首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasoactive intestinal peptide (VIP) is a neuropeptide which has been shown to exhibit a wide range of neurotrophic effects both in vivo and in vitro. For the purpose of clarifying the effect of VIP on spinal cord neurons, we studied the effect of VIP on neurite outgrowth of fetal rat ventral and dorsal portions of spinal cord in cultures. VIP-treated ventral spinal cord cultures (VSCC), compared with control VSCC, had a significant neurite outgrowth at 10(-8), 10(-6), and 10(-4) M. The effect was considered to be concentration dependent. Morphological changes of the dorsal spinal cord cultures (DSCC) remained unchanged by VIP treatment. Because of their close sequence homology with VIP, PHI-27 (peptide, histidylisoleucine amide) and secretin were also examined with the same experimental conditions as was VIP. Both PHI-27 and secretin had neurite promoting effects in VSCC at 10(-8) and 10(-6) M, respectively. However, there were no neurite promoting effects in DSCC in both of them at any concentrations. VIP had the most potent effect on neurite outgrowth in VSCC, followed by PHI-27, and secretin in their effectiveness concentrations. Our data showing VIP, PHI-27 and secretin have neurotrophic action on VSCC and suggest that a potential therapeutic use of VIP and its related peptides in treating diseases that involve degeneration and death of spinal motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis.  相似文献   

2.
《Neurological research》2013,35(5):468-472
Abstract

Olmesartan is a novel compound which has been shown to exhibit various neuropharmacological effects. For the purpose of clarifying the effect of Olmesartan on spinal motor neurons, we studied the following tests. We studied the effect in vitro of Olmesartan on neurite outgrowth and choline acetyltransferase (ChAT) activity in primary explant cultures of ventral spinal cord (VSCC) of fetal rats. Olmesartan-treated VSCC, compared with control VSCC, had a significant neurite outgrowth and increased activity of ChAT. The effect was dose-related in neurite outgrowth. However, there was no relationship between activity of ChAT and given doses of Olmesartan. We examined in vivo the effect of Olmesartan on axotomized spinal motor neuron death in the rat spinal cord. After post-natal unilateral section of sciatic nerve, there was approximately a 50% survival of motor neurons in the fourth lumbar segment. In comparison with vehicle, intraperitoneal injection of Olmesartan for consecutive 14 days reduced spinal motor neuron death. There was no relationship between number of surviving neurons and doses of Olmesartan. These in vitro and in vivo studies showed that Olmesartan has a neurotrophic effect on spinal motor neurons. Our data suggest a potential therapeutic use of Olmesartan in treating diseases that involve degeneration and death of motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis. [Neurol Res 2002; 24: 468-472]  相似文献   

3.
Abstract

We have studied neurotrophic effects of acidic fibroblast growth factor (aFCF) and basic fibroblast growth factor (bFGF) on explanted ventral and dorsal spinal cord cultures from 13- and 14-day-old rat embryos. Cultures treated with aFCF and bFGF significantly enhanced neurite outgrowth with cultures of ventral spinal cord, but not with cultures of dorsal spinal cord. Our data suggest that aFCF and bFGF are potent neurotrophic factors on rat ventral spinal cord neurons in vitro. [Neurol Res 1995; 17: 70-72]  相似文献   

4.
目的关于蛋白激酶C(PKC)在神经元突起生长和神经再生中的作用,目前仍存有争议。本研究主要观察PKC对离体培养的脊髓神经元生长的调节作用,旨在阐明PKC对突起生长的调节作用。方法分离纯化胎龄14天(E14)的SD胎鼠的脊髓前角神经元,进行原代培养,并检测不同时相点膜/浆PKC活性(m/c-PKCactivity)的比值。结果神经元培养3-11d期间,神经元内m/c-PKC比值以及PKC-βII在突起中的表达水平均与突起生长呈显著相关关系(r=0.95,P<0.01;r=0.73,P<0.01)。此外,PKC激动剂PMA能显著提高m/c-PKC比值,且与神经突起的生长一致(r=0.99,P<0.01)。而PKC抑制剂GF109203X则能显著抑制突起生长,且不被PMA作用所逆转。结论PKC的活性在脊髓神经元突起生长调节中具有重要作用,其中βII亚型可能扮演重要角色。  相似文献   

