首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
l-3,4-dihydroxyphenylalanine methyl ester (l-DOPA)-induced dyskinesia in Parkinson's disease may result from aberrant glutamatergic stimulation of the striatum due to synaptic plasticity in the motor cortex or striatum as a consequence of adaptation of striatal output pathways. This might result from changes in NMDA receptor subunit or NMDA receptor associated postsynaptic density (PSD) scaffold protein expression. Using immunoautoradiography the expression levels of NR1 and NR2B subunits of the NMDA receptor and the postsynaptic density scaffold proteins, PSD-95, PSD-93, and neurofilament light (NFL) were examined in normal common marmosets (Callithrix jacchus) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned animals that exhibited high or low levels of l-DOPA-induced dyskinesia. Brains from MPTP-lesioned animals that were not primed for l-DOPA-induced dyskinesia were not included in this study. No alterations in the NR1 NMDA receptor subunit were observed. The NR2B NMDA receptor subunit was increased in caudal caudate nucleus and putamen, hippocampus, cingulate motor area (CMA), supplementary motor area (SMA) and dorsal primary motor cortex (dMI) of highly dyskinetic MPTP-lesioned marmosets, but not in animals with low levels of dyskinesia. PSD-93 was decreased in the globus pallidus of marmosets with high and low levels of dyskinesia and increased in the CMA, SMA and dMI of highly dyskinetic marmosets. PSD-95 was increased in the SMA of highly dyskinetic marmosets, but not in animals with low dyskinesia. NFL expression was elevated in the SMA and dorsal and ventral MI of highly dyskinetic marmosets. These results suggest that l-DOPA treatment of MPTP-lesioned marmosets can affect glutamatergic systems and indicate that altered NMDA receptor function may relate to dyskinesia.  相似文献   

2.
Summary We have previously shown that a single dose of PCP produces a dose-related increase in NMDA-sensitive3H-glutamate binding in CA1 of hippocampus 24 hours later, and some regional changes in kainate binding. Here we report that dizocilpine (MK 801) (O.1 mg/kg and 1 mg/kg), a selective agonist at the PCP receptor and a noncompetitive antagonist of NMDA, produces a similar increase in NMDA-sensitive glutamate and kainate receptor binding in hippocampus 24 hours after a dose. These observations support the conclusion that blockade of glutamate-mediated transmission at the NMDA receptor selectively increases NMDA-sensitive glutamate receptor binding in CA1 of hippocampus and kainate binding in CA3 and dentate gyrus at putatively delayed time points. Several additional areas outside of hippocampus also showed receptor changes at 24 hours after MK801.  相似文献   

3.
目的研究加兰他敏对阿尔茨海默病(AD)大鼠认知功能的影响及NMDA受体在其中的作用。方法雄性SD大鼠65只,随机分为假手术、链脲菌素(STZ)组,加兰他敏、MK-801和犬尿烯酸3个治疗组。侧脑室注射STZ制备大鼠AD模型,水迷宫试验测定大鼠的学习记忆能力。3个治疗组分别给予加兰他敏、MK-801 加兰他敏、犬尿烯酸 加兰他敏,共6周。结果术后第10天各组潜伏期明显延长,过平台次数明显减少,差异均无统计学意义。治疗6周后加兰他敏组潜伏期缩短,过平台次数增加,与STZ组比较,有显著差异,而MK-801和犬尿烯酸组潜伏期和过平台次数与STZ组比较,无明显差异。结论加兰他敏对AD大鼠的认知功能具有明显的改善作用,而应用NMDA受体阻断剂后其治疗作用消失。说明NMDA受体介导了加兰他敏对AD大鼠认知功能的改善。  相似文献   

