding of the neural mechanisms underlying the ability to associative learning. Hum Brain Mapp 35:1297–1304, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Previous research studies have reported many hemispherical asymmetries in cortical and subcortical anatomy, but only a subset of findings is consistent across studies. Here, we used improved Freesurfer-based automated methods to analyse the properties of the cortex and seven subcortical structures in 138 young adult subjects. Male and female subjects showed similar hemispheric asymmetries in gyral and sulcal structures, with many areas associated with language processing enlarged in the left hemisphere (LH) and a number of areas associated with visuospatial processing enlarged in the right hemisphere (RH). In addition, we found greater (non-directional) cortical asymmetries in subjects with larger brains. Asymmetries in subcortical structures included larger LH volumes of thalamus, putamen and globus pallidus and larger RH volumes of the cerebellum and the amygdala. We also found significant correlations between the subcortical structural volumes, particularly of the thalamus and cerebellum, with cortical area. These results help to resolve some of the inconsistencies in previous studies of hemispheric asymmetries in brain anatomy.  相似文献   

14.
Cortico‐basal ganglia connections are involved in a range of behaviors within motor, cognitive, and emotional domains; however, the whole‐brain functional connections of individual nuclei are poorly understood in humans. The first aim of this study was to characterize and compare the connectivity of the subthalamic nucleus (STN) and globus pallidus pars interna (GPi) using meta‐analytic connectivity modeling. Structure‐based activation likelihood estimation meta‐analyses were performed for STN and GPi seeds using archived functional imaging coordinates from the BrainMap database. Both regions coactivated with caudate, putamen, thalamus, STN, GPi, and GPe, SMA, IFG, and insula. Contrast analyses also revealed coactivation differences within SMA, IFG, insula, and premotor cortex. The second aim of this study was to examine the degree of overlap between the connectivity maps derived for STN and GPi and a functional activation map representing the speech network. To do this, we examined the intersection of coactivation maps and their respective contrasts (STN > GPi and GPi > STN) with a coordinate‐based meta‐analysis of speech function. In conjunction with the speech map, both STN and GPi coactivation maps revealed overlap in the anterior insula with GPi map additionally showing overlap in the supplementary motor area (SMA). Among cortical regions activated by speech tasks, STN was found to have stronger connectivity than GPi with regions involved in cognitive linguistic processes (pre‐SMA, dorsal anterior insula, and inferior frontal gyrus), while GPi demonstrated stronger connectivity to regions involved in motor speech processes (middle insula, SMA, and premotor cortex). Hum Brain Mapp 35:3499–3516, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

15.
BACKGROUND: The study aimed to identify brain activation during direct and automatic processing of phobogenic stimuli in specific phobia. METHODS: Responses to phobia-related and neutral pictures (spiders and mushrooms) were measured by means of event-related functional magnetic resonance imaging during two different tasks. In the identification task, subjects were asked to identify the object (spider or mushroom). In a demanding distraction task, subjects had to match geometric figures displayed in the foreground of the pictures. RESULTS: Phobics showed greater responses to spiders versus mushrooms in the left amygdala, left insula, left anterior cingulate gyrus (ACC), and left dorsomedial prefrontal cortex (DMPFC) during the identification task and in the left and right amygdala during the distraction task. All of these activations were also significantly increased compared to control subjects who did not show stronger brain activation to spiders versus mushrooms under any task condition. CONCLUSIONS: Our findings propose specific neural correlates of automatic versus direct evaluation of phobia-relevant threat. While the amygdala, especially the right amygdala, seems to be crucially involved in automatic stimuli processing, activation of areas such as the insula, ACC and DMPFC is rather associated with direct threat evaluation and requires sufficient attentional resources.  相似文献   

16.
Patients with generalized social phobia fear embarrassment in most social situations. Little is known about its functional neuroanatomy. We studied BOLD-fMRI brain activity while generalized social phobics and healthy controls anticipated making public speeches. With anticipation minus rest, 8 phobics compared to 6 controls showed greater subcortical, limbic, and lateral paralimbic activity (pons, striatum, amygdala/uncus/anterior parahippocampus, insula, temporal pole)--regions important in automatic emotional processing--and less cortical activity (dorsal anterior cingulate/prefrontal cortex)--regions important in cognitive processing. Phobics may become so anxious, they cannot think clearly or vice versa.  相似文献   