5.
Ciliary neurotrophic factor (CNTF) has been shown to promote the survival of motoneurons, but its effects on axonal outgrowth have not been examined in detail. Since nerve growth factor (NGF) promotes the outgrowth of neurites within the same populations of neurons that depend on NGF for survival, we investigated whether CNTF would stimulate neurite outgrowth from motoneurons in addition to enhancing their survival. We found that CNTF is a powerful promoter of neurite outgrowth from cultured chick embryo ventral spinal cord neurons. An effect of CNTF on neurite outgrowth was detectable within 7 hours, and at a concentration of 10 ng/ml, CNTF enhanced neurite length by about 3- to 4-fold within 48 hours. The neurite growth-promoting effect of CNTF does not appear to be a consequence of its survival-promoting effect. To determine whether the effect of CNTF on spinal cord neurons was specific for motoneurons, we analyzed cell survival and neurite outgrowth for motoneurons labeled with diI, as well as for neurons taken from the dorsal half of the spinal cord, which lacks motoneurons. We found that the effect of CNTF was about the same for motoneurons as it was for neurons from the dorsal spinal cord. The responsiveness of a variety of spinal cord neurons to CNTF may broaden the appeal of CNTF as a candidate for the treatment of spinal cord injury or disease. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Transplants of central nervous system to adult spinal cords are considered as potential aids in regeneration of the spinal cord and/or recovery of function after injury. The organization and development of the implant are important issues in seeking the potential for a transplant and host to become functionally integrated. This study uses embryonic cerebral cortex transplanted into the spinal cord of adult rats (T6) and examined the development and organization of the transplant with an antibody to vasoactive intestinal polypeptide (VIP). The cell bodies of VIP neurons are in the implants at 30 days postimplantation, but few of the somata have processes. By 45 days postimplantation, VIP neurons in the implant have dendrites and axons and are clearly recognizable as cortical bipolar cells which are not normally present in the thoracic spinal cord. These data show that neurons in embryonic cerebral cortical implants into the spinal cord elaborate the appropriate biochemical and morphological constituents in spite of the ectopic location. However, the cell processes develop at a slower than normal pace. Morphological interaction between the host spinal cord and the implant can be demonstrated possibly as early as 45 days postimplantation and clearly at 6 months following the implant. Thus, further examination of cerebral cortical implants as a potential aid in allevation of paraplegia subsequent to spinal cord injury is warranted.  相似文献   

7.
8.
《Neurological research》2013,35(3):312-316
Abstract

The role of glutamate in the mechanism of spinal neuron death is not fully understood. With addition of glutamate to primary culture of 11-day-old rat spinal cord, the number of caspase-3 positive small neurons of the dorsal horn greatly increased at 6-24 h in contrast to the case with vehicle. The addition of glutamate made caspase-3 immunoreactivity stronger in the cytoplasm of large motor neurons in the ventral horn. The present results show that excessive amount of glutamate enhances apoptotic pathway through caspase-3 in cultured spinal neurons of newborn rat.  相似文献   

9.
The effect of Schwann cell-conditioned medium (SCM) on the development in vitro of spinal cord neurons was studied. Spinal cord neurons from 18-day-old rat embryos were cultured in serum-free conditioned medium obtained from confluent rat Schwann cells. In cultures fed SCM, the cells developed typical neuronal morphology and were identified by indirect immunofluorescence using a monoclonal antibody to neurofilament protein. SCM stimulated neurite outgrowth and supported survival of spinal cord neurons. Preliminary characterization suggests that the neurotrophic factor in SCM appears to be a protein with a molecular weight greater than 8000 daltons.  相似文献   

10.
The interactions of nerve cells with their environment and other cells are specific to different stages of cellular differentiation. Neurite outgrowth was measured from cultured spinal cord neurons under the influence of different Ca2+ concentrations. We used fluorodeoxyuridine (FuDr), an antimitotic agent which reduces significantly the proportion of non-neuronal cells in spinal cord cell cultures, to examine the effects of non-neuronal cells on neurite outgrowth. Spinal cord neurons responded to changes in their environment by means of two types of neurite outgrowth: sprouting and elongation. The concurrent presence of non-neuronal cells led to increased sprouting of neurites in certain ionic environments, thus lending support to the idea that non-neuronal cells release diffusible factors which influence sprouting and guide neurite outgrowth.  相似文献   