4.
Summary Memantine is a 1-amino-adamantane derivative which has been proposed to be useful in the treatment of Parkinson's disease. Its beneficial effect has been related to its novel properties as an NMDA receptor blocker which can neutralize the effect of glutamate at striatal and subthalamic levels. In the present study, conducted in an open-fashion, 14 parkinsonian patients with motor fluctuations taking L-dopa, were given a supplement of memantine 30 mg/day. After one month, 10 patients completed the treatment (4 discontinued it due to abdominal pain, psychomotor agitation, confusion and dizziness). In 5 patients, the main parkinsonian features improved significantly (1 point or more on the Webster scale). In 6 patients, off episodes improved (from daily mean of 273 minutes, to 172 minutes). In summary, memantine addition to parkinsonian features, could form a basis for novel therapeutic strategies directed to neutralize the effects of glutamate at striatal and subthalamic levels.  相似文献   

5.
Blockade of NMDA glutamate receptors with dizocilpine (MK-801) has been shown to cause substantial cognitive deficits and has been used to model symptoms of schizophrenia. Nicotine or nicotinic agonists, in contrast, may enhance cognitive or attentional functions and be of therapeutic potential in schizophrenia. Nicotinic–glutamatergic interactions, therefore, may have important implications in cognitive functions and antipsychotic treatments. Clozapine, a widely used antipsychotic drug, has been shown in some studies to be effective in ameliorating the cognitive deficits associated with schizophrenia. However, there is some evidence to suggest that clozapine similar to haloperidol may impair sustained attention in rats. In this study, we sought to determine whether chronic nicotine or dizocilpine may modify the effects of acute clozapine on attentional parameters and whether the behavioral effects would correlate with nicotinic or NMDA receptor densities in discrete brain regions. Adult female rats trained on an operant visual signal detection task were given 4 weeks of nicotine (5 mg/kg/day), dizocilpine (0.15 mg/kg/day), the same doses of both nicotine and dizocilpine as a mixture, or saline by osmotic minipump. While on chronic treatment, rats received acute injections of various doses of clozapine (0, 0.625, 1.25, 2.5 mg/kg, sc) 10 min prior to tests on attentional tasks. The pumps were removed on day 28 and 24 h later the animals were sacrificed for measurements of receptor densities in specific brain regions. The percent correct hit as a measure of sustained attention was significantly impaired by clozapine in a dose-related manner. Neither chronic nicotine nor dizocilpine affected this measure on their own or modified the effects of clozapine. Both nicotine and dizocilpine affected the receptor bindings in a region specific manner and their combination further modified the effects of each other in selective regions. Attentional performance was inversely correlated with alpha-bungarotoxin binding in the frontal cortex only. In conclusion, the data suggest attentional impairments with clozapine alone and no modification of this effect with nicotine or dizocilpine. Moreover, cortical low affinity nicotinic receptors may have a role in attentional functions.  相似文献   

6.
The mRNA of the NR1 subtype of glutamate receptor in Alzheimer's disease   总被引:1,自引:0,他引:1  
Summary. Glutamate has been implicated in the pathogenesis of Alzheimer's disease (AD). Controversial data exists regarding changes in the N-methyl-D-aspartate (NMDA) receptor complex in AD. We wished to elucidate the hypothesis that the NMDA receptor system is involved in the pathogenesis of AD using a gene expression approach targeting the mRNA of the universal subtype of the NMDA receptor NR1. This was performed using in situ hybridization and antisense 35S-labelled oligonucleotides on brain tissue collected at post-mortem. Relative mRNA expression was measured in standardised optical density units (OD units) using videodensitometry without knowledge of the diagnosis. The study population consisted of AD (n = 6) and neurodegenerative non-Alzheimer controls (non-AD, n = 14). Gene expression was measured in the frontal lobe, superior temporal gyrus and three areas within the hippocampus. We have observed no significant differences in the relative mRNA expression of the NR1 subtype of glutamate receptor in the following regions: frontal lobe AD = 60.7 ± 14.1 OD units mRNA (x ± 1SE) vs 52.6 ± 1 in non-AD (Mann-Whitney test, p = 0.477); the superior temporal gyrus: AD = 53.3 ± 13.9 vs 38.2 ± 7 (p = 0.37); the CA1 region: AD = 37.8 ± 7.75 vs 81.5 ± 25.7 (p = 0.66); subiculum AD = 46.7 ± 11.0 vs 105 ± 43.3 (p = 0.82); parahippocampal gyrus AD = 36.6 ± 9.3 vs 81.7 ± 40.6 (p = 0.90). There were trends to a reduction in NR1 mRNA in the hippocampus and increased NR1 within the frontal and superficial temporal gyrus which were not significant. There was variation within and between all patients with and without AD in the magnitude of NR1 expression in all anatomical regions studied. The findings suggest heterogeneity in the involvement of the post-synaptic glutamatergic system in AD. Received October 6, 2000; accepted September 17, 2001  相似文献   

