首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee HS  Chong W  Han SK  Lee MH  Ryu PD 《Neuroscience》2001,102(2):401-411
Glutamate is known to increase neuronal excitability in the subfornical organ, a circumventricular organ devoid of the blood-brain barrier. To understand the synaptic mechanism of neuronal excitation by glutamate in this nucleus, we examined the effects of glutamate on GABAergic spontaneous inhibitory postsynaptic currents recorded from subfornical organ neurons in the rat brain slice. The baseline frequency, amplitude and decay time-constant of such spontaneous synaptic currents were 5.60 Hz, 119 pA and 17.3 ms, respectively. Glutamate (10-1000 microM) selectively inhibited the frequency of spontaneous GABAergic inhibitory postsynaptic currents (half-maximal effective concentration=47 microM) with little effects on their amplitudes and decay time constants. The inhibitory effect of glutamate on the frequency of spontaneous GABAergic postsynaptic currents was not blocked by tetrodotoxin (1 microM), or by the antagonists of ionotropic glutamate receptors. In contrast, such inhibitory effect of glutamate was mimicked by general or group II selective metabotropic glutamate receptor agonists such as DCGIV (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (half-maximal effective concentration=112 nM), but not by the agonists for group I or group III metabotropic glutamate receptors. Under current clamp mode, glutamate reduced the frequencies of spontaneous inhibitory postsynaptic potentials and action potentials in subfornical organ neurons. Our data indicate that glutamate decreases the frequency of spontaneous inhibitory postsynaptic currents by acting on the group II metabotropic glutamate receptors on axonal terminals in the subfornical organ. From these results we suggest that the glutamate-induced modulation of tonic GABAergic inhibitory synaptic activity can influence the excitability of subfornical organ neurons.  相似文献   

2.
3.
Activation of metabotropic glutamate receptors modulates thevoltage-gated sustained calcium current in a teleost horizontal cell. In the teleost retina, cone horizontal cells contain avoltage-activated sustained calcium current, which has been proposed tobe involved in visual processing. Recently, several studies havedemonstrated that modulation of voltage-gated channels can occurthrough activation of metabotropic glutamate receptors (mGluRs).Because glutamate is the excitatory neurotransmitter in the vertebrateretina, we have used whole cell electrophysiological techniques toexamine the effect of mGluR activation on the sustained voltage-gated calcium current found in isolated cone horizontal cells in the catfishretina. In pharmacological conditions that blocked voltage-gated sodiumand potassium channels, as well asN-methyl-D-aspartate (NMDA) and non-NMDAchannels, application of L-glutamate or1-aminocyclopentane-1,3-dicarboxylic acid(1S,3R-ACPD) to voltage-clamped conehorizontal cells acted to increase the amplitude of the calciumcurrent, expand the activation range of the calcium current by 10 mVinto the cell's physiological operating range, and shift the peakcalcium current by 5 mV. To identify and characterize the mGluRsubtypes found on catfish cone horizontal cells, agonists of group I,group II, or group III mGluRs were applied via perfusion. Group I andgroup III mGluR agonists mimicked the effect of L-glutamateor 1S,3R-ACPD, whereas group II mGluR agonistshad no effect on L-type calcium current activity. Inhibition studiesdemonstrated that group I mGluR antagonists significantly blocked themodulatory effect of the group I mGluR agonist,(S)-3,5-dihydroxyphenylglycine. Similar results were obtained when the group III mGluR agonist,L-2-amino-4-phosphonobutyric acid, was applied in thepresence of a group III mGluR antagonist. These results provideevidence for two groups of mGluR subtypes on catfish cone horizontalcells. Activation of these mGluRs is linked to modulation of thevoltage-gated sustained calcium current.

