首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-rays are known to cause malignancies, skin damage and other side effects and they are thus potentially dangerous. Therefore, it is essential and in fact mandatory to reduce the radiation dose in diagnostic radiology as far as possible. This is also known as the ALARA (as low as reasonably achievable) principle. However, the dose is linked to image quality and the image quality may not be lowered so far that it jeopardizes the diagnostic outcome of a radiographic procedure. The process of reaching this balance between dose and image quality is called optimization. The aim of this thesis was to propose and evaluate methods for optimizing the radiation dose-image quality relationship in diagnostic radiography with a focus on clinical usefulness. The work was performed in three main parts. OPTIMIZATION OF SCOLIOSIS RADIOGRAPHY: In the first part, two recently developed methods for digital scoliosis radiography (digital exposure and pulse fluoroscopy) were evaluated and compared to the standard screen-film method. Radiation dose was measured as kerma area-product (KAP), entrance surface dose (ESD) and effective dose; image quality was assessed with a contrast-detail phantom and through visual grading analysis. Accuracy in angle measurements was also evaluated. The radiation dose for digital exposure was nearly twice as high as the screen-film method at a comparable image quality while the dose for pulsed fluoroscopy was very low but with a considerably lower image quality. The variability in angle measurements was sufficiently low for all methods. Then, the digital exposure protocol was optimized to a considerably lower dose with a slightly lower image quality compared to the baseline. FLAT-PANEL DETECTOR: In the second part, an amorphous-silicon direct digital flat-panel detector was evaluated using a contrast-detail phantom, measuring dose as entrance dose. The flat-panel detector yielded a superior image quality at a lower dose than both storage phosphor plates and screen-film. Equivalent image quality compared to storage phosphor plates was reached at about one-third of the dose. OPTIMIZATION OF PERCUTANEOUS CORONARY INTERVENTION (PCI): In the third part, influence of various settings on radiation dose and image quality in coronary catheterisation and PCI was investigated. Based on these findings, the dose rate for fluoroscopy was reduced to one-third. The dose reduction was evaluated in a clinical series of 154 PCI procedures before and 138 after the optimization. Through this optimization, the total KAP was significantly reduced to two-thirds of the original value. IN SUMMARY: This thesis indicates the possibility of dose reduction in diagnostic radiology through optimization of the radiographic process.  相似文献   

2.
The aim of this study was optimization of the radiation dose–image quality relationship for a digital scanning method of scoliosis radiography. The examination is performed as a digital multi-image translation scan that is reconstructed to a single image in a workstation. Entrance dose was recorded with thermoluminescent dosimeters placed dorsally on an Alderson phantom. At the same time, kerma area product (KAP) values were recorded. A Monte Carlo calculation of effective dose was also made. Image quality was evaluated with a contrast-detail phantom and Visual Grading. The radiation dose was reduced by lowering the image intensifier entrance dose request, adjusting pulse frequency and scan speed, and by raising tube voltage. The calculated effective dose was reduced from 0.15 to 0.05 mSv with reduction of KAP from 1.07 to 0.25 Gy cm2 and entrance dose from 0.90 to 0.21 mGy. The image quality was reduced with the Image Quality Figure going from 52 to 62 and a corresponding reduction in image quality as assessed with Visual Grading. The optimization resulted in a dose reduction to 31% of the original effective dose with an acceptable reduction in image quality considering the intended use of the images for angle measurements. Electronic Publication  相似文献   

3.
The authors compared the radiation dose to the patient and the image quality in advanced multiple-beam equalization radiography (AMBER) with those in conventional chest radiography. Organ doses were estimated for an anthropomorphic phantom from measurements with thermoluminescence dosimeters. These measurements were supplemented with area-air kerma products obtained during chest examinations of 223 patients. Image quality was determined by means of a contrast-detail image evaluation test. An improvement in image quality in regions of high absorption and an increased dose to the patient were found for the AMBER technique compared with the conventional technique. However, for both techniques, the radiation exposure was relatively low compared with other reported values of patient dose during chest radiography. The estimated effective dose for an average-size patient during chest radiography with posteroanterior and lateral projections is 0.085 mSv for the conventional and 0.14 mSv for the AMBER technique.  相似文献   

