首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual dimorphism in the spinal nucleus of the bulbocavernosus (SNB) of the Mongolian gerbil is achieved by two periods of postnatal increase, one in the first month after birth and one at puberty. The pubertal increase in motoneuron number is of particular interest because it occurs in a nearly adult animal. The purpose of this research was threefold. The first was to determine the response of the SNB in prepubertally castrated male gerbils receiving delayed hormone replacement as adults. Testosterone propionate (TP) treatment resulted in numbers of SNB motoneurons comparable to those seen in intact males, whereas androgen metabolites were less effective. The second purpose was to determine the latency of motoneurons to appear in response to TP. New SNB motoneurons appeared within 2 days of delayed TP replacement in prepubertally castrated males, and 16 days of treatment did not further increase SNB motoneuron numbers. The response of the motoneurons to TP appeared more rapid than the response of the bulbocavernosus (BC) muscle, scent gland, and seminal vesicles. The third purpose was to determine whether the new cells were connected to a target muscle. After 16 days of TP treatment, more motoneurons were labeled in the SNB following injection of a retrograde tract tracer into the BC muscle compared with the number seen in control animals. Thus, new motoneurons appeared in the SNB of prepubertally castrated male Mongolian gerbils within 2 days of the start of delayed TP treatment and were connected to a target within 16 days of TP treatment.  相似文献   

2.
The lumbar spinal cord of the rat contains two sexually dimorphic motor nuclei, the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN). Postnatally, SNB and DLN motoneurons grow substantially and reach their adult morphology by 7 weeks of age. The masculinization of SNB and DLN motoneuron dendrites depends upon steroid hormones. After early castration, the growth of SNB and DLN dendrites is markedly attenuated, but testosterone replacement restores this growth. In the SNB, initial dendritic growth is also supported in castrates treated with estrogen. By using castration and hormone replacement techniques, we examined the development of DLN motoneuron morphology in estrogen-treated castrated rats to determine if estrogen also supports the growth of DLN motoneurons. In addition, given that dorsal root ganglia may be a site of estrogen action, we tested the hypothesis that estrogen acts at primary afferents to support DLN dendritic growth. Thus, we attempted to block the potential trophic effect of estrogen by performing unilateral dorsal rhizotomies in estrogen-treated castrates. DLN motoneuron morphology was analyzed at 4 and 7 weeks of age by using cholera toxin horseradish peroxidase (BHRP) histochemistry. As found for SNB motoneurons, estrogen treatment transiently supported development. DLN motoneurons in estrogen-treated castrates developed normally through 4 weeks of age, but by 7 weeks, DLN motoneuron morphology in estrogen-treated castrates was no longer different from that in oil-treated castrates. Moreover, deafferentation via unilateral dorsal rhizotomy did not inhibit estrogen's ability to masculinize the early development of DLN motoneurons. Thus, the trophic effect of estrogen did not appear to act via the dorsal root ganglia to support the early postnatal development of DLN motoneurons.  相似文献   

3.
We documented the ontogeny of androgen receptor (AR) immunoreactivity for rat lumbar motoneurons of the sexually dimorphic motor pools, the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN), and for the sexually monomorphic retrodorsolateral nucleus (RDLN). We also assessed the ontogeny of AR immunoreactivity in the rat sexually dimorphic levator ani (LA), which is a target muscle for SNB motoneurons. Lumbar spinal cords and LA muscles from gonadally intact males at ages postnatal days (P)7, P10, and P14 and as adults were incubated with the rabbit antiserum PG-21. Half of the prepubertal males (P7–P14) received 200 μg of testosterone propionate (TP) 2 hours prior to death to enhance immunodetection of ARs. We found that SNB motoneurons developed AR immunoreactivity first and achieved adult levels by P10. In contrast, the number of RDLN motoneurons with AR-immunopositive nuclei during development remained well below the adult number. Development of AR immunoreactivity in the DLN shared characteristics with both the SNB and the RDLN. AR immunoreactivity developed in some DLN motoneurons by P10, although the percentage of labelled motoneurons remained below that in adulthood. Acute TP treatment significantly increased the number of SNB motoneurons with AR-positive nuclei at P7. The LA showed a robust pattern of AR immunostaining from P7 to adulthood. Immunostaining was present only in nuclei and constituted only a subpopulation of the nuclei present in muscle. The present results confirm and extend previous results based on steroid autoradiography and steroid binding assays regarding regional and developmental differences in the expression of ARs. J. Comp. Neurol. 379:88-98, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Androgen might regulate expression of androgen receptors (AR) in AR-containing motoneurons in young animals. In the present study, it was examined whether expression of AR was also regulated by androgen in aged animals. Twelve male rats were castrated at 26 months of age. Five days following castration, the animals were treated with testosterone propionate (TP; six males) or vehicle (six males) and killed 2 hours later. Six sham-castrated rats served as controls. AR immunoreactivity was examined in motoneurons of the spinal nucleus of the bulbocavernosus (SNB) in these animals by immunohistochemistry using the polyclonal antibody PG21. In control animals, slightly intense AR immunoreactivity was confined to the nuclei of the motoneurons. AR immunoreactivity was completely eliminated in the motoneurons of castrated rats. In castrated, aged animals treated with TP, the intensity of AR immunoreactivity in the nuclei of SNB motoneurons was increased. Plasma levels of testosterone in castrated, aged animals 2 hours following treatment with TP were significantly greater than those in controls. These results suggest that expression of AR in motoneurons of the SNB in aged male rats is up-regulated in response to androgen and that androgen may be, at least in part, involved in the process of aging of the SNB in male rats.  相似文献   