  相似文献   

4.
5.
6.
Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. Application of the specific Group I mGluRs antagonist 7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) reduced the amplitude of consecutive high-frequency evoked excitatory postsynaptic currents (EPSCs). A series of experiments using techniques of electrophysiology and calcium imaging were carried out to determine the cellular mechanisms by which this phenomenon occurs. Concentration-dependent increases in the pre- and postsynaptic [Ca(2+)](i) were seen with the application of mGluR agonists. Similarly, high-frequency stimulation of axons caused a Group I mGluR-dependent enhancement in presynaptic Ca(2+) transients. Application of mGluR agonist caused a depolarization of the presynaptic elements, while thapsigargin decreased the high-frequency stimulus- and agonist-induced rises in [Ca(2+)](i). These data suggest that both membrane depolarization and the release of Ca(2+) from intracellular stores potentially play a role in mGluR-induced Ca(2+) signaling. To determine the effect of this modulation of Ca(2+) dynamics on spontaneous glutamate release, miniature EPSCs were recorded from postsynaptic reticulospinal neurons. A potent Group I mGluR agonist, (S)-homoquisqualic acid, caused a large increase in the frequency of events. These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.  相似文献   

7.
Desensitization of heterologously expressed metabotropic glutamate receptor 5a (mGluR5a) was examined in rat sympathetic neurons. Calcium currents in cells expressing mGluR5a exhibited substantial inhibition in response to glutamate exposure. In the continued presence of glutamate, inhibition attenuated rapidly over the course of about a minute. Desensitization was eliminated when a nonhydrolyzable ATP analogue was substituted for ATP in the pipette solution, suggesting that desensitization was mediated by a phosphorylation event. Next, pharmacological agents were used to investigate the nature of the kinase involved in desensitization. Desensitization was sensitive to the nonspecific kinase inhibitor, staurosporine, but not H-7, another nonspecific kinase inhibitor. Inhibitors of myosin light chain kinase and calmodulin-dependent kinase were without effect on desensitization. However, desensitization was sensitive to the protein kinase C inhibitor bisindolymaleimide. In contrast, G?6976, a selective inhibitor of conventional protein kinase C isoforms, was without effect. In addition, desensitization persisted in the presence of 10 mM intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid, a fast Ca(2+) chelator. Finally, overexpression of wild-type calmodulin, which can bind mGluR5 and inhibit phosphorylation, did not alter mGluR desensitization. Two Ca(2+)-binding-deficient calmodulin mutants were also without effect. These data indicate a role for nonconventional protein kinase C isoforms as a mediator of mGluR5 desensitization and that the phosphorylation of mGluR5a that competes with calmodulin binding does not mediate desensitization.  相似文献   

8.
9.
We have evaluated the expression of metabotropic glutamate receptors (mGluR subtypes 2/3, 4 and 5) in rat thymus under normal and experimental conditions after 2 and 21 days of cyclosporine-A treatment. In normal rats, immunohistochemical analysis showed that expression of mGluRs was high in dendritic cells and lymphocytes of the medulla whereas it was weak in lymphocytes of the cortex. However, there were some differences in the expression of mGluRs subtypes. mGluR5 showed strong expression in lymphocytes of medulla and dendritic cells. mGluR2/3 and mGluR4 were moderately expressed in lymphocytes and dendritic cells of the medulla and weakly in cortical lymphocytes. Immunoblotting showed moderate levels of mGluR2/3 and mGluR4 and strong levels of mGluRS. After 2 days of cyclosporine-A treatment, we observed by immunohistochemistry and immunoblotting a distinct decrease in all mGluRs and their expression had almost completely disappeared after 21 days of treatment. The results clearly indicate that: 1) mGluR2/3, 4 and 5 are widely expressed in thymic cells; 2) the mGluR5 subtype is expressed most strongly in medullary cells; and 3) cyclosporine-A rapidly inhibits expression of all mGluR subtypes after 2 days of treatment and their complete disappearance after prolonged treatment. These findings may indicate a possible mechanism by which cyclosporine-A produces its immunosupressive effects.  相似文献   