7.
8.
The potential implication of a decrease in the function of N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia has long been hypothesised. Accordingly, compounds that inhibit the glycine-1 transporter or target the glycine-binding site of NMDARs, including the co-agonists d-serine and glycine, have shown promise in treating the symptoms of schizophrenia. Clinical interest for d-serine has also been supported by evidence for its abnormal metabolism in schizophrenic patients. Together with d-serine, another d-form amino acid, d-aspartate, exists in the brain of mammals. Synthesised by the enzyme aspartate racemase, d-aspartate is highly concentrated in the prenatal brain; after birth, its levels sharply decrease due to the catabolising activity of the enzyme d-aspartate oxidase. d-aspartate is able to stimulate NMDAR-dependent neurotransmission through direct action at the glutamate-binding site of NMDARs, thus functioning as an endogenous agonist for this subclass of glutamate receptors. In this study, we evaluated for the first time the content of d-aspartate and of its derivative, NMDA, in the post-mortem prefrontal cortex and striatum of schizophrenic patients. Moreover, in the same brain samples, we analysed the expression levels of the subunits that form NMDARs, which are the in vivo targets of d-aspartate and NMDA. Interestingly, we found that d-aspartate and NMDA are consistently decreased in schizophrenia brains compared to control brains. In the prefrontal cortex, this decrease is correlated with a marked downregulation of NMDAR subunits. Overall, these results agree with the innovative therapeutic research in schizophrenia that is aimed at targeting glutamatergic transmission viad-amino acids.  相似文献   

9.
N-methyl-D-aspartate (NMDA) receptor antagonists have antiakinetic and antidyskinetic effects in animals models of Parkinson's disease (PD). However, non-selective inhibition of NMDA receptors throughout the central nervous system may result in undesired effects such as ataxia and psychosis. We therefore studied Ro 25-6981, an activity-dependent antagonist of NMDA receptors containing the NR2B subunit which are predominantly expressed in the striatum. Ro 25-6981 induced contraversive rotations in 6-hydroxydopamine (6-OHDA)-lesioned rats without stimulating locomotion in normal rats and reversed parkinsonian symptoms in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-treated common marmosets. Due to the small number of marmosets, there were no significant differences between Ro 25-6981 and vehicle though there was a significant trend toward differences, as shown by the Page test. Furthermore, Ro 25-6981 potentiated the action of levodopa in both species and attenuated the maximal levodopa response in 6-OHDA-lesioned rats chronically treated with levodopa without reducing the overall response. Ro 25-6981 also potentiated the action of the dopamine receptor agonists apomorphine, A68930 and quinpirole in 6-OHDA-lesioned rats. The present observations suggest a therapeutic potential of NR2B-selective NMDA receptor antagonists in the management of PD.  相似文献   