4.
In paediatric radiology it has been recognised that children have a higher risk of developing cancer from the irradiation than adults (two to three times); therefore, increased attention has been directed towards the dose to the patient. In this study the effect on patient dose and image quality in replacing the exposure in micturating cystourethrography (MCUG) examinations with the stored fluoroscopy image has been investigated. In the intravenous urography (IVU) examination we compared analogue and digital image quality, but the dose measurements were performed on a phantom. Standard clinical X-ray equipment was used. Sixty-eight patients in each of two centres were studied for the MCUG. Doses were measured with a dose-area product (DAP) meter and the image quality was scored. A non-parametric statistical analysis was performed. For the IVU, a phantom was used in the dose measurements but clinical images were scored in the comparison between analogue and digital images. For the MCUG, replacing the exposure with stored fluoroscopy images lowered the DAP value from 0.77 to 0.50 Gy cm2. The image quality did not show any difference between the techniques; however, if reflux was to be graded, exposure was needed. For the IVU, the doses could be lowered by a factor of 3 using digital techniques. The image quality showed no statistical difference between the two techniques. There is a potential for a substantial dose reduction in both MUCG and IVU examinations using digital techniques.  相似文献   

5.
Chotas HG  Ravin CE 《Radiology》2001,218(3):679-682
PURPOSE: To evaluate and compare human observer performance in a contrast-detail test by using postprocessed hard-copy images from a digital chest radiography system and conventional screen-film radiographs. MATERIALS AND METHODS: The digital radiography system is based on a large-area flat-panel x-ray detector with a structured cesium iodide scintillator layer and an amorphous silicon thin-film transistor array for image readout. Images of a contrast-detail phantom were acquired at two exposure levels by using two standard thoracic screen-film systems and the digital system at matched dose. By using images of the phantom processed with standard chest image postprocessing techniques, a four-alternative forced-choice observer perception study was performed, and the number of detectable test signals (disk-shaped objects 0.3-4.0 mm in diameter) was determined for each image type. RESULTS: On average, observers detected more test signals on digital images than on screen-film radiographs at all diameters up to 2.0 mm and an equivalent number at larger diameters. Test signals with lower inherent subject contrast were detected more readily on digital images than on screen-film images, even when x-ray exposure levels for the digital system were reduced by 20%. CONCLUSION: Observer performance in a contrast-detail detection task can be improved by using images acquired with the flat-panel digital chest radiography system as compared with those acquired with state-of-the-art screen-film combinations.  相似文献   

6.
In this study, we evaluated the performance of a digital chest imaging system using a contrast-detail (C-D) phantom. In the initial step, 76 sample images of the C-D phantom were produced by changing the doses from 0.5, 0.75, 1.0, 1.25, 1.5, to 2.0 times the dose for a screen-film (S/F) system. The sample images were analyzed by five radiological technologists and two medical physicists, and the image quality figure (IQF) was determined. The quality of each image was examined, and appropriate doses were determined from the calculated IQF to obtain the same image quality for other digital chest imaging systems. The method of determining IQF from C-D phantom analysis was very useful for comparing image quality and determining radiographic techniques.  相似文献   

7.
We here introduce a digital scanning method for determining leg length and angles. The leg length and angle measurements, image quality and radiation dose were evaluated. A composite overview image was reconstructed from a series of individual images. In 45 overview images, the total leg length and the femoro-tibial angle were determined by two radiologists, and the inter- and intra-observer variability was examined in the light of the measured values as well as the subjective assessment of the image quality. A dose comparison was carried out with a series of conventional whole leg images. The mean standard deviation of the multiple measurements of leg length was 0.4 mm for researcher I and 0.5 mm for researcher II. The difference in the mean values of the measured leg lengths between the researchers was 0.3 mm. The mean standard deviation of the multiple measurements of the femoro-tibial angle was 0.1° for both researchers. The difference in the mean values of the measured femoro-tibial angle between the researchers was 0.03°. On average, the marks for the image quality awarded by researcher II with an average score of 2 were very significantly worse than those awarded by researcher I with an average score of 1.5. The mean entrance dose value determined was 0.16 mGy lower in the digital system (0.49 mGy) than that of the comparative conventional series (0.65 mGy). Where there is a large number of possible length and angle measurements, the proposed procedure offers the advantages of good image quality, digital image processing, measurements that are easy to perform, reproducible and accurate, and lower radiation dose, and it is superior to conventional whole leg images.  相似文献   