10.
Activation of opioid receptors in the CNS evokes a dramatic decrease in heart rate which is mediated by increases in inhibitory parasympathetic activity to the heart. Injection of opiates into the nucleus ambiguus, where premotor cardiac parasympathetic nucleus ambiguus neurons are located elicits an increase in parasympathetic cardiac activity and bradycardia. However, the mechanisms responsible for altering the activity of premotor cardiac parasympathetic nucleus ambiguus neurons is unknown. This study examined at the electron microscopic level whether premotor cardiac parasympathetic nucleus ambiguus neurons possess postsynaptic opioid receptors and whether mu-opioid receptor agonists alter voltage-gated calcium currents in these neurons. Premotor cardiac parasympathetic nucleus ambiguus neurons were identified in the rat using retrograde fluorescent tracers. One series of experiments utilized dual-labeling immunocytochemical methods combined with electron microscopic analysis to determine if premotor cardiac parasympathetic nucleus ambiguus neurons contain mu-opioid receptors. In a second series of experiments whole cell patch clamp methodologies were used to determine whether activation of postsynaptic opioid receptors altered voltage-gated calcium currents in premotor cardiac parasympathetic nucleus ambiguus neurons in brainstem slices. The perikarya and 78% of the dendrites of premotor cardiac parasympathetic nucleus ambiguus neurons contain mu-opioid receptors. Voltage-gated calcium currents in premotor cardiac parasympathetic nucleus ambiguus neurons were comprised nearly entirely of omega-agatoxin-sensitive P/Q-type voltage-gated calcium currents. Activation of mu-opioid receptors inhibited these voltage-gated calcium currents and this inhibition was blocked by pretreatment with pertusis toxin. The mu-opioid receptor agonist endomorphin-1, but not the mu-opioid receptor agonist endomorphin-2, inhibited the calcium currents. In summary, mu-opioid receptors are located postsynaptically on premotor cardiac parasympathetic nucleus ambiguus neurons. The mu-opioid receptor agonist endomorphin1 inhibited the omega-agatoxin-sensitive P/Q-type voltage-gated calcium currents in premotor cardiac vagal nucleus ambiguus neurons. This inhibition is mediated via a G-protein mediated pathway which was blocked by pretreatment with pertusis toxin. It is possible that the inhibition of calcium currents may act to indirectly facilitate the activity of premotor cardiac parasympathetic nucleus ambiguus neurons by disinhibition, such as by a reduction in inhibitory calcium activated potassium currents.  相似文献   

11.
12.
Tetrodotoxin (TTX)-resistant sodium currents are important in nociception and nociceptive sensitization, which is partially due to their cAMP/protein kinase A (PKA)-mediated enhancement. Here we studied the effects of group II mGluR activation on TTX-resistant sodium currents in cultured mouse dorsal root ganglion (DRG) neurons. Activation of adenylyl cyclase with forskolin caused an increase in the amplitude of TTX-R currents and a leftward shift of the activation curve. When neurons were treated with ammonium pyrrolidinedithiocarbamate (APDC), a selective group II mGluR agonist, both the forskolin-induced increase in current amplitude and the shift of activation curve were blocked. LY341495, a group II mGluR antagonist, prevented these inhibitory effects of APDC. Our results suggest that group II mGluRs can negatively regulate TTX-R sodium currents in mouse DRG neurons.  相似文献   

13.
Granule cells and parallel fiber circuits in the dorsal cochlear nucleus (DCN) play a role in integration of multimodal sensory with auditory inputs. The activity of granule cells is regulated through inhibitory connections made by Golgi cells. Golgi cells in turn probably receive parallel fiber inputs and regulate activity of the DCN. We have investigated the electrophysiological properties of Golgi cells using the whole cell patch-clamp method in slices made from transgenic mice that express green fluorescent protein driven by the promotor of metabotropic glutamate receptor subtype 2. Stimulation of auditory nerve fibers (ANFs) and of parallel fibers evoked glutamatergic excitatory postsynaptic currents (EPSC) through AMPA receptors. The strengths and latencies of these inputs differed, however. ANF stimulation evoked EPSCs after 4.7 +/- 0.4 ms, whereas parallel fiber stimulation evoked EPSCs after 1.4 +/- 0.2 ms that were on average 2.5 times as large. The multiple peaks and prolonged activity suggest the presence of polysynaptic connections between ANFs and Golgi cells. Agonists for group II metabotropic glutamate receptors (mGluRs) and for muscarinic receptors induced membrane hyperpolarization and suppressed the firing of Golgi cells by activating G-protein-coupled inward rectifier K(+) (GIRK) channels. These results strongly suggest that Golgi cells were regulated through the combined activities of glutamatergic and cholinergic synapses, which presumably regulated the temporal firing patterns of granule cells and through them the activity of principal cells of the DCN.  相似文献   

