首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral nerve injuries induce plastic changes on primary afferent fibers and on the spinal circuitry, which are related to the emergence of neuropathic pain. In this study we compared three models of sciatic nerve injury in the rat with different degrees of damage and impact on regeneration capability: crush nerve injury, chronic constriction injury (CCI) and spared nerve injury (SNI). All three models were characterized by means of nerve histology, in order to describe the degenerative and regenerative process of injured axons. Nociceptive responses were evaluated by mechanical and thermal algesimetry tests. Crush animals displayed higher withdrawal thresholds on the ipsilateral paw compared to the contralateral during the time of denervation, while CCI and SNI animals showed mechanical and thermal hyperalgesia. Central plasticity was evaluated by immunohistochemical labeling of non-peptidergic (IB4-positive) and peptidergic (substance P-positive) nociceptive C-fibers on L4-L6 spinal cord sections. After crush nerve injury and SNI, we observed progressive and sustained reduction of IB4 and SP immunolabeling at the sciatic projection territory in the superficial laminae of the dorsal horn, which affected only the tibial and peroneal nerves projection areas in the case of SNI. After CCI, changes on SP-immunoreactivity were not observed, and IB4-immunoreactive area decreased initially but recovered to normal levels on the second week post-injury. Thus, nociceptive responses depend on the type of injury, and the immunoreactivity pattern of afferent fibers at the spinal cord display changes less pronounced after partial than complete sciatic nerve injury. Although signs of neuropathic pain appear in all three lesion models, nociceptive responses and central plasticity patterns differ between them.  相似文献   

2.
We investigated the effects of intrathecally administered N-type and P-type voltage-sensitive calcium channel (VSCC) blockers on the level of thermal hyperalgesia in two neuropathic pain models: the chronic constriction injury (CCI) model and the partial sciatic nerve injury (PSNI) model. N-type, but not P-type, VSCC blockers attenuated the level of thermal hyperalgesia induced by CCI in a dose-dependent manner. In the PSNI model, both N-type and P-type VSCC blockers had no effect on thermal hyperalgesia. This suggests that some types of neuropathic pain may be treatable with N-type VSCC blockers.  相似文献   

3.
We have evaluated the possible involvement of delta-opioid receptor (DOR) in the development and expression of neuropathic pain. For this purpose, partial ligation of the sciatic nerve was performed in DOR knockout mice and wild-type littermates. The development of mechanical and thermal allodynia, as well as thermal hyperalgesia was evaluated by using the von Frey filament model, the cold-plate test and the plantar test, respectively. In wild-type and DOR knockout mice, sciatic nerve injury led to a neuropathic pain syndrome revealed in these nociceptive behavioural tests. However, the development of mechanical and thermal allodynia, and thermal hyperalgesia was significantly enhanced in DOR knockout mice. These results reveal the involvement of DOR in the control of neuropathic pain and suggest a new potential therapeutic use of DOR agonists.  相似文献   

4.
Recent evidence suggests that spinal cord glia can contribute to enhanced nociceptive responses. However, the signals that cause glial activation are unknown. Fractalkine (CX3C ligand-1; CX3CL1) is a unique chemokine expressed on the extracellular surface of spinal neurons and spinal sensory afferents. In the dorsal spinal cord, fractalkine receptors are primarily expressed by microglia. As fractalkine can be released from neurons upon strong activation, it has previously been suggested to be a neuron-to-glial signal that induces glial activation. The present series of experiments provide an initial investigation of the spinal pain modulatory effects of fractalkine. Intrathecal fractalkine produced dose-dependent mechanical allodynia and thermal hyperalgesia. In addition, a single injection of fractalkine receptor antagonist (neutralizing antibody against rat CX3C receptor-1; CX3CR1) delayed the development of mechanical allodynia and/or thermal hyperalgesia in two neuropathic pain models: chronic constriction injury (CCI) and sciatic inflammatory neuropathy. Intriguingly, anti-CX3CR1 reduced nociceptive responses when administered 5-7 days after CCI, suggesting that prolonged release of fractalkine may contribute to the maintenance of neuropathic pain. Taken together, these initial investigations of spinal fractalkine effects suggest that exogenous and endogenous fractalkine are involved in spinal sensitization, including that induced by peripheral neuropathy.  相似文献   