10.
Dual probe microdialysis was employed in freely moving 6-hydroxydopamine (6-OHDA) hemilesioned rats to investigate the effects of blockade of N-methyl-D-aspartate (NMDA) receptors in the dorsolateral striatum on glutamate (Glu) release from the ipsilateral substantia nigra pars reticulata (SNr). Perfusion for 60 min with the NMDA antagonist dizocilpine (0.1 and 1 microM) in the dopamine (DA)-denervated striatum stimulated nigral Glu release (peak effect of 139 +/- 7% and 138 +/- 9%, respectively). The lower (0.01 microM) and higher (10 microM) concentrations were ineffective. In sham-operated rats, dizocilpine failed to affect nigral Glu release up to 1 microM but induced a prolonged stimulation at 10 microM (153 +/- 9% at the end of perfusion). The present results show that DA-deficiency in the striatum of hemiparkinsonian rats is associated with increased responsivity of nigral Glu release to striatal NMDA receptor blockade. This suggests that changes of NMDA receptor mediated control of the striatofugal pathways occur during Parkinson's disease (PD).  相似文献   

11.
Ho Y  Liu T  Tai M  Wen Z  Chow RS  Tsai Y  Wong C 《Brain research》2001,900(2):214-218
Olfactory bulbectomy (OBX) transects the glutamatergic efferents from the olfactory bulbs, and the changes of glutamatergic N-methyl-D-aspartate (NMDA) receptor-mediated function are though to be involved in the behavioral deficits seen in OBX rats. In the present study, irritability scores in OBX male Wistar rats were correlated with discrete regional effects on NMDA receptor function measured using a [3H] MK-801 binding assay. Irritability scores, measured before and for 2 weeks after OBX, showed a gradual increase in irritability after OBX. A reduction of the NMDA receptor density was observed in the cerebral cortex and amygdala 16 days after OBX, but not in the striatum, olfactory tubercle, entorhinal cortex, and hippocampus. These results demonstrate that OBX causes changes in the NMDA receptor system in certain brain regions and suggest that these changes may be responsible for the behavioral deficits of OBX rats.  相似文献   

12.
The presence of the N-methyl-D-aspartate (NMDA) receptor glycine-binding site and its role in locomotor activity have been examined using fictive swimming in stage 42 Xenopus laevis frog tadpoles as a simple model system. The specific NMDA/glycine site blocker L-689560 (0.1-20 microm) impaired swimming rhythm generation and abolished NMDA-induced locomotor-like ventral root activity. D-serine (50 microm), an agonist at the NMDA/glycine site, increased the duration of skin stimulus-induced fictive swimming episodes, and produced slow modulations of burst frequency and amplitude. These effects of D-serine were reversed by L-689560. In some animals, D-serine also induced an alternative intense, non-locomotory form of rhythmic motor output termed struggling. Glycine (100 microm), another endogenous agonist at this site, triggered similar effects to D-serine, but only when applied in the presence of strychnine. Manipulations of endogenous glycine levels using sarcosine or ALX 5407 (inhibitors of the glycine re-uptake protein, GlyT1b), produced similar effects to glycine site agonists, including increased episode durations, and modulations in cycle period and burst amplitude. Sarcosine and ALX 5407 also induced struggling. In summary, these experiments support the hypothesis that NMDA receptors in the swimming network of Xenopus laevis tadpoles possess glycine-binding sites, not all of which are fully occupied under normal circumstances. Altering the strength of the NMDA receptor-mediated component of the synaptic drive for swimming by increasing or decreasing occupancy of this site potently influences the locomotor pattern.  相似文献   

13.
Excitatory synapses on dopaminergic neurons of the ventral tegmental area (VTA) represent an important role in psychostimulant-induced rewarding effect. This study investigated the regulation of ryanodine receptor (RyR) and N-methyl-D-aspartate (NMDA) receptor expression in mice under intermittent methamphetamine (METH) treatment using a place preference procedure. RyR-1 and -2 significantly increased in the VTA of mice with METH-induced place preference, whereas RyR-3 showed no changes. In addition, the levels of NR1, NR2A, and NR2B subunits were increased in the VTA. The METH-induced place preference was inhibited by intracerebroventricular pretreatment with MK-801, a noncompetitive NMDA receptor antagonist, and ifenprodil, a selective NR2B subunit-containing NMDA receptor antagonist, in a dose-dependent manner. Under these conditions, the increase of RyR-1 and -2 in the VTA was significantly blocked by ifenprodil. The immunohistochemical analysis revealed the colocalization of RyR-1 and -2 with NR2B subunits in dopaminergic neurons in the mouse VTA. These findings suggest that RyRs could be involved in the development of METH-induced place preference and that NR2B subunit-containing NMDA receptors in mice showing METH-induced place preference play an important role in expression of RyRs.  相似文献   