5.
Gap junctions exist on motoneurons of the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN), both sexually dimorphic motor nuclei in the lumbar spinal cord of the rat. In addition, messenger RNA for gap junction proteins is expressed in motoneurons of the retrodorsolateral nucleus (RDLN), a nondimorphic spinal motor nucleus that innervates a muscle of the foot. Gap junctions on SNB and DLN motoneurons are androgen sensitive; the number and size of gap junctions decrease following castration, a change that can be reversed with exogenous testosterone replacement. In contrast, RDLN gap junction mRNA levels remain constant throughout hormone manipulation. In this study, dye coupling was used to examine patterns of gap junction-mediated connectivity in these three lumbar spinal motor nuclei. Injection of dye into single motoneurons resulted in spatially extensive labeling of neighboring cells in all three nuclei; significantly more coupling was observed in the sexually dimorphic nuclei than in the RDLN. Dye-coupled clusters of cells included motoneurons and interneurons; coupling was bilateral in the SNB. Treatment with oleamide, a gap junction blocker, completely attenuated labeling. In all nuclei, androgen manipulation did not alter the number, identity, or distribution of coupled cells. Thus, sexually dimorphic nuclei in the spinal cord exhibit greater dye coupling than do nondimorphic populations, and the patterns of connectivity are insensitive to androgen despite modification of their number and size.  相似文献   

6.
Fraley GS  Ulibarri CM 《Brain research》2002,953(1-2):265-271
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic group of motoneurons in Rexed's Lamina X of the lumbosacral spinal cord of the Mongolian gerbil. The SNB innervates the perineal musculature, the bulbocavernosus (BC), levator ani (LA), and external anal sphincter (EAS). Recent studies demonstrated a peripubertal component to the masculinization of the gerbil SNB with an apparent increase in both motoneuron size and number after puberty as measured with a Nissl stain. However, these studies could not determine if the apparent change in motoneuron number were due to the long-term castration involved in the methodology or due to a loss of motoneuron size beyond the point of being recognizable as motoneurons. Therefore, the current study was undertaken to examine this possibility by repeating the experimental protocol from previous peripubertal studies, on adult male gerbils with the addition of retrograde tract-tracing. Adult male gerbils were castrated at postnatal day (PND) 150 and given subcutaneous implants of testosterone proprionate (TP), dihydrotestosterone (DHT), estradiol benzoate (EB), EB and DHT, no steroid, or left intact. At PND215, the animals were injected with fluorogold (FG), a retrograde tract-tracer. At PND220, the animals were aldehyde perfused transcardially. The spinal cords were sectioned and alternate sections processed for either thionin-stain or FG visualization. Results indicated that long-term castration had no effect on SNB motoneuron number but did decrease SNB motoneuron size. TP, and to a lesser extent DHT, treatment could prevent the reduction in motoneuron size, however, EB could not. This study indicates that the maintenance of the adult male gerbil SNB-BC system is androgen, not estrogen, dependent and that long-term castration does not reduce motoneuron size to the point where they can no longer be distinguished.  相似文献   