5.
We studied submodality dependence of sensory changes produced by unilateral ligation of the sciatic or the saphenous nerve in the rat. We focused especially on sensory changes in the skin area adjacent to the innervation area of the injured nerve. Moreover, we examined the roles of capsaicin-sensitive nociceptive fibers, collateral sprouting and a dorsal root reflex in sensory changes observed behaviorally. Assessment of sensory changes was performed by a pattern of behavioral tests: hot-plate test and hindlimb withdrawal responses induced by radiant heat, hot-water bath, innocuous mechanical stimuli, and noxious mechanical stimuli. In one group, the saphenous nerve ipsilateral to the sciatic ligation was topically treated with capsaicin (1%) at the time of the surgery. A proximal stump of a saphenous nerve strand was orthodromically stimulated to induce a dorsal root reflex (an antidromic volley) in nociceptive fibers of the saphenous nerve trunk. For visualization of plasma extravasation induced by a dorsal root reflex, a dye-labeling (Evans blue) technique was used. A collateral sprouting of nociceptive fibers of the uninjured saphenous nerve was evaluated by determining the plasma extravasation response induced by antidromic stimulation of the saphenous nerve. Three and 10 days following the sciatic constriction injury, the hindlimb withdrawal threshold evoked by noxious mechanical stimulation of the medial side of the paw (the innervation are of the intact saphenous nerve) was significantly decreased. There was no corresponding thermal hyperalgesia adjacent to the injured sciatic nerve. Chronic constriction of the saphenous nerve did not produce any significant hyper- or hypoalgesia to mechanical or thermal stimulation of the uninjured sciatic nerve area. Topical treatment of the ipsilateral (intact) saphenous nerve at the time of the sciatic nerve ligation completely prevented the development of mechanical hyperalgesia in the medial side of the paw (the innervation area of the saphenous nerve). No dorsal root reflex in nociceptive fibers mediating the adjacent hyperalgesia could be evoked. No collateral sprouting of the uninjured nociceptive fibers of the saphenous nerve was observed. The results indicate that the constriction injury of the sciatic nerve produced a selective hyperalgesia to mechanical stimulation in the innervation area of the neighboring saphenous nerve. At the peripheral level, the mechanical hyperalgesia adjacent to the innervation area of the injured nerve was mediated by capsaicin-sensitive nociceptive fibers. Collateral sprouting of nociceptive fibers from the uninjured to the injured innervation area did not contribute to the present sensory findings. The sciatic nerve injury did not induce a dorsal root reflex in nociceptive fibers innervating the hyperalgesic saphenous nerve area.  相似文献   

6.
Ro LS  Li HY  Huang KF  Chen ST 《Brain research》2004,1004(1-2):177-187
This study aimed to examine the relationship between temporal and spatial expression patterns of Fos protein in the spinal dorsal horn neurons and thermal hyperalgesia behaviors in rats with chronic constriction injury (CCI) to the sciatic nerve. Our results demonstrated that Fos protein expression in the spinal dorsal horn neurons at L5 segment ipsilateral and contralateral to CCI of the sciatic nerve was significantly greater than in sham rats from days 10 to 30 postoperatively (PO 10d to 30d), and was concentrated on the injury (ipsilateral) side. Unlike the short-lived expression after tissue inflammation, laminae I to VI (especially laminae III/IV) displayed a persistent greater number of Fos-like immunoreactive (Fos-LI) neurons for at least 30 days after CCI of the sciatic nerve. After the increase in laminae III/IV, Fos-LI neurons tended to gradually increase in laminae I/II and V/VI at L5 segment from PO 2d to 30d, which were correlated with the heat hyperalgesia (48 degrees C) behaviors measured by paw withdrawal latency in CCI rats but not in sham rats. Interestingly, a persistent increase of Fos-LI neurons in laminae I to VI at L5 segment of the ipsilateral and contralateral sides and at the L1 segment that was out of the normal central terminations of the sciatic nerve suggested the probable presence of territorial and extra-territorial central sensitization or inadequate central nervous system (CNS) adaptive mechanisms. These findings may partly explain why abnormal pain sensations are sometimes distributed in a pattern that does not coincide with the territories of nerves or with the posterior roots of the peripheral nerve after injury.  相似文献   

