首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defective excitation-contraction coupling in heart failure is generally associated with both a reduction in sarcoplasmic reticulum (SR) Ca(2+) uptake and a greater dependence on transsarcolemmal Na(+)-Ca(2+) exchange (NCX) for Ca(2+) removal. Although a relative increase in NCX is expected when SR function is impaired, few and contradictory studies have addressed whether there is an absolute increase in NCX activity. The present study examines in detail NCX density and function in left ventricular midmyocardial myocytes isolated from normal or tachycardic pacing-induced failing canine hearts. No change of NCX current density was evident in myocytes from failing hearts when intracellular Ca(2+) ([Ca(2+)](i)) was buffered to 200 nmol/L. However, when [Ca(2+)](i) was minimally buffered with 50 micromol/L indo-1, Ca(2+) extrusion via NCX during caffeine application was doubled in failing versus normal cells. In other voltage-clamp experiments in which SR uptake was blocked with thapsigargin, both reverse-mode and forward-mode NCX currents and Ca(2+) transport were increased >2-fold in failing cells. These results suggest that, in addition to a relative increase in NCX function as a consequence of defective SR Ca(2+) uptake, there is an absolute increase in NCX function that depends on [Ca(2+)](i) in the failing heart.  相似文献   

2.
cADP-Ribose (cADPR) is a novel endogenous messenger that is believed to mobilize Ca(2+) from ryanodine-sensitive Ca(2+) stores. Despite intense research, the precise mechanism of action of cADPR remains uncertain, and experimental findings are contradictory. To elucidate the mechanism of cADPR action, we performed confocal Ca(2+) imaging in saponin-permeabilized rat ventricular myocytes. Exposure of the cells to cADPR resulted in a slow (>2 minutes) and steady increase in the frequency of Ca(2+) sparks. These effects on local release events were accompanied by a significant increase in sarcoplasmic reticulum (SR) Ca(2+) content. In comparison, sensitization of ryanodine receptors (RyRs) by caffeine, a true RyR agonist, caused a rapid (<1 second) and transient potentiation of Ca(2+) sparks followed by a decrease in SR Ca(2+) content. When the increase in the SR load was prevented by partial inhibition of the SR Ca(2+) with thapsigargin, cADPR failed to produce any increase in sparking activity. cADPR had no significant impact on activity of single cardiac RyRs incorporated into lipid bilayers. However, it caused a significant increase in the rate of Ca(2+) uptake by cardiac SR microsomes. Our results suggest that the primary target of cADPR is the SR Ca(2+) uptake mechanism. Potentiation of Ca(2+) release by cADPR is mediated by increased accumulation of Ca(2+) in the SR and subsequent luminal Ca(2+)-dependent activation of RyRs.  相似文献   

3.
The elementary event of Ca(2+) release in heart is the Ca(2+) spark. It occurs at a low rate during diastole, activated only by the low cytosolic [Ca(2+)](i). Synchronized activation of many sparks is due to the high local [Ca(2+)](i) in the region surrounding the sarcoplasmic reticulum (SR) Ca(2+) release channels and is responsible for the systolic [Ca(2+)](i) transient. The biophysical basis of this calcium signaling is discussed. Attention is placed on the local organization of the ryanodine receptors (SR Ca(2+) release channels, RyRs) and the other proteins that underlie and modulate excitation-contraction (EC) coupling. A brief review of specific elements that regulate SR Ca(2+) release (including SR lumenal Ca(2+) and coupled gating of RyRs) is presented. Finally integrative calcium signaling in heart is presented in the context of normal heart function and heart failure.  相似文献   

4.
In the cardiac dyad, sarcolemmal L-type Ca(2+) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (RyR) are structurally in close proximity. This organization provides for an efficient functional coupling, tuning SR Ca(2+) release for optimal contraction of the myocyte. Given that LCC are regulated by the prevailing [Ca(2+)], this structural organization is the setting for feedback mechanisms and crosstalk. A defective coupling of Ca(2+) influx via LCC to activation of RyR has been implicated in reduced SR Ca(2+) release in heart failure. Both functional changes in LCC properties and structural re-organization of LCC in T-tubules could be involved. LCC are regulated by cytosolic Ca(2+), and crosstalk with SR Ca(2+) handling occurs on a long-term basis, i.e. during steady-state changes in heart rate, on an intermediate-term basis, i.e. on a beat-to-beat basis during sudden rate changes, and on a very short- or immediate-term basis, i.e. during a single heartbeat. We review the properties and consequences of these different feedback mechanisms and the changes in heart failure and cardiac hypertrophy that have thus far been studied.  相似文献   