8.
CR摄影与屏-片摄影的比较   总被引:3,自引:0,他引:3       下载免费PDF全文
目的探讨CR摄影与屏-片系统摄影曝光条件及对患者的X射线辐射剂量,评价CR摄影的应用价值。方法取本院CR照片和常规X射线摄影照片各2500份,由2位主管技师和1位副主任技师对照片按部位分组进行分析,统计出甲、乙、丙及废片率;并对乙、丙及废片产生的原因进行分析。结果①照片质量:CR摄影照片甲级片率63.6%,乙级片率27.2%,丙级片率9.2%,废片率0%;屏-片系统摄影照片甲级片率40.2%,乙级片率42.4%,丙级片率15.6%,废片率1.8%。②摄影条件的比较:CR数字摄影比屏.片系统摄影电压需提高1-6kV,曝光量高20%左右。结论CR数字摄影照片质量明显高于屏-片系统摄影,但曝光条件比屏-片系统高,相对增加了患者的X射线辐射剂量。  相似文献   

9.
In order to evaluate the influence of radiation exposure on image quality in digital storage phosphor radiography, 200 digital storage phosphor chest radiographs, obtained on a neonatal Intensive Care Unit, and the same number of conventional screen-film radiographs (speed 250) were assessed for the visibility of anatomical structures and catheters. The same exposure parameters were used in both groups. Normal variations of radiation exposure under free exposure conditions were estimated in all digital images using a formula calculating radiation dose in the screen-plane from image sensitivity, latitude and average grey value of the right lung. There was already a significant (P < 0.001) decline in image quality in the digital images with a 30–50% reduction in radiation exposure, which was most severe for structures such as trachea, retrocardiac space, lung texture and low-contrast catheters. Compared with optimally exposed conventional images, only those digital images with a slightly higher than normal dose had an equivalent image quality. Correspondence to: U. Bick  相似文献   

10.
Purpose: To measure and reduce the patient dose during computed tomography (CT) for dental applications. Material and Methods: Lithium fluoride thermoluminescent dosimeters were implanted in a tissue-equivalent humanoid phantom (Alderson-Rando-Phantom) to determine doses to the thyroid gland, the active bone marrow, the salivary glands, and the eye lens. Dental CT was performed with spiral CT and a dental software package. The usual dental CT technique was compared with a new dose-reduced protocol, which delivered best image quality at lowest possible radiation dose, as tested in a preceding study. Image quality was analysed using a human anatomic head preparation. In addition, the radiation dose was compared with panoramic radiography and digital volume tomography (DVT). Eight radiologists evaluated all images in a blinded fashion. A Wilcoxon rank pair test was used for statistical evaluation. Results: Radiation dose could be reduced by a factor of 9 (max.) with the new dose-reduced protocol (e.g. bone marrow dose from 23.6 mSv to 2.9 mSv; eye lens from 0.5 mSv to 0.3 mSv; thyroid gland from 2.5 mSv to 0.5 mSv; parotid glands from 2.3 mSv to 0.4 mSv). Dose reduction did not reduce image quality or diagnostic information. Conclusion: A considerable dose reduction without loss of diagnostic information is achievable in dental CT. As radiation exposure of the presented low-dose protocol is expected to be in the same range as DVT, low-dose dental CT might be superior to DVT, because CT can be used to evaluate soft tissues as well.  相似文献   