7.
Nociceptive nerves innervate the skin and play an important role in the generation of neuropathic pain. However, it remains elusive whether and how nociceptive nerve terminals degenerate in neuropathic pain conditions. To address this issue, we investigated cutaneous innervation in a model of painful mononeuropathy, the chronic constriction injury (CCI). The hind paws of rats were immunocytochemically stained with a pan-axonal marker, protein gene product 9.5 (PGP 9.5). Within 2 days after CCI, rats exhibited thermal hyperalgesia, and there was a partial depletion of epidermal nerves. The extent of reduction in epidermal nerves after CCI was variable with an epidermal nerve density of 3.65 +/- 1.97 fibers/mm (compared to 15.39 +/- 1.58 fibers/mm on the control side, P < 0.02). There was a mild but concomitant increase in PGP 9.5 (+) Langerhans cells in the epidermis of the skin with CCI (10.19 +/- 1.99 vs 7.75 +/- 1.36 cells/mm, P < 0.05). In the skin denervated by tight ligation of the sciatic nerve, epidermal nerves were completely depleted (0 fibers/mm vs. 12.26 +/- 1.44 fibers/mm on the control side, P < 0.001). Animals with tight ligation of the sciatic nerve exhibited thermal anesthesia. These findings suggest that the epidermis is partially denervated in CCI, and that a partial injury of nerves is correlated with the development of neuropathic pain.  相似文献   

8.
Although prior studies have implicated maladaptive remodeling of dendritic spines on wide-dynamic range dorsal horn neurons as a contributor to pain after spinal cord injury, there have been no studies on dendritic spines after peripheral nerve injury. To determine whether dendritic spine remodeling contributes to neuronal hyperexcitability and neuropathic pain after peripheral nerve injury, we analyzed dendritic spine morphology and functional influence in lamina IV–V dorsal horn neurons after sham, chronic constriction injury (CCI) of the sciatic nerve, and CCI treatment with NSC23766, a selective inhibitor of Rac1, which has been implicated in dendritic spine development. 10 days after CCI, spine density increased with mature, mushroom-shaped spines preferentially distributed along dendritic branch regions closer to the cell body. Because spine morphology is strongly correlated with synaptic function and transmission, we recorded the response of single units to innocuous and noxious peripheral stimuli and performed behavioral assays for tactile allodynia and thermal hyperalgesia. Wide dynamic range dorsal horn neurons of CCI animals exhibited hyperexcitable responses to a range of stimuli. They also showed reduced nociceptive thresholds in the ipsilateral hind paw. 3-day treatment with NSC23766 significantly reduced post-CCI spine dimensions and densities, and attenuated injury-induced hyperexcitability. Drug treatment reduced behavioral measures of tactile allodynia, but not for thermal hyperalgesia. Together, our results demonstrate that peripheral nerve injury induces Rac1-regulated remodeling of dendritic spines on dorsal horn neurons, and suggest that this spine remodeling contributes to neuropathic pain.  相似文献   

9.
Painful peripheral neuropathies have been associated with a reorganization of skin innervation. However, the detailed changes in skin innervation by the different afferent fiber types following a neuropathic nerve injury have never been characterized in an animal model of neuropathic pain. Our objective was to thoroughly characterize such changes in the thick skin of the foot in a well-established rat model of neuropathic pain, namely, the chronic constriction injury (CCI) of the sciatic nerve. We used the immunofluorescence detection of calcitonin gene-related peptide (CGRP), purinergic receptor P2X3, and NF200 as markers of peptidergic nociceptive fibers, nonpeptidergic nociceptive C fibers, and myelinated afferents, respectively. We observed that CCI-operated animals developed significant mechanical allodynia and hyperalgesia as well as thermal hyperalgesia. At 3 days following nerve injury, all CCI-operated animals had a significant decrease in the density of fibers immunoreactive (IR) for CGRP, P2X3, and NF200 within the upper dermis. A recovery of CGRP-IR fibers occurred within 4 weeks of nerve injury and sprouting above control levels was observed at 16 weeks. However, the myelinated (NF200-IR) fibers never recovered to control levels within a period of 16 weeks following nerve injury. Interestingly, the P2X3-IR fibers took considerably more time to recover than the CGRP-IR fibers following the initial loss. A loss in P2X3-IR fibers persisted to 16 weeks and recovered to levels above that of control at 1.5 years following nerve injury. Further studies are required to clarify the relevance of these innervation changes for neuropathic pain generation and maintenance.  相似文献   