14.
Molecular studies point to a role for the type 1 corticotropin-releasing factor receptor (CRF(1)) in anxiogenic-like and activating effects of CRF and stress. However, CP-154,526, a selective CRF(1) antagonist, has yielded mixed results in such tests. Few studies have examined the behavioral effects of other CRF(1) antagonists. Therefore, we examined the effects of antalarmin, a structurally related analog of CP-154,526, on anxiety-like behavior and motor activation. Antalarmin blocked the anxiogenic-like effect of CRF in the elevated plus maze, without affecting anxiety-like behavior in vehicle-treated animals. Antalarmin decreased spontaneous defensive withdrawal behavior in a novel, brightly illuminated open field. Finally, antalarmin blocked the activating effects of CRF, but not D-amphetamine, without producing motor sedation. These findings indicate that the CRF(1) receptor mediates anxiogenic-like effects of novelty stress and the anxiogenic-like and activating effects of CRF and support the hypothesis that CRF(1) antagonists may be useful for the pharmacotherapy of pathological anxiety.  相似文献   

15.
Summary. We investigated the relationship between the loss of nicotinic acetylcholine receptors (nAChR) and the cognitive decline or neuropathological changes seen in Alzheimer's Disease (AD) and dementia with Lewy bodies (DLB). Midfrontal (MF) cortex of 31 AD, 24 DLB and 11 nondemented controls was examined. Total plaque (TP), neuritic plaque (NP) and neurofibrillary tangle (NFT) counts were obtained. NAChR binding was assayed using 3H-epibatidine [3H-EPI]. Last Blessed Information-Memory-Concentration scores (BIMC), Mini-Mental State Examination (MMSE), Mattis Dementia Rating Scale (DRS) scores were collected. There were no correlations between 3H-EPI binding and TP, NP, NFTs counts in either AD or DLB. Last BIMC, MMSE, DRS scores did not correlate with 3H-EPI binding in AD or DLB. Thus, decline in cognitive function does not correlate with loss of nAChR in DLB or AD at the end of life suggesting that later in these diseases, loss of nAChR binding is not a reliable marker of cognitive function in AD or DLB. Loss of nAChR activity does not appear to be related to plaques or NFTs in AD or DLB. Received March 25, 2001; accepted June 6, 2001  相似文献   

16.
17.
The high potassium-evoked taurine efflux in the nervous tissue has been entirely considered to be the result of the cell swelling produced by KCl influx via passive Donnan forces. However, the extracellular taurine increase evoked in the hippocampus by applying 6-100 mM KCl through microdialysis probes, which saturates at a concentration of 25 mM KCl, is not congruent with the mentioned osmosensitive release of taurine stimulated by high potassium. Therefore, we studied whether the taurine release elicited by different high KCl concentrations (25, 50, 75, or 100 mM) was blocked under hypertonic conditions (+100 mM sucrose). Taurine release stimulated by 25 mM KCl was totally osmosensitive, but that released by higher KCl concentrations became progressively osmoresistant, achieving more than the 60% of the extracellular taurine enhancement during 100 mM KCl perfusion. The osmoresistant taurine release evoked by 100 mM KCl perfusion was partially reduced by a solution without Ca(2+) and with high Mg(2+), or by D,L-2-amino-5-phosphopentanoic acid, an N-methyl-D-aspartic acid (NMDA) receptor antagonist. Moreover, the release of taurine induced by a hypoosmotic solution was reduced by the presence of either high K(+) (75 mM) or NMDA (100 microM). These results indicate that although moderately high [K(+)] evoke the osmosensitive release of taurine, higher [K(+)] inhibit it and trigger the release of taurine by an osmoresistant mechanism. This last component is partially mediated by NMDA receptors activated by the glutamate released during potassium-induced depolarization.  相似文献   