7.
The dorsolateral nucleus (DLN) of the rat lumbosacral spinal cord is sexually dimorphic, with males having more and larger DLN motoneurons than do females. The development of this dimorphism depends on the presence of perinatal androgens. The present study sought to determine the periods in development during which the DLN is sensitive to the masculinizing effects of the androgen testosterone propionate (TP). The size and number of DLN motoneurons in neonatally ovariectomized female rats that were exposed to TP during either the late prenatal, early postnatal, or late postnatal period were compared to control males and females. Both late prenatal and early postnatal TP injections significantly increased DLN number by 48% and 50%, respectively, but the sensitive period for TP masculinization of soma size seems to be primarily postnatal, because prenatal TP injections had little or no effect on that measure. The sensitive period for TP masculinization of DLN neuron number is similar to that of the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB). However, the sensitive period for TP masculinization of DLN soma size appears to begin later than for the SNB.  相似文献   

8.
Previous studies have shown that calcitonin gene-related peptide (CGRP) mRNA steady-state levels and CGRP immunoreactivity in motoneurons of the spinal nucleus of the bulbocavernosus (SNB) are inversely related to the gonadal steroid environment in male rats. Since both the SNB motoneurons and their target muscles, the bulbocavernosus and the levator ani, are steroid sensitive, gonadal steroids may act at either site to regulate CGRP expression. In the present study, we tested the hypothesis that gonadal steroids influence CGRP expression in SNB motoneurons through their effects on the bulbocavernosus and levator ani muscles. We determined the levels of alpha-CGRP mRNA and immunoreactive CGRP in SNB motoneurons of adult male rats following injection of the bulbocavernosus with muscle extracts from bulbocavernosus/levator ani of castrated rats, paralysis of the bulbocavernosus or pudendal nerve cuts. Following injection of the bulbocavernosus/levator ani with extracts from castrated rats, the level of CGRP expression and the number of SNB motoneurons with alpha-CGRP message were increased. These studies suggest that the bulbocavernosus/levator ani muscles from castrated rats produce a factor that increases levels of CGRP. Injections of extract prepared from the bulbocavernosus and levator ani muscles of gonadally intact rats did not change the expression of alpha-CGRP mRNA in the SNB. Paralysis of the bulbocavernosus/levator ani with a local anesthetic increased the number of SNB motoneurons expressing alpha-CGRP mRNA and CGRP immunoreactive neurons. To determine whether nerve damage accounted for the observed effects following injection of anesthetic, the pudendal nerves were cut bilaterally.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Motoneurons express calcitonin gene-related peptide (CGRP). Previous studies have shown that CGRP immunoreactivity is regulated by testosterone in the androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In this research the effect of plasma levels of testosterone on the expression of alpha CGRP mRNA in the SNB motoneurons of adult male rats was studied with in situ hybridization. The number of motoneurons expressing alpha CGRP mRNA and the level of alpha CGRP mRNA expression was significantly higher in the SNB of castrated male rats than in the SNB of gonadally intact rats. Using a 5x background labeling criterion in castrated rats 88.1 +/- 4.5% while in intact rats 75.3 +/- 6.4% of SNB motoneurons expressed alpha CGRP mRNA. Testosterone replacement at the time of castration prevented the effect of castration on the expression of alpha CGRP mRNA in SNB motoneurons. In castrated rats, the increase in the number of SNB cells expressing CGRP was the result of increased steady state levels of alpha CGRP mRNA in all SNB neurons.  相似文献   

10.
The spinal cord of the rat contains two sexually dimorphic nuclei: the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN). These nuclei and the perineal muscles they innervate are present in males but reduced or absent in females. The sex difference in motoneuron number in these nuclei is due to an androgen-regulated motoneuron death. Developing females treated with the androgen testosterone propionate (TP) have a fully masculine number of SNB and DLN motoneurons and retain the perineal muscles they would normally have lost. Paradoxically, females treated prenatally with the androgen dihydrotestosterone propionate (DHTP) also retain the perineal musculature but as adults lack the SNB motoneurons which would normally innervate them. The SNB target muscles retained by DHTP females are anomalously innervated by motoneurons in the DLN. Counts of motoneurons and degenerating cells in the developing SNB of DHTP-treated females showed that their feminine number is the result of a failure of DHTP to prevent the death of SNB motoneurons. Furthermore, the peak number of SNB motoneurons was below that of normal females, suggesting that DHTP treatment may also have inhibited motoneuronal migration. However, DHTP treatment fully masculinized both motoneuron number and degenerating cell counts in the DLN of these females, and it is this masculinized DLN that gives rise to the anomalous projection. Taken together, these results suggest that the effects of different androgens during development are specific and complex, involving the regulation of motoneuron death, migration, and specification of peripheral projections.  相似文献   