10.
Expression of ORL1 mRNA in some brain nuclei in neuropathic pain rats   总被引:3,自引:0,他引:3  
Ma F  Xie H  Dong ZQ  Wang YQ  Wu GC 《Brain research》2005,1043(1-2):214-217
The present study was designed to investigate changes of opioid receptor like 1 receptor (ORL(1), NOP) mRNA expression in some pain-related brain nuclei of neuropathic pain rats using in situ hybridization technique. Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of ORL(1), plays an important role in neuropathic pain through its receptor. There are ORL(1) mRNA expression in the nucleus of raphe magnus (NRM), ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus (DRN) of rat mesencephalon. In the sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain model, a significant increase of ORL(1) mRNA expression was observed in these three regions on the 7th day after operation, and the changes lasted for 2 weeks. The result indicated that ORL(1) synthesis was increased in NRM, vlPAG and DRN of neuropathic pain rats, suggesting that ORL(1) was involved in nociceptive transmission of neuropathic pain.  相似文献   

11.
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.  相似文献   

12.
ABSTRACT: BACKGROUND: The Notch signaling pathway has been shown to be involved in the development of the nervous system. Recent studies showed that Notch receptors and ligands are also expressed in the nervous system of adult animals. However, whether the Notch signaling pathway has a function in adults is not fully understood. The present study is designed to investigate the function of the Notch signaling pathway in nociceptive transmission, especially during neuropathic pain in adult rats. RESULTS: We found that the Notch intracellular domain (NICD) is expressed in the DRG(Dorsal Root Ganglia), sciatic nerve and spinal cord in normal rats, and is upregulated in the sciatic nerve and spinal cord after spared nerve injury (SNI). Moreover, we used the gamma-secretase (a key enzyme of the Notch signaling pathway) inhibitor DAPT to observe the effect of the Notch signaling pathway after SNI. We found that intrathecal DAPT significantly increased paw withdrawal thermal latency and mechanical threshold. Mechanical hyperalgesia occurring after SNI could be significantly reversed by DAPT in a dose-dependent manner. CONCLUSIONS: These results suggest that the Notch signaling pathway participates in the induction and maintenance of neuropathic pain, which indicates that the Notch pathway maybe a potential drug target for neuropathic pain treatment.  相似文献   

13.
Peroxynitrite (PN, ONOO(-)) is a potent oxidant and nitrating agent that contributes to pain through peripheral and spinal mechanisms, but its supraspinal role is unknown. We present evidence here that PN in the rostral ventromedial medulla (RVM) is essential for descending nociceptive modulation in rats during inflammatory and neuropathic pain through PN-mediated suppression of opioid signaling. Carrageenan-induced thermal hyperalgesia was associated with increased 3-nitrotyrosine (NT), a PN biomarker, in the RVM. Furthermore, intra-RVM microinjections of the PN decomposition catalyst Fe(III)-5,10,15,20-tetrakis(N-methyl-pyridinium-4-yl)porphyrin (FeTMPyP(5+)) dose-dependently reversed this thermal hyperalgesia. These effects of FeTMPyP(5+) were abrogated by intra-RVM naloxone, implicating potential interplay between PN and opioids. In support, we identified NT colocalization with the endogenous opioid enkephalin (ENK) in the RVM during thermal hyperalgesia, suggesting potential in situ interactions. To address the functional significance of such interactions, we exposed methionine-enkephalin (MENK) to PN and identified the major metabolite, 3-nitrotyrosine-methionine-sulfoxide (NSO)-MENK, using liquid chromatography-mass spectrometry. Next, we isolated, purified, and tested NSO-MENK for opioid receptor binding affinity and analgesic effects. Compared to MENK, this NSO-MENK metabolite lacked appreciable binding affinity for δ, μ, and κ opioid receptors. Intrathecal injection of NSO-MENK in rats did not evoke antinociception, suggesting that PN-mediated chemical modifications of ENK suppress opioid signaling. When extended to chronic pain, intra-RVM FeTMPyP(5+) produced naloxone-sensitive reversal of mechanical allodynia in rats following chronic constriction injury of the sciatic nerve. Collectively, our data reveal the central role of PN in RVM descending facilitation during inflammatory and neuropathic pain potentially through anti-opioid activity.  相似文献   