14.
15.
16.
目的:研究代谢型谷氨酸受体(mGluRs)激动剂引起大鼠向对侧旋转时介导的受体亚型。方法:大鼠纹状体内微量注射mGluRs激动剂或拮抗剂,观察大鼠的意识、行为变化,并于给药后6h测定旋转活动。结果:mGluRs非亚型特异的激动剂tACPD(500、1000nmol)纹状体内注射引起大鼠向对侧旋转,mGluRs的非竞争性拮抗剂L-AP3、竞争性拮抗剂MCPG及抑制细胞内钙释放的胆罗啉均可减轻tACPD引起的旋转。I组mGluRs的特异性激动剂DHPG(500nmol)纹状体内注射也引起大鼠向对侧旋转,MCPG及mGluR1的拮抗剂LY367385及mGluR5的拮抗剂MPEP均可拮抗DHPG引起的旋转。预先腹腔注射利血平(5mg/kg)可阻断DHPG的作用。结论:I组mGluRs激动引起大鼠向对侧旋转,此作用可能与细胞内钙释放有关及依赖于多巴胺的存在。  相似文献   

17.
Fast glutamatergic transmission via ionotropic receptors is critical for the generation of locomotion by spinal motor networks. In addition, glutamate can act via metabotropic glutamate receptors (mGluRs) to modulate the timing of ongoing locomotor activity. In the present study, we investigated whether mGluRs also modulate the intensity of motor output generated by spinal motor networks. Application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reduced the amplitude and increased the frequency of locomotor-related motoneuron output recorded from the lumbar ventral roots of isolated mouse spinal cord preparations. Whole cell patch-clamp recordings of spinal motoneurons revealed multiple mechanisms by which group I mGluRs modulate motoneuron output. Although DHPG depolarized the resting membrane potential and reduced the voltage threshold for action potential generation, the activation of group I mGluRs had a net inhibitory effect on motoneuron output that appeared to reflect the modulation of fast, inactivating Na(+) currents and action potential parameters. In addition, group I mGluR activation decreased the amplitude of locomotor-related excitatory input to motoneurons. Analyses of miniature excitatory postsynaptic currents indicated that mGluRs modulate synaptic drive to motoneurons via both pre- and postsynaptic mechanisms. These data highlight group I mGluRs as a potentially important source of neuromodulation within the spinal cord that, in addition to modulating components of the central pattern generator for locomotion, can modulate the intensity of motoneuron output during motor behavior. Given that group I mGluR activation reduces motoneuron excitability, mGluRs may provide negative feedback control of motoneuron output, particularly during high levels of glutamatergic stimulation.  相似文献   

18.
This study was aimed at clarifying the role of metabotropic glutamate receptors (mGluRs) in the regulation of intracellular Ca2+ concentration ([Ca2+]i) in postnatal mouse retinal ganglion neurons (RGNs). RGNs were maintained for 1–2 weeks in vitro by adding brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) to the culture medium. In order to select these cells for electrophysiological measurements, RGNs were vitally labelled with an antibody against Thy-1.2. Voltage-activated Ca2+ currents [I Ca(V)] were recorded with patch electrodes in the wholecell configuration. It was found that racemic ±-1-aminocyclopentane-trans-1, 3-dicarboxylic acid (t-ACPD) or its active enantiomer 1S,3R-ACPD rapidly and reversibly either enhanced or depressed I Ca(V). Quisqualate (QA), l-2-amino-4-phosphonobutyrate (l-AP4) and the endogenous transmitter glutamate induced similar effects when ionotropic glutamate receptors were blocked with d-2-amino-5-phosphonovalerate (d-APV) and 6,7-dinitroquinoxaline-2, 3-dione (DNQX). - Conotoxin GVIA (-CgTx GVIA), but not nifedipine prevented modulation of I Ca(V) by mGluR agonists. The depression of I Ca(V) by t-ACPD was irreversible when cells were dialysed with guanosine-5-O-(3-thiotriphosphate) (GTP[-S]). Ratio measurements of fura-2 fluorescence in Thy-1+ cells showed that neither t-ACPD, QA nor l-AP4 affected [Ca2+]i by liberation of Ca2+ from intracellular stores. Our results suggest that cultured RGNs express mGluRs. These receptors cannot induce Ca2+ release from intracellular stores but regulate [Ca2+]i by a fast and reversible, G-protein-mediated action on a subpopulation of voltage-activated Ca2+ channels.  相似文献   