11.
12.
Abortive regeneration in the adult mammalian central nervous system (CNS) is partially mediated through CNS myelin proteins, among which Nogo-A plays an important role. Nogo-66, which is located at the C-terminus of Nogo-A, inhibits axonal regrowth through the Nogo-66/NgR signalling pathway. In this study, two small peptides were tested in a neurite outgrowth assay and spinal cord injury (SCI) model to examine the effects of these molecules on the inhibition of Nogo-66/NgR signalling. PepIV was selected from a phage display peptide library as a Nogo-66 binding molecule. And PepII was synthesized as a potential NgR antagonist. The results indicated that PepIV and PepII decrease the mRNA levels of the small GTPase RhoA and partially neutralize CNS myelin inhibition to cultured cerebellar granule cells (CGCs). Moreover, treatment with both peptides was propitious to maintaining residual axons after SCI, thereby promoting regeneration and locomotion recovery. Because RhoA plays a role in stabilizing the cytoskeleton in growth cones and axons, enhanced neurite outgrowth might reflect a decrease in RhoA expression through PepIV and PepII treatment. Moreover, PepIV induced lower RhoA mRNA expression compared with PepII. Therefore, PepIV could block Nogo-66/NgR signalling and reduce RhoA mRNA level, and then contribute to neuronal survival and axonal regrowth after SCI, showing its ability to reverse CNS myelin inhibition to regeneration. Furthermore, selected small peptide might cover some unknown active sites on CNS myelin proteins, which could be potential targets for improving neurite outgrowth after injury.  相似文献   

13.
The suprachiasmatic nucleus (SCN) of mammals is considered to be a circadian oscillator and it also demonstrates circadian rhythmicity of its multiple unit activity. A number of neuropeptides have been found in the SCN. Vasoactive intestinal peptide (VIP)- and vasopressin-containing neurons comprise large populations of these cells and have a distinct distribution within the nucleus. Therefore we attempted to examine whether the VIP neurons show a diurnal alteration of their immunoreactivity by combined immunocytochemistry and color image analysis. Our results demonstrate that VIP-like immunoreactive neurons show a diurnal change in the amount of immunoreactivity. Immunoreactivity was most intense in the sections from rats maintained in the cyclic photoperiod and sacrificed at 02.00 h and weakest in the SCN from animals sacrificed at 14.00 h. We considered that VIP-like immunoreactive neurons showed diurnal variation of VIP synthesis depending strongly on the light from the retina.  相似文献   

14.
There is contrasting in vitro and in vivo evidence regarding glial cell involvement in central nervous system (CNS) regeneration. This study has investigated the histological events that follow implantation of either microglia, mixed microglia/astrocytes, or astrocytes into the injured adult rat spinal cord. We have conducted an immunohistochemical characterization of the cellular profiles within and neuritic extension into various grafts consisting of gelfoam (GF) matrices impregnated with cultured microglia and/or astrocytes. After 2–5 weeks, prominent neuritic growth was observed into OX-42-immunoreactive (IR) microglial implants. These grafts were infiltrated by numerous host cellular elements including microvasculature and Schwann cells, and they demonstrated conspicuous laminin IR. Often, the patterns for laminin and OX-42 IR in microglial grafts were overlapping, suggesting partial expression of laminin on transplanted microglial cells. Mixed grafts of microglia and astrocytes demonstrated presence of neurites and laminin-IR elements with similar intensity as microglial grafts, while astroglial implants showed the least amount of neurite ingrowth. Some control implants consisting of cell-free GF showed marginal in-growth of neurites in areas of infiltrating OX-42-IR host cells. Collectively, our findings support a neurite growth-promoting role of activated microglia and suggest that microglia may counteract mechanisms that inhibit CNS regeneration. It remains to be determined whether the observed neurite growth-promoting effects are mediated directly by grafted and/or endogenous microglia, or whether this occurs via the recruitment of host Schwann cells. J. Neurosci. Res. 47:34–48, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
The interactions of nerve cells with their environment and other cells are specific to different stages of cellular differentiation. Neurite outgrowth was measured from cultured spinal cord neurons under the influence of different Ca2+ concentrations. We used fluorodeoxyuridine (FuDr), an antimitotic agent which reduces significantly the proportion of non-neuronal cells in spinal cord cell cultures, to examine the effects of non-neuronal cells on neurite outgrowth. Spinal cord neurons responded to changes in their environment by means of two types of neurite outgrowth: sprouting and elongation. The concurrent presence of non-neuronal cells led to increased sprouting of neurites in certain ionic environments, thus lending support to the idea that non-neuronal cells release diffusible factors which influence sprouting and guide neurite outgrowth.  相似文献   

16.
Cerebral cortical neurons from neonatal rats were cultured in the presence of methyl 3,4-dihydroxybenzoate (MDHB;2,4,and 8 μM).Results showed that MDHB significantly promoted neurite outgrowth and microtubule-associated protein 2 mRNA expression,and increased neuronal survival in a dose-dependent manner.Moreover,MDHB induced brain-derived neurotrophic factor expression.These findings suggest that MDHB has a neurotrophic effect,which may be due to its ability to increase brain-derived neurotrophic factor expression.  相似文献   