5.
Coupling between L-type Ca(2+) channels (dihydropyridine receptors, DHPRs) and ryanodine receptors (RyRs) plays a pivotal role in excitation-contraction (E-C) coupling in cardiac myocytes, and Ca(2+) influx is generally accepted as the trigger of sarcoplasmic reticulum (SR) Ca(2+) release. The L-type Ca(2+) channel agonist BayK 8644 (BayK) has also been reported to alter RyR gating via a functional linkage between DHPR and RyR, independent of Ca(2+) influx. Here, the effect of rapid BayK application on resting RyR gating in intact ferret ventricular myocytes was measured as Ca(2+) spark frequency (CaSpF) by confocal microscopy and fluo 3. BayK increased resting CaSpF by 401+/-15% within 10 seconds in Ca(2+)-free solution, and depolarization had no additional effect. The effect of BayK on CaSpF was dose-dependent, but even 50 nmol/L BayK induced a rapid 245+/-12% increase in CaSpF. Nifedipine (5 micromol/L) had no effect by itself on CaSpF, but it abolished the BayK effect (presumably by competitive inhibition at the DHPR). The nondihydropyridine Ca(2+) channel agonist FPL-64176 (1 micromol/L) did not alter CaSpF (despite rapid and potent enhancement of Ca(2+) current, I(Ca)). In striking contrast to the very rapid and depolarization-independent effect of BayK on CaSpF, BayK increased I(Ca) only slowly (tau=18 seconds), and the effect was greatly accelerated by depolarization. We conclude that in ferret ventricular myocytes, BayK effects on I(Ca) and CaSpF both require drug binding to the DHPR, but postreceptor pathways may diverge in transmission to the gating of the L-type Ca(2+) channel and RyR.  相似文献   

6.
7.
Spontaneous sarcoplasmic reticulum (SR) Ca(2+) release causes delayed afterdepolarizations (DADs) via Ca(2+)-induced transient inward currents (I:(ti)). However, no quantitative data exists regarding (1) Ca(2+) dependence of DADs, (2) Ca(2+) required to depolarize the cell to threshold and trigger an action potential (AP), or (3) relative contributions of Ca(2+)-activated currents to DADs. To address these points, we evoked SR Ca(2+) release by rapid application of caffeine in indo 1-AM-loaded rabbit ventricular myocytes and measured caffeine-induced DADs (cDADs) with whole-cell current clamp. The SR Ca(2+) load of the myocyte was varied by different AP frequencies. The cDAD amplitude doubled for every 88+/-8 nmol/L of Delta[Ca(2+)](i) (simple exponential), and the Delta[Ca(2+)](i) threshold of 424+/-58 nmol/L was sufficient to trigger an AP. Blocking Na(+)-Ca(2+) exchange current (I(Na/Ca)) by removal of [Na](o) and [Ca(2+)](o) (or with 5 mmol/L Ni(2+)) reduced cDADs by >90%, for the same Delta[Ca(2+)](i). In contrast, blockade of Ca(2+)-activated Cl(-) current (I(Cl(Ca))) with 50 micromol/L niflumate did not significantly alter cDADs. We conclude that DADs are almost entirely due to I(Na/Ca), not I(Cl(Ca)) or Ca(2+)-activated nonselective cation current. To trigger an AP requires 30 to 40 micromol/L cytosolic Ca(2+) or a [Ca(2+)](i) transient of 424 nmol/L. Current injection, simulating I(ti)s with different time courses, revealed that faster I:(ti)s require less charge for AP triggering. Given that spontaneous SR Ca(2+) release occurs in waves, which are slower than cDADs or fast I(ti)s, the true Delta[Ca(2+)](i) threshold for AP activation may be approximately 3-fold higher in normal myocytes. This provides a safety margin against arrhythmia in normal ventricular myocytes.  相似文献   