19.
Bains JS  Ferguson AV 《Neuroscience》1999,90(3):885-891
Activation of dendritic voltage-dependent calcium (Ca2+) conductances in neuroendocrine cells of the hypothalamus may underlie previously documented Ca2+ spikes in these cells. The present study, in which whole-cell recordings were obtained from paraventricular nucleus neurons in a hypothalamic slice preparation, addresses this issue by directly activating dendritic N-methyl-D-aspartate receptors in the presence of tetrodotoxin. Application of tetrodotoxin abolished spontaneous action potentials in all paraventricular nucleus neurons tested (n = 27). Following tetrodotoxin, spikes were evoked by depolarizing current pulses, in an all-or-none fashion in the majority of cells (n = 20). Removal of extracellular Ca2+ (n = 6) or addition of 500 microM CdCl2 (n = 4) abolished the spikes in response to pulses. Repetitive spiking activity (in tetrodotoxin) was also observed following N-methyl-D-aspartate agonist application in 75% of the cells tested (n = 15). The spikes, underscored by a slow membrane depolarization, were abolished by the administration of CdCl2 (n = 4). N-Methyl-D-aspartate agonist elicited a slow inward current in cells voltage-clamped at -60 mV (n = 5). Additionally, larger amplitude, transient inward currents were observed near the onset of the response. The activation threshold to elicit spikes following N-methyl-D-aspartate agonist application was significantly more negative (-54.6+/-3.6 mV) than the potential at which spikes were initiated as a result of depolarizing current injection (-32.3+/-1.8 mV; Student's t-test: P < 0.0001). In contrast to this, Na+ spikes in control solution had an invariable threshold (-49.6+/-0.7 mV vs -51.5+/-1.2 mV; P > 0.05), regardless of the stimulus used to initiate the spikes. These observations suggest that direct activation of N-methyl-D-aspartate receptors located on the dendrites of paraventricular nucleus neurons triggers Ca2+ spikes. Although the precise function of these spikes is unclear, previous data reporting dendritic neuropeptide release in the paraventricular nucleus raise the possibility that dendritically initiated spikes may serve as a local signal to trigger such release.  相似文献   

20.
The metabotropic glutamate receptors (mGluRs) have been implicated in cognition, memory, and some neurodegenerative disorders, including the Alzheimer's disease (AD). To understand how the dysfunction of mGluRs contributes to the pathophysiology of AD, we examined the beta-amyloid peptide (Abeta)-induced alterations in the physiological functions of mGluRs in prefrontal cortical pyramidal neurons. Two potential targets of mGluR signaling involved in cognition, the GABAergic system and the N-methyl-d-aspartate (NMDA) receptor, were examined. Activation of group I mGluRs with (S)-3,5-dihydroxyphenylglycine (DHPG) significantly increased the spontaneous inhibitory postsynaptic current (sIPSC) amplitude, and this effect was protein kinase C (PKC) sensitive. Treatment with Abeta abolished the DHPG-induced enhancement of sIPSC amplitude. On the other hand, activation of group II mGluRs with (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) significantly increased the NMDA receptor (NMDAR)-mediated currents via a PKC-dependent mechanism, and Abeta treatment also diminished the APDC-induced potentiation of NMDAR currents. In Abeta-treated slices, both DHPG and APDC failed to activate PKC. These results indicate that the mGluR regulation of GABA transmission and NMDAR currents is impaired by Abeta treatment probably due to the Abeta-mediated interference of mGluR activation of PKC. This study provides a framework within which the role of mGluRs in normal cognitive functions and AD can be better understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号