17.
This article investigates the functional connectivity patterns of the nucleus accumbens (NAcc) in 18 healthy participants using a resting state functional connectivity (rsFC) protocol. Also, a meta-analytic connectivity modeling (MACM) was used to characterize patterns of functional coactivations involving NAcc: The results of a structure-based meta-analyses of 57 fMRI and PET studies were submitted to activation likelihood estimation analysis to estimate consistent activation patterns across the different imaging studies. The results of the combined rsFC and MACM analyses show that spontaneous activity in NAcc predicts activity in regions implicated in reward circuitries, including orbitomedial prefrontal cortex, globus pallidus, thalamus, midbrain, amygdala, and insula. This confirms the key role of NAcc in the mesocorticolimbic system, which integrates inputs from limbic and cortical regions. We also detected activity in brain regions having few or no direct anatomical connections with NAcc, such as sensorimotor cortex, cerebellum, medial and posterior parietal cortex, and medial/inferior temporal cortex, supporting the view that not all functional connections can be explained by anatomical connections but can also result from connections mediated by third areas. Our rsFC findings are in line with the results of the structure-based meta-analysis: MACM maps are superimposable with NAcc rsFC results, and the reward paradigm class is the one that most frequently generates activation in NAcc. Our results overlap considerably with recently proposed schemata of the main neuron systems in the limbic forebrain and in the anterior part of the limbic midbrain in rodents and nonhuman primates.  相似文献   

18.
Functional correlates of pallidal stimulation for Parkinson's disease   总被引:5,自引:0,他引:5  
We measured regional cerebral blood flow with H2 15O and positron emission tomography (PET) scanning at rest and during a motor task to study the mechanism of motor improvement induced by deep brain stimulation of the internal globus pallidus in Parkinson's disease. Six right-handed patients with Parkinson's disease were scanned while performing a predictable paced sequence of reaching movements and while observing the same screen displays and tones. PET studies were performed ON and OFF stimulation in a medication-free state. Internal globus pallidus deep brain stimulation improved off-state United Parkinson's Disease Rating Scale motor ratings (37%, p < 0.002) and reduced timing errors (movement onset time, 55%, p < 0.01) as well as spatial errors (10%, p < 0.02). Concurrent regional cerebral blood flow recordings revealed a significant enhancement of motor activation responses in the left sensorimotor cortex (Brodmann area [BA] 4), bilaterally in the supplementary motor area (BA 6), and in the right anterior cingulate cortex (BA 24/32). Significant correlations were evident between the improvement in motor performance and the regional cerebral blood flow changes mediated by stimulation. With internal globus pallidus deep brain stimulation, improved movement initiation correlated with regional cerebral blood flow increases in the left sensorimotor cortex and ventrolateral thalamus and in the contralateral cerebellum. By contrast, improved spatial accuracy correlated with regional cerebral blood flow increases in both cerebellar hemispheres and in the left sensorimotor cortex. These results suggest that internal globus pallidus deep brain stimulation may selectively improve different aspects of motor performance. Multiple, overlapping neural pathways may be modulated by this intervention.  相似文献   

19.
Successful cognitive behavior therapy (CBT) for spider phobia is able to change patients’ brain activation during visual symptom provocation. The present voxel-based morphometry study investigated whether this therapy approach can additionally affect brain structure. We analyzed gray matter volume of 12 spider-phobic patients prior to CBT and in a six-month follow-up investigation, and contrasted the results with data from 13 non-phobic controls. CBT provoked a dramatic decrease in syndrome severity in the clinical group as indexed by self-report and by a behavioral approach test. This was accompanied by a reduction of left supplementary motor area volume, which was correlated with the reduction of symptom severity. The therapy-related decrease of left amygdala volume was marginally significant. Nevertheless, in both sessions the patients were characterized by increased amygdala volume relative to controls. Our findings have to be considered preliminary and need replication in a bigger sample.  相似文献   

20.
Functional magnetic resonance imaging (fMRI) studies have displayed a dysregulation in the way in which the brain processes pleasant taste stimuli in patients with anorexia nervosa (AN) and bulimia nervosa (BN). However, exactly how the brain processes disgusting basic taste stimuli has never been investigated, even though disgust plays a role in food intake modulation and AN and BN patients exhibit high disgust sensitivity. Therefore, we investigated the activation of brain areas following the administration of pleasant and aversive basic taste stimuli in symptomatic AN and BN patients compared to healthy subjects. Twenty underweight AN women, 20 symptomatic BN women and 20 healthy women underwent fMRI while tasting 0.292 M sucrose solution (sweet taste), 0.5 mM quinine hydrochloride solution (bitter taste) and water as a reference taste. In symptomatic AN and BN patients the pleasant sweet stimulus induced a higher activation in several brain areas than that induced by the aversive bitter taste. The opposite occurred in healthy controls. Moreover, compared to healthy controls, AN patients showed a decreased response to the bitter stimulus in the right amygdala and left anterior cingulate cortex, while BN patients showed a decreased response to the bitter stimulus in the right amygdala and left insula. These results show an altered processing of rewarding and aversive taste stimuli in ED patients, which may be relevant for understanding the pathophysiology of AN and BN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号