18.
In the rat, antinociception of supraspinal origin is observed in response to administration of cocaine or an antagonist of the NMDA receptor for glutamate. The current study was conducted to determine if endocannabinoids are involved in the antinociceptive effect of cocaine, or antagonism of NMDA receptor binding. Intraperitoneal (i.p.) administration to male rats of cocaine, or the NMDA receptor antagonist, MK-801, resulted in a significant antinociceptive response of supraspinal origin, as indicated by a significant increase in reaction time in the hot plate test of analgesia (increase in the amount of time before the animal reacted to the hot plate by licking its paws or jumping). Treatment with SR141716A, a specific antagonist of the cannabinoid (CB1) receptor, resulted in a complete reversal of cocaine-induced antinociception when administered at a dose of 5.0mg/kg. Although the 2.5 and 5.0mg/kg doses of SR141716A produced a significant reduction in the antinociceptive effect of MK-801, the effect was incomplete since the reaction time in the hot plate test remained greater than that observed in vehicle-treated controls. These findings suggest that activation of the CB1 receptor participates significantly in antinociception resulting from treatment with cocaine and with the NMDA receptor antagonist, MK-801. The partial reversal of the antinociceptive effect of MK-801 by CB1 receptor antagonism indicates other mediators of nociception, in addition to the endocannabinoids, appear to be active in the antinociceptive response to NMDA receptor antagonism.  相似文献   

19.
The N-methyl-d-aspartate glutamate receptor (NMDAR) has been implicated in preterm brain injury (periventricular leukomalacia (PVL)) and represents a potential therapeutic target. However, the antagonist dizocilpine (MK-801) has been reported to increase constitutive neuronal apoptosis in the developing rat brain, limiting its clinical use in the developing brain. Memantine is another use-dependent NMDAR antagonist with shorter binding kinetics and has been demonstrated to be protective in a rat model of PVL, without effects on normal myelination or cortical growth. To further evaluate the safety of memantine in the developing brain, we demonstrate here that, in contrast to MK-801, memantine at neuroprotective doses does not increase neuronal constitutive apoptosis. In addition, there are no long-term alterations in the expression of NMDAR subunits, AMPAR subunits, and two markers of synaptogenesis, Synapsin-1 and PSD95. Evaluating clinically approved drugs in preclinical neonatal animal models of early brain development is an important prerequisite to considering them for clinical trial in preterm infants and early childhood.  相似文献   

20.
In Parkinson's disease (PD), degeneration of the dopaminergic nigrostriatal pathway leads to enhanced transmission at NMDA receptors containing NR2B subunits. Previous studies have shown that some, but not all, NR2B-containing NMDA receptor antagonists alleviate parkinsonian symptoms in animal models of PD. Furthermore, enhanced NMDA receptor-mediated transmission underlies the generation of L-DOPA-induced dyskinesia (LID). The subunit content of NMDA receptors responsible for LID is not clear. Here, we assess the actions of the NMDA antagonist CP-101,606 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset model of Parkinson's disease. CP-101,606 is selective for NMDA receptors containing NR2B subunits, with higher affinity for NR1/NR2B complexes compared to ternary NR1/NR2A/NR2B complexes. CP-101,606 had no significant effect on parkinsonian symptoms when administered as monotherapy over a range of doses (0.1-10 mg/kg). CP-101,606 provided a modest potentiation of the anti-parkinsonian actions of L-DOPA (8 mg/kg), although, at doses of 1 and 3 mg/kg, CP-101,606 exacerbated LID. Results of this study provide further evidence of differences in the anti-parkinsonian activity and effects on LID of the NR2B subunit selective NMDA receptor antagonists. These distinctions may reflect disparities in action on NR1/NR2B as opposed to NR1/NR2A/NR2B receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号