11.
Ten aged male rats (24 months of age) were castrated and implanted subcutaneously with Silastic capsules containing testosterone (T)(5 males) or nothing (5 males). Five sham-castrated males (25 months of age) served as controls. Four weeks after castration, cholera toxin-horseradish peroxidase (CT-HRP) was injected into the bulbocavernosus muscles and animals were killed 2 days later. The spinal cords containing the spinal nucleus of the bulbocavernosus (SNB) were dissected, processed with a modified tetramethylbenzidine method for visualization of retrogradely transported CT-HRP, and examined ultrastructurally. Neuronal structures apposing the membranes of 150 CT-HRP-labeled SNB motoneurons were analyzed by measuring the percentage of somatic membranes covered by synaptic contacts, synaptoid contacts, and neuron-neuron contacts. Most of the neuronal structures in the control and experimental SNB motoneurons consisted of synaptic contacts. The mean percentage of somatic membranes covered by synapses in castrated, aged males treated with T was significantly greater than that in control or castrated animals. Size and number of synaptic contacts per unit length of somatic membranes in castrated, aged males treated with T were also significantly greater than those in control or castrated animals. Plasma levels of T in castrated, aged males treated with T were significantly greater than that in controls. These results suggest that the SNB motoneurons of aged male rats retain a considerable synaptic plasticity in response to androgen, and that androgen may be, at least in part, involved in the process of aging of the SNB system in male rats.  相似文献   

12.
Androgenic regulation of androgen receptor (AR) immunoreactivity was examined in androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB) in adult male rats by immunohistochemistry using the polyclonal antibody, PG21. In intact controls, intense AR immunoreactivity was confined to the cell nucleus, but not in the nucleolus of SNB motoneurons, whereas cytoplasmic AR immunoreactivity was weak. Androgen withdrawal significantly reduced both the intensity of AR immunoreactivity in the nuclei and number of AR immunoreactive nuclei of the SNB motoneurons within 1 day of castration. AR immunostaining in the nucleus and cytoplasm was completely eliminated 5 or 10 days following castration. These changes were prevented by replacement of testosterone propionate (TP). The number of AR immunoreactive nuclei recovered to about half of the control levels within 20  min or 1  hr of TP administration to males 5 days after castration, although the intensity of AR immunoreactivity was almost the same as that of males 1 day following castration. Both the intensity of nuclear and cytoplasmic AR immunoreactivity and number of AR immunoreactive nuclei recovered to the control levels 2 or 6  hr after TP injection. These results suggest that androgen causes a significant up-regulation in AR expression of SNB motoneurons.  相似文献   

13.
Androgens influence the postnatal development of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) by regulating neuromuscular synapse elimination, the process through which multiple axonal inputs are retracted from each muscle fiber until single innervation is established. In the rat levator ani (LA), one of the target muscles for SNB motoneurons, much of this loss of multiple innervation can be prevented by prepubertal androgen treatment. We used steroid autoradiography to measure the ontogeny of steroid accumulation in the SNB and the retrodorsolateral nucleus (RDLN), two motoneuronal groups thought to differ in their sensitivity to androgens. Spinal cord tissue was analyzed from castrated male rats at 7, 14, 21, and 60 days of age after injection of radiolabelled testosterone. SNB and RDLN motoneurons differ in the ontogeny of androgen accumulation. Over 80% of SNB motoneurons develop the capacity to accumulate androgen during the second week after birth, during the period when androgen regulates synapse elimination in the LA. In contrast, androgen accumulation in RDLN motoneurons develops much later (after 21 days). These data suggest that androgen may act directly on SNB motoneurons to influence synapse elimination.  相似文献   

14.
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic pool of motoneurons that innervates the perineal musculature. In the Mongolian gerbil, the SNB lies dorsolateral to the central canal within the lumbosacral spinal cord. Previously, no information was available on the normal development of the sexual dimorphism of this structure in the Mongolian gerbil, although evidence exists for a peripubertal development of the SNB in the gerbil. At each age from postnatal day 1 (PND1) through PND15 and at PND25, male and female gerbils were aldehyde perfused. Spinal cords were gelatin-embedded, cryoprotected, frozen and sectioned coronally through the lumbosacral transition zone and stained for Nissl substance with thionin. Examination by light microscopy revealed that the number of visible male and female SNB motoneurons significantly increased from PND1 through PND25. The size of the motoneurons also significantly increased in both sexes, however, until PND15 male gerbil SNB showed two significantly different sized populations of motoneurons. These data suggest the development of the SNB in the Mongolian gerbil is delayed, compared to the rat, and may continue well beyond the perinatal time period.  相似文献   