17.
Several motility disorders originate in the enteric nervous system (ENS). Our knowledge of factors governing survival of the ENS is poor. Changes in the expression of vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in enteric neurons occur after neuronal injury and in intestinal adaptation. The aim of this study was to evaluate whether VIP and nitric oxide (NO) influence survival of cultured, dissociated myenteric neurons. Neuronal survival was evaluated after 0, 4, and 8 days in culture. Influence of VIP and NO on neuronal survival was examined after culturing in the presence of VIP, NO donor, VIP antiserum, or NOS inhibitor. A marked loss of neurons was noted during culturing. VIP and NO significantly promoted neuronal survival. Corroborating this was the finding of an enhanced neuronal cell loss when cultures were grown in the presence of VIP antiserum or NOS inhibitor.  相似文献   

18.
《Neurological research》2013,35(5):487-492
Abstract

Objective: After a spinal cord injury (SCI), most men experience fertility related problems including poor semen quality in which decreased sperm viability and motility, have been proposed to be related to the accessory sex glands dysfunction. In this study, we investigated the probable effects of SCI on the seminal vesicle epithelium in rat.

Methods: Spinal cord was injured in adult male rats by surgical transection at the level of T9. Controls received similar surgery without transection. Five days later, animals were killed and the seminal vesicles were removed, subjected to routine procedures for light and transmission electron microscopy respectively.

Results: Acute inflammation of the seminal vesicles including vasodilatation and migration of leukocytes to epithelium was observed through the light microscopy. Transmission electron microscopy study revealed significant changes in the experimental epithelium, such as decrease in rough endoplasmic reticulum, secretory granules and Golgi apparatus dimensions, accumulations of fat droplets and lipofuscin in the cytoplasm, euchromatinized and swelled nuclei, decrease in cell diameters, and the presence of macrophages and hollow spaces in the epithelium. The seminal vesicle of sham-operated animals showed normal morphology.

Discussion: Histologic evidence in this study confirms dysfunction of seminal vesicle in the acute phase of SCI. Further works are needed to follow up the reversibility of such lesions.  相似文献   

19.
Brefeldin A (BFA) is a fungus metabolite that is known to cause the disassembly of the Golgi complex and apoptosis in exposed cells, both of which have been suggested as playing roles in the pathogenesis of neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS). This study showed that BFA caused neurotoxicity and apoptotic nuclear changes in cultured spinal neurons of rat spinal cord in a dose- and time-dependent manner. The spinal motor neurons were more vulnerable to this neurotoxicity. The cultured spinal neurons showed irreversible disassembly of the Golgi apparatus as early as 1 hr after exposure to BFA. BFA induced the expression and activation of caspase-12 beginning 8 hr after exposure. The level of the cleaved form of caspase-3 had increased 12 hr after the addition of BFA. Free radical generation and loss of mitochondrial membrane potential were observed in the later stages of neurotoxicity caused by BFA. Collectively, our data suggests that BFA is an excellent agent for reproducing the pathophysiological features of ALS. This in vitro model may be useful in attempts to study the mechanisms of this neurodegenerative disease and to examine therapeutic potentials.  相似文献   

20.
Ginsenoside Rg1(Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal survival and neurite outgrowth in vitro after exposure to amyloid-beta peptide fragment 25–35(Aβ_(25–35)), and to explore whether the extracellular signal-regulated kinase(ERK) and Akt signaling pathways are involved in these biological processes. We cultured hippocampal neurons from newborn rats for 24 hours, then added Rg1 to the medium for another 24 hours, with or without pharmacological inhibitors of the mitogen-activated protein kinase(MAPK) family or Akt signaling pathways for a further 24 hours. We then immunostained the neurons for growth associated protein-43, and measured neurite length. In a separate experiment, we exposed cultured hippocampal neurons to Aβ_(25–35) for 30 minutes, before adding Rg1 for 48 hours, with or without Akt or MAPK inhibitors, and assessed neuronal survival using Hoechst 33258 staining, and phosphorylation of ERK1/2 and Akt by western blot analysis. Rg1 induced neurite outgrowth, and this effect was blocked by API-2(Akt inhibitor) and PD98059(MAPK/ERK kinase inhibitor), but not by SP600125 or SB203580(inhibitors of c-Jun N-terminal kinase and p38 MAPK, respectively). Consistent with this effect, Rg1 upregulated the phosphorylation of Akt and ERK1/2; these effects were reversed by API-2 and PD98059, respectively. In addition, Rg1 significantly reversed Aβ_(25–35)-induced apoptosis; this effect was blocked by API-2 and PD98059, but not by SP600125 or SB203580. Finally, Rg1 significantly reversed the Aβ_(25–35)-induced decrease in Akt and ERK1/2 phosphorylation, but API-2 prevented this reversal. Our results indicate that Rg1 enhances neurite outgrowth and protects against Aβ_(25–35)-induced damage, and that its mechanism may involve the activation of Akt and ERK1/2 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号