11.
目的 定量分析、比较非晶硅平板探测器X射线摄影系统与非晶硒平板探测器X射线摄影系统在不同成像剂量条件下成像质量的差别。方法 以非晶硅平板探测器系统和非晶硒平板探测器系统分别摄取对比度-细节体模CDRAD2.0在相近曝光剂量条件下的X射线影像,由4位独立观察者分别阅读影像,并计算所对应的曝光剂量下图像质量因子(image quality figure,IQF),应用ANOVA分析两成像系统对比度及细节检测能力。使用X射线摄影统计学体模(TRG)测量两系统在不同曝光剂量条件下操作者特性曲线(receive operating characteristics,ROC),应用Wilcoxon检验分析、比较两种成像技术的影像信息检测能力的差别。结果 在低曝光剂量条件下,两系统CDRAD体模影像IQF值及ROC曲线AZ值差别有显著意义,在对比度、组织细节检测能力上非晶硅平板探测器系统优于非晶硒平板探测器系统。在高曝光剂量条件下,两系统差异无统计学意义。结论 在低曝光剂量条件下,成像质量非晶硅平板探测器系统优于非晶硒系统。在获得相同的影像质量的前提下,使用前者进行X射线摄影可以降低被检者受照剂量。  相似文献   

12.
OBJECTIVE: Our goal was to determine the appearance of motion artifact when imaging an anthropomorphic breast phantom using a digital slot-scanning system compared with a screen-film system. MATERIALS AND METHODS: Digital and screen-film images were obtained during both brief and continuous manually induced motion of an anthropomorphic phantom in four directions. Continuous motion was further characterized using a syringe pump to induce motion artifact. RESULTS: On screen-film images, brief motion caused degradation of the entire image, simulating a double exposure. Conversely, on digital images using a slot-scanning system, brief motion caused degradation of only a small portion of the image. Continuous motion resulted in smearing of phantom details with both systems, although the smearing was more strongly influenced by the direction of motion when the slot-scanning system was used. With the slot-scanning system, motion in the direction of the detector sweep resulted in elongated distortion, whereas motion in the opposite direction resulted in foreshortening; diagonal smearing was seen with perpendicular phantom motion. The magnitude of distortion for continuous motion at a set velocity was substantially less with the slot-scanning system. CONCLUSION: Motion artifact with a slot-scanning direct digital mammography unit differs significantly from that seen with a conventional screen-film unit and, despite a relatively long overall exposure, may prove to be less of a problem than with conventional units because any given part of an object is exposed only briefly.  相似文献   

13.
PURPOSE: To evaluate the image quality and performance of a chest digital radiography system and to compare this with the image quality and performance of advanced multiple-beam equalization radiography (AMBER) and Bucky screen-film radiography systems. MATERIALS AND METHODS: The chest digital radiography system is a digital charge-coupled device (CCD) chest imaging unit that uses slot-scan technology. A contrast-detail test object was used in combination with a phantom that simulates the primary and scatter transmission for the lungs and mediastinum. Twelve phantom images were obtained with each modality (ie, CCD digital radiography and AMBER and Bucky screen-film radiography) and were judged by six observers. CCD digital radiography soft-copy reading was compared with AMBER hard-copy reading. To measure image quality, contrast-detail curves were constructed from the observer data. The Wilcoxon signed rank test was used for statistical analysis. RESULTS: For the lung configuration, contrast-detail curves showed lower threshold depth for hard-copy images obtained with CCD digital radiography than for those obtained with Bucky screen-film radiography. For hard-copy images, the difference between contrast-detail curves for CCD digital radiography and those for Bucky screen-film radiography was statistically significant (P < .006). No significant difference was found between CCD digital radiography and AMBER for hard-copy images obtained in either the lung or mediastinum configuration. For the lung configuration, a lower threshold depth was observed for CCD digital radiography soft-copy reading than for AMBER hard-copy reading, with significantly different contrast-detail curves for CCD digital radiography soft copy and AMBER hard copy (P < .006). No significant difference was found between either system for the mediastinum configuration. CONCLUSION: Contrast-detail curves indicate that image quality for the CCD chest system provides a digital alternative to AMBER and Bucky screen-film radiography.  相似文献   