14.
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.  相似文献   

15.
Neuropathic pain remains a major complication of various forms of injury to peripheral nerves in humans. Recently, 2 models of peripheral mononeuropathy in the rat have been described which closely resemble the human condition. Bennett and Xie described one model induced by the placement of 4 loose ligatures around the entire sciatic nerve; Seltzer et al. have described a second model produced by the placement of a tight ligature around one-third to one-half of the sciatic nerve. It is the purpose of this work to compare the effect of these injuries on the time course and magnitude of hyperalgesia as measured by paw withdrawal latency to a radiant heat stimulus. In addition, to evaluate the hypothesis that neuropathic pain develops as a result of injury-associated discharges, some injuries were induced following anesthesia of the sciatic nerve. Our results show that the partial constriction neuropathy (PCN) described by Bennett and Xie develops in a faster time frame than that produced by the tight ligature, or partial transection neuropathy (PTN), described by Seltzer and co-workers. In addition, the PCN shows a reduction in both the duration and magnitude of behavioral hyperalgesia obtained for those animals in which local anesthetic (lidocaine) was applied to the sciatic nerve, while the PTN does not show this sensitivity. The data suggest that injury-related discharge is one important factor contributing to the generation of hyperalgesia in the PCN model. The mechanism(s) responsible for the generation of hyperalgesia in the early stages of the PTN model are not lidocaine-sensitive. The data are discussed in reference to the previously reported differences in these models of hyperalgesia and the involvement of central changes.  相似文献   

16.
17.
A peripheral nerve injury often causes neuropathic pain but the underlying mechanisms remain obscure. Several established animal models of peripheral neuropathic pain have greatly advanced our understanding of the diverse mechanisms of neuropathic pain. A common feature of these models is primary sensory neuron injury and the commingle of intact axons with degenerating axons in the sciatic nerve. Here we investigated whether neuropathic pain could be induced without sensory neuron injury following exposure of their peripheral axons to the milieu of Wallerian degeneration. We developed a unilateral lumbar 5 ventral root transection (L5 VRT) model in adult rats, in which L5 ventral root fibers entering the sciatic nerve were sectioned in the spinal canal. This model differs from previous ones in that DRG neurons and their afferents are kept uninjured and intact afferents expose to products of degenerating efferent ventral root fibers in the sciatic nerve and the denervated muscles. We found that the L5 VRT produced rapid (24 h after transection), robust and prolonged (56 days) bilateral mechanical allodynia, to a similar extent to that in rats with L5 spinal nerve transection (L5 SNT), cold allodynia and short-term thermal hyperalgesia (14 days). Furthermore, L5 VRT led to significant inflammation as demonstrated by infiltration of ED-1-positive monocytes/macrophages in the DRG, sciatic nerve and muscle fibers. These findings demonstrated that L5 VRT produced behavioral signs of neuropathic pain with high mechanical sensitivity and thermal responsiveness, and suggested that neuropathic pain can be induced without damage to sensory neurons. We propose that neuropathic pain in this model may be mediated by primed intact sensory neurons, which run through the milieu of Wallerian degeneration and inflammation after nerve injury. The L5 VRT model manifests the complex regional pain syndrome in some human patients, and it may provide an additional dimension to dissect out the mechanisms underlying neuropathic pain.  相似文献   