8.
The aim of this study was to investigate how sarcoplasmic reticulum (SR) Ca(2+) content and systolic Ca(2+) are controlled when Ca(2+) entry into the cell is varied. Experiments were performed on voltage-clamped rat and ferret ventricular myocytes loaded with fluo-3 to measure intracellular Ca(2+) concentration ([Ca(2+)](i)). Increasing external Ca(2+) concentration ([Ca(2+)](o)) from 1 to 2 mmol/L increased the amplitude of the systolic Ca(2+) transient with no effect on SR Ca(2+) content. This constancy of SR content is shown to result because the larger Ca(2+) transient activates a larger Ca(2+) efflux from the cell that balances the increased influx. Decreasing [Ca(2+)](o) to 0.2 mmol/L decreased systolic Ca(2+) but produced a small increase of SR Ca(2+) content. This increase of SR Ca(2+) content is due to a decreased release of Ca(2+) from the SR resulting in decreased loss of Ca(2+) from the cell. An increase of [Ca(2+)](o) has two effects: (1) increasing the fraction of SR Ca(2+) content, which is released on depolarization and (2) increasing Ca(2+) entry into the cell. The results of this study show that the combination of these effects results in rapid changes in the amplitude of the systolic Ca(2+) transient. In support of this, the changes of amplitude of the transient occur more quickly following changes of [Ca(2+)](o) than following refilling of the SR after depletion with caffeine. We conclude that the coordinated control of increased Ca(2+) entry and greater fractional release of Ca(2+) is an important factor in regulating excitation-contraction coupling.  相似文献   

9.
In cardiac ventricular myocytes, sarcoplasmic reticulum (SR) Ca(2+) load is a key determinant of SR Ca(2+) release. This release normally occurs predominantly from SR junctions at sarcolemmal invaginations (t-tubules), ensuring synchronous SR Ca(2+) release throughout the cell. However under conditions of Ca(2+) overload, spontaneous SR Ca(2+) release and propagating Ca(2+) waves can occur, which are pro-arrhythmic. We used detubulated rat ventricular myocytes to determine the dependence of Ca(2+) wave propagation on SR Ca(2+) load, and the role of t-tubules in SR Ca(2+) uptake and spontaneous release. After SR Ca(2+) depletion, recovery of Ca(2+) transient amplitude (and SR Ca(2+) load) was slower in detubulated than control myocytes (half-maximal recovery: 9.9+/-1.4 vs. 5.5+/-0.7 beats). In detubulated myocytes the extent and velocity of Ca(2+) propagation from the cell periphery increased with each beat and depended steeply on SR Ca(2+) load. Isoproterenol (ISO) accelerated recovery, increased maximal propagation velocity and reduced the threshold SR Ca(2+) load for propagation. Ca(2+) spark frequency was uniform across control cell width and was similar at the periphery of detubulated cells. However, internal Ca(2+) spark frequency in detubulated cells was 75% lower (despite comparable local SR Ca(2+) load); this transverse spark frequency profile was similar to that in atrial myocytes. We conclude that: (1) t-tubule Ca(2+) fluxes normally control SR Ca(2+) refilling; (2) Ca(2+) wave propagation depends steeply on SR Ca(2+) content (3) SR-t-tubule junctions are important in initiating SR Ca(2+) release and (4) ISO enhances propagation of SR Ca release, but not the initiation of SR Ca release events (for given SR Ca(2+) loads).  相似文献   