15.
The rat lumbar spinal cord contains two sexually dimorphic motor nuclei, the spinal nucleus of the bulbocavernosus (SNB), and the dorsolateral nucleus (DLN). These motor nuclei innervate anatomically distinct perineal muscles that are involved in functionally distinct copulatory reflexes. The motoneurons in the SNB and DLN have different dendritic morphologies. The dendrites of motoneurons in the medially positioned SNB have a radial, overlapping arrangement, whereas the dendrites of the laterally positioned DLN have a bipolar and strictly unilateral organization. During development, SNB motoneuron dendrites grow exuberantly and then retract to their mature lengths. In this experiment we determined whether the adult difference in SNB and DLN motoneuron morphology was reflected in different patterns of dendritic growth during normal development. Furthermore, the development of both these nuclei is under androgenic control. In the absence of androgens, SNB dendrites fail to grow; testosterone replacement supports normal dendritic growth. Thus, we also examined the development of DLN dendrites for similar evidence of androgenic regulation. By using cholera toxin-horseradish peroxidase (BHRP) to label motoneurons retrogradely, we measured the morphology of DLN motoneurons in normal males, and in castrates treated with testosterone or oil/blank implants at postnatal day (P) 7, P28, P49, and P70. Our results demonstrate that in contrast to the biphasic pattern of dendritic development in the SNB, dendritic growth in the DLN was monotonic; the dendritic length of motoneurons increased more than 500% between P7 and P70. However, as in the SNB, development of DLN motoneuron morphology is androgen-dependent. In castrates treated with oil/blank implants, DLN somal and dendritic growth were greatly attenuated compared to those of normal or testosterone-treated males. Thus, while androgens are clearly necessary for the growth of motoneurons in both the SNB and DLN, their different developmental patterns suggest that other factors must be involved in regulating this growth. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Adult male rats have substantially more motoneurons than do females in two motor nuclei in the lumbar spinal cord: the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN). Previous studies of the development of the SNB revealed that the sex difference in SNB motoneuron number is established through a differential motoneuron death which is under the control of androgens. In this study the development of the sexually dimorphic DLN was examined to test the hypothesis that early androgen action also determines the sex difference in DLN motoneuron number by regulating normally occurring motoneuron death. Because SNB motoneurons may migrate from the DLN, quantitative examination of DLN development was necessary in order to understand more completely the cellular mechanisms contributing to the establishment of dimorphic motoneuron number. At 5 days before birth, the number of motoneurons in the DLN is significantly higher than in adulthood in both sexes, and no sex difference is present. There is a decrease in motoneuron numbers prenatally in both sexes, which is consistent with the emigration of presumptive SNB motoneurons. Motoneuron number declines differentially through the first week of postnatal life and by postnatal day 10 motoneuron numbers are in the adult range and the sex difference is fully expressed. Females lose significantly more DLN motoneurons than males through a differential death as revealed by the higher incidence of degenerating cell profiles. Females treated with testosterone propionate have a male-typical motoneuron loss and incidence of degenerating cells. These results indicate that steroid hormones establish the sex difference in DLN motoneuron number by regulating normally occurring cell death.  相似文献   

17.
The spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) are sexually dimorphic motor nuclei in the rat lumbar spinal cord. During postnatal development, SNB and DLN motoneurons grow substantially in measures of soma size, dendritic length, and radial dendritic extent. SNB motoneurons exhibit a biphasic pattern of dendritic growth, where there is an initial period of exuberant growth followed by a period of retraction to mature lengths by 7 weeks. In this experiment, we examined whether primary afferent input to the SNB nucleus was necessary for the normal postnatal growth of SNB motoneurons. We partially deafferented the SNB via unilateral dorsal rhizotomy of lumbosacral dorsal roots in male rats at 1 week of age. Using cholera toxin horseradish peroxidase (BHRP) to visualize SNB motoneurons, we examined SNB motoneuron morphology at 4 and 7 weeks of age. SNB motoneurons in rhizotomized males developed normally; measures of dendritic length in rhizotomized males were typically exuberant at 4 weeks of age, and declined significantly to mature lengths by 7 weeks of age. In addition, dorsal rhizotomy did not alter the development of SNB motoneuron soma size or radial dendritic extent. These results are discussed in reference to sensorimotor connections in the SNB, the extent of the deafferentation, and dendrodendritic interactions.  相似文献   