14.
In recent years, endovascular stent-grafting of abdominal aortic aneurysms has become more and more common. The radiation dose associated with these procedures is not well documented however. The aim of the present study was to estimate the radiation exposure and to simulate the effects of a switch from C-arm radiographic equipment to a dedicated angiographic suite. Dose-area product (DAP) was recorded for 24 aortic stent-grafting procedures. Based on these data, entrance surface dose (ESD) and effective dose were calculated. A simulation of doses at various settings was also performed using a humanoid Alderson phantom. The image quality was evaluated with a CDRAD contrast-detail phantom. The mean DAP was 72.3 Gy cm(2) at 28 min fluoroscopy time with a mean ESD of 0.39 Gy and a mean effective dose of 10.5 mSv. If the procedures had been performed in an angiographic suite, all dose values would be much higher with a mean ESD of 2.9 Gy with 16 patients exceeding 2 Gy, which is considered to be a threshold for possible skin injury. The image quality for fluoroscopy was superior for the C-arm whilst the angiographic unit gave better acquisition images. Using a C-arm unit resulted in doses similar to percutaneous coronary intervention (PCI). If the same patients had been treated using dedicated angiographic equipment, the risk of skin injury would be much higher. It is thus important to be aware of the dose output of the equipment that is used.  相似文献   

15.
The application of X-rays and ionising radiations for diagnostic radiology requires that the procedure is justified and optimised and that the exposure to the patient is kept as low as possible, without compromising image information. X-ray mammography is considered to be the most sensitive technique currently available for early detection of breast cancer. The magnitude of the absorbed radiation dose to the breast from mammography X-ray beams forms an important part of the quality control of the mammographic examination since it gives an indication of the performance of the mammographic imaging system as well as an estimated risk to the patient. In this work mean glandular dose (MGD) values were obtained at various tube potentials and tube loadings (TL) using direct measurements of the incident air kerma (ESAK) at the surface of a standard breast phantom and also from spectral measurements acquired with a solid-state detector. Comparisons of the MGD values thus derived are presented and the relationship between MGD, phantom thickness, image quality and tube operating parameters is discussed.  相似文献   

16.
The aim of this study was to investigate the image quality for a flat-panel amorphous silicon detector at various radiation dose settings and to compare the results with storage phosphor plates and a screen-film system. A CDRAD 2.0 contrast-detail phantom was imaged with a flat-panel detector (Philips Medical Systems, Eindhoven, The Netherlands) at three different dose levels with settings for intravenous urography. The same phantom was imaged with storage phosphor plates at a simulated system speed of 200 and a screen-film system with a system speed of 160. Entrance surface doses were recorded for all images. At each setting, three images were read by four independent observers. The flat-panel detector had equal image quality at less than half the radiation dose compared with storage phosphor plates. The difference was even larger when compared with film with the flat-panel detector having equal image quality at approximately one-fifth the dose. The flat-panel detector has a very favourable combination of image quality vs radiation dose compared with storage phosphor plates and screen film.  相似文献   

17.

Introduction

The purpose of this study was to quantify the reduction in patient radiation dose by X-ray imaging technology using image noise reduction and system settings for neuroangiography and to assess its impact on the working habits of the physician.

Methods

Radiation dose data from 190 neuroangiographies and 112 interventional neuroprocedures performed with state-of-the-art image processing and reference system settings were collected for the period January–June 2010. The system was then configured with extra image noise reduction algorithms and system settings, which enabled radiation dose reduction without loss of image quality. Radiation dose data from 174 neuroangiographies and 138 interventional neuroprocedures were collected for the period January–June 2012. Procedures were classified as diagnostic or interventional. Patient radiation exposure was quantified using cumulative dose area product and cumulative air kerma. Impact on working habits of the physician was quantified using fluoroscopy time and number of digital subtraction angiography (DSA) images.