18.
The aim of the present study was to develop a new experimental pain model by adapting the chronic constriction injury (CCI) model of the sciatic nerve to the exclusively sensory saphenous nerve in rats. Animals were divided into naïve, sham, and two experimental groups, in which two or four 4-0 chromic gut ligatures were loosely ligated around the saphenous nerve. Then, behavioral signs of neuropathic pain were observed for 8 weeks. In rats with four ligatures, prominent mechanical allodynia and thermal hyperalgesia developed; these behavioral signs were not prominent in rats with two ligatures. Pharmacological analysis was made in rats with four loose ligations; morphine and WIN 55,212-2, a cannabinoid agonist, reversed all of the modalities tested, whereas gabapentin only suppressed mechanical allodynia and amitriptyline only reduced mechanical hyperalgesia. Our data establish a rat model of saphenous CCI with significant allodynia and hyperalgesia, which is sensitive to a number of analgesic compounds.  相似文献   

19.
Intrathecal injection of a nitric oxide releasing compound, NOC-18, was used to define the role of nitric oxide (NO) in the spinal mechanism of neuropathic pain caused by unilateral chronic constriction injury to rat sciatic nerves. Paw withdrawal latency was used to evaluate nociception induced by thermal stimuli before surgery and afterwards at 1, 3, and 6 h, and on days 1, 2, 3, 4, 5, 8, and 12 after the nerve ligature. In the sham-surgery control groups, intrathecal injection of 10 or 100 μg of NOC-18 did not produce any change in withdrawal latencies. In rats with unilateral nerve ligation, however, administration of 1 or 10 μg, but not 0.1 μg, of NOC-18 significantly shortened the time in which thermal hyperalgesia developed after nerve injury. Injection of 1 μg of NOC-18 decreased the onset time of thermal hyperalgesia from 2 days to 3 h and with 10 μg hyperalgesia developed within 1 h after the nerve injury. The effects of intrathecal injection of MK-801, a N-methyl-

-aspartate (NMDA) receptor antagonist, N-nitro-

-arginine methyl ester (

-NAME), a NO synthase inhibitor, methylene blue (MB), a soluble guanylate cyclase inhibitor, and hemoglobin (Hb), a NO scavenger, on the development of thermal hyperalgesia after the sciatic nerve ligature were examined in the presence and absence of 1 and 10 μg of NOC-18. Acceleration of the development of thermal hyperalgesia induced by 1 and 10 μg NOC-18 was completely inhibited by Hb, but was not affected by either MK-801,

-NAME or MB. These findings indicate that NO plays an important role in the rapid development of thermal hyperalgesia after the nerve injury, but that facilitation of nociceptive processing in the spinal cord may entail an alternate to the NO–cyclic guanosine 3′,5′-monophosphate (cGMP) pathway.  相似文献   

20.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to subserve activity-dependent neuronal plasticity in the central nervous system. To examine in vivo the implication of spinal CaMKII activity in the generation and development of neuropathic pain after peripheral nerve injury, we used an animal model of mononeuropathy, the chronic constriction injury (CCI) model, in the rat. We found that, 3 days after CCI, the total CaMKII (tCaMKII) immunoreactivity increased in the superficial laminae of the spinal cord and this increase continued for up to 14 days. The immunoreactivity of phosphorylated CaMKII showed an increase from 1 day after CCI, which preceded the up-regulation of tCaMKII. A non-selective N-methyl-d-aspartate receptor antagonist, MK801, significantly attenuated the increase of tCaMKII and phosphorylated CaMKII. Moreover, intrathecal administration of an inhibitor of CaMKII, KN93, before the CCI surgery attenuated the development of thermal hyperalgesia and mechanical allodynia. In addition, KN93 significantly reduced the nociceptive behavior in phase II of the formalin test. These findings demonstrate that the activity of CaMKII in spinal neurons is elevated after peripheral nerve injury and may be involved in central sensitization. The alteration of CaMKII is considered to be a neuroplastic change that occurs in spinal neurons that contributes to neuropathic pain, suggesting the potential for the development of novel therapeutics for neuropathic pain that target CaMKII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号