18.
Testosterone is an important trophic factor for motoneurons in the spinal nucleus of the bulbocavernosus (SNB), and SNB motoneurons are more responsive to testosterone than are other motoneurons. Axonal injury during early postnatal life prevents the normal development of steroid-sensitivity by adult SNB motoneurons. Axonal injury also causes changes in the expression by motoneurons of a wide range of proteins, including the up-regulation of trophic factor receptors. We have used a polyclonal antibody (PG-21; G.S. Prins) to study the expression of androgen receptors in SNB motoneurons after axonal injury. PG-21 labeled motoneuronal nuclei in the lower lumbar spinal cord of rats in a pattern that matched autoradiograpic reports of androgen accumulation in this region of the nervous system. A population of numerous, small cells located dorsal to the central canal also showed evidence of androgen receptor expression. Cutting the axons of SNB motoneurons in adulthood or in development caused a decrease in androgen receptor immunoreactivity in SNB motoneurons. This is the first report that a trophic factor receptor in motoneurons is down-regulated after axonal injury, and is interesting in light of reports that testosterone treatment can facilitate motoneuronal regeneration after nerve cut. Androgen receptor levels subsequently returned to normal, regardless of the age at axotomy, providing no evidence for a lasting effect of developmental axotomy on androgen receptor levels in SNB motoneurons. Thus, axotomy-induced down-regulation of androgen receptors does not underlie the inability of SNB motoneurons to respond to androgen treatment several months after pudendal nerve cut in development.  相似文献   

19.
The Mongolian gerbil provides a model in which sexually dimorphic areas in the hypothalamus are correlated with sociosexual behaviors such as scent marking and male copulatory behavior. To extend this model, investigations were conducted to determine whether sexually dimorphic areas existed in the spinal cord that could be relevant to male sexual behavior. The focus of these investigations was the perineal muscles associated with the penis. Therefore, this research identified the spinal motoneurons that innervate the bulbocavernosus, levator ani, anal sphincter, and ischiocavernosus muscles of Mongolian gerbils. The motoneuron pool that innervates the bulbocavernosus, levator ani, and anal sphincter was designated the spinal nucleus of the bulbocavernosus (SNB), as for other species of rodents. The motoneuron pool innervating the ischiocavernosus was identified as the dorsolateral nucleus, again, to be consistent with the designation for other rodents. The motoneurons of the gerbil SNB were distributed dorsolateral to the central canal in the lumbosacral transition zone of the spinal column. These motoneurons are located in the region classically defined as area X of the spinal cord. The number of SNB motoneurons was sexually dimorphic, with male gerbils having about five times as many SNB motoneurons as do female gerbils. The size of SNB motoneurons was also sexually dimorphic. The SNB motoneurons of males were 1. 5 times larger than the SNB motoneurons of females. The effects of adult castration on the male SNB were also studied. After castration, the size, but not the number, of SNB motoneurons in males was significantly decreased. This decrease was prevented by testosterone treatment. The percentage of calcitonin gene-related peptide (CGRP)-immunoreactive SNB motoneurons was also affected by adult castration. The percentage of CGRP-immunoreactive motoneurons was significantly decreased after adult castration. Again, this decrease was reversed by testosterone treatment. These findings suggest that the SNB of gerbils is sexually dimorphic and is sensitive to circulating levels of gonadal steroids. The unique placement of the SNB motoneurons suggests that an alternative laminar organizational scheme may be necessary for Mongolian gerbil. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Averaged antidromic field potentials were recorded near motoneuronal somata of the spinal nucleus of the bulbocavernosus (SNB) after stimulation of their axons, in intact, castrated, and testosterone-treated castrated male rats under urethane anesthesia. When the SNB motoneurons were antidromically activated with double pulses to the bulbocavernosus (BC) nerve, the first pulse inhibited the antidromic response caused by the second pulse at interstimulus intervals of 5-40 ms, implying the presence of recurrent or other inhibition activated by BC nerve stimulation. Castration and androgen treatment had no significant effect on the amplitude of the suppression. In this regard this pathway differs from other pathways that synapse onto SNB motoneurons, in which activity is highly sensitive to androgen, indicating that androgen exerts its effects only on specific neural circuits that influence SNB motoneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号