Results

The optimized system settings provided significant reduction in dose indicators versus reference system settings (p<0.001): from 124 to 47 Gy cm2 and from 0.78 to 0.27 Gy for neuroangiography, and from 328 to 109 Gy cm2 and from 2.71 to 0.89 Gy for interventional neuroradiology. Differences were not significant between the two systems with regard to fluoroscopy time or number of DSA images.

Conclusion

X-ray imaging technology using an image noise reduction algorithm and system settings provided approximately 60% radiation dose reduction in neuroangiography and interventional neuroradiology, without affecting the working habits of the physician.  相似文献   

18.
In this study the effect of different mammographic screen-film combinations on image quality and breast dose, and the correlation between the various image quality parameters, breast dose and the sensitometric parameters of a film were investigated. Three Agfa (MR5-II, HDR, HT), two Kodak (Min-R M, Min-R 2000), one Fuji (AD-M), one Konica (CM-H) and one Ferrania (HM plus) single emulsion mammographic films were combined with three intensifying screens (Agfa HDS, Kodak Min-R 2190 and Fuji AD-MA). The film characteristics were determined by sensitometry, while the image quality and the dose to the breast of the resulting 24 screen-film combinations were assessed using a mammography quality control phantom. For each combination, three images of the phantom were acquired with optical density within three different ranges. Two observers assessed the quality of the 72 phantom images obtained, while the breast dose was calculated from the exposure data required for each image. Large differences among screen-film combinations in terms of image quality and breast dose were identified however, that, could not be correlated with the film's sensitometric characteristics. All films presented the best resolution when combined with the HDS screen at the expense of speed, and the largest speed when combined with the AD-MA screen, without degradation of the overall image quality. However, an ideal screen-film combination presenting the best image quality with the least dose was not identified. It is also worth mentioning that the best performance for a film was not necessarily obtained when this was combined with the screen provided by the same manufacturer. The results of this study clearly demonstrate that comparison of films based on their sensitometric characteristics are of limited value for clinical practice, as their performance is strongly affected by the screens with which they are combined.  相似文献   

19.
R A Geise 《Radiographics》2001,21(1):227-236
Some means of recording images is a necessary part of most fluoroscopic systems. Several methods are available for recording images during fluoroscopy. Screen-film recording methods such as use of spot film devices and automatic film changers provide high-spatial-resolution images. Recording images by using the image intensifier (fluorography) provides film or digital images at relatively lower doses but with poorer spatial resolution. Digitally recorded images have better contrast resolution than analog images but lower spatial resolution and represent a compromise between dose and image quality. Motion picture (cine fluorographic) recording requires extremely high dose rates compared with those of lower-resolution videotape recording of motion. Recording systems in fluoroscopy require automatic exposure control for optimum image quality. The same feedback system used to control fluorographic exposures can be used to control exposure rates during fluoroscopy as well. Automatic brightness control maintains intensifier exposure rates on the basis of subject thickness by adjusting various technique factors. The type of control mechanism depends on the imaging task and the complexity (age and cost) of the equipment. The operator can choose between better image quality (higher contrast) or lower radiation dose.  相似文献   

20.
The objectives of this study were to evaluate the influence on image quality and dose to the patient and operator of various equipment settings for percutaneous coronary intervention (PCI), and to optimize the set-up. With an Alderson phantom, different settings, such as projection, protective screens, filtration, image intensifier size and collimation, were evaluated. Kerma-area product (KAP) was recorded as a measure of patient dose and scattered radiation was measured with an ionization chamber. Effective dose for a standardized PCI procedure was measured with thermoluminescent dosimeters inside the phantom. Image quality was evaluated with a contrast-detail phantom. Based on these findings, the equipment set-up was optimized to a low fluoroscopy dose rate with a sufficient image quality. Several operating parameters affected dose, particularly scattered radiation. The optimization reduced the fluoroscopy KAP rate from 44 to 16 mGy cm(2)/s using 15 cm of acrylic. The effective dose was reduced from 13 to 4.6 mSv for a standardized PCI procedure. Radiation dose to patient and operator in PCI is heavily dependent on both equipment set-up and operating parameters which can be influenced by the operator. With a careful optimization, a large reduction of radiation dose is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号