10.
The Na(+)/Ca(2+)-exchanger (NCX) is the main mechanism by which Ca(2+) is transported out of the ventricular myocyte. NCX levels are raised in failing human heart, and the consequences of this for excitation-contraction coupling are still debated. We have increased NCX levels in adult rabbit myocytes by adenovirally-mediated gene transfer and examined the effects on excitation-contraction coupling after 24 and 48 h. Infected myocytes were identified through expression of green fluorescent protein (GFP), transfected under a separate promoter on the same viral construct. Control experiments were done with both non-infected myocytes and those infected with adenovirus expressing GFP only. Contraction amplitude was markedly reduced in NCX-overexpressing myocytes at either time point, and neither increasing frequency nor raising extracellular Ca(2+) could reverse this depression. Resting membrane potential and action potential duration were largely unaffected by NCX overexpression, as was peak Ca(2+) entry via the L-type Ca(2+) channel. Systolic and diastolic Ca(2+) levels were significantly reduced, with peak systolic Ca(2+) in NCX-overexpressing myocytes lower than diastolic levels in control cells at 2 m m extracellular Ca(2+). Both cell relengthening and the decay of the Ca(2+) transient were significantly slowed. Sarcoplasmic reticulum (SR) Ca(2+) stores were completely depleted in a majority of myocytes, and remained so despite increasingly vigorous loading protocols. Depressed contractility following NCX overexpression is therefore related to decreased SR Ca(2+) stores and low diastolic Ca(2+) levels rather than reduced Ca(2+) entry.  相似文献   

11.
The multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) is important for regulating L-type Ca(2+) current (I(Ca)) and cytoplasmic Ca(2+) (Ca(2+)(i)) uptake and release from the sarcoplasmic reticulum (SR), key elements of the 'Ca(2+)-induced Ca(2+) release' (CICR) mechanism. However, the effects of chronic CaMKII inhibition on Ca(2+)(i) responses during CICR are unknown. We hypothesized that chronic CaMKII inhibition significantly affects CICR in ventricular myocytes. We studied CICR by simultaneously measuring Ca(2+)(i) transients and I(Ca) in voltage-clamped ventricular myocytes isolated from a recently developed genetic mouse model of cardiac CaMKII inhibition. These measurements were repeated in ventricular myocytes from novel mice with cardiac CaMKII inhibition lacking phospholamban (PLN), a known CaMKII substrate and a negative regulator of Ca(2+)(i) uptake into the SR Ca(2+) store. CaMKII inhibition eliminated a pattern of I(Ca) increases called facilitation and significantly reduced beat-to-beat and cell-to-cell variability of peak Ca(2+)(i) transients in ventricular myocytes with PLN. PLN ablation eliminated I(Ca) facilitation even in the absence of CaMKII inhibition and the effects of CaMKII inhibition to reduce SR Ca(2+) content and slow SR Ca(2+) uptake were lost in the absence of PLN. PLN ablation significantly reduced I(Ca) beat-to-beat variability in cells with CaMKII inhibition. These findings show that chronic CaMKII inhibition reduces variability of CICR responses in a manner that is partly dependent on the presence of PLN.  相似文献   

12.
OBJECTIVE: Persistent supraventricular tachycardia leads to the development of a dilated cardiomyopathy with impairment of excitation-contraction (EC) coupling. Since the initial trigger for EC coupling in ventricular muscle is the influx of Ca(2+) through L-type Ca(2+) channels (I(Ca)) in the transverse tubules (T-tubules), we determined if the density of the T-tubule system and L-type Ca(2+) channels change in canine tachycardia pacing-induced cardiomyopathy. METHODS: Confocal imaging of isolated ventricular myocytes stained with the membrane dye Di-8-ANEPPS was used to image the T-tubule system, and standard whole-cell patch clamp techniques were used to measure I(Ca) and intramembrane charge movement. RESULTS: A complex staining pattern of interconnected tubules including prominent transverse components spaced every approximately 1.6 microm was present in control ventricular myocytes, but failing cells demonstrated a far less regular T-tubule system with a relative loss of T-tubules. In confocal optical slices, the average % of the total cell area staining for T-tubules decreased from 11.5+/-0.4 in control to 8.7+/-0.4% in failing cells (P<0.001). Whole-cell patch clamp studies revealed that I(Ca) density was unchanged. Since whole-cell I(Ca) is due to both the number of channels as well as the functional properties of those channels, we measured intramembrane charge movement as an assay for changes in channel number. The saturating amount of charge that moves due to gating of L-type Ca(2+) channels, Q(on,max), was decreased from 6.5+/-0.6 in control to 2.8+/-0.3 fC/pF in failing myocytes (P<0.001). CONCLUSIONS: Cellular remodeling in heart failure results in decreased density of T-tubules and L-type Ca(2+) channels, which contribute to abnormal EC coupling.  相似文献   

13.
The diabetic heart has an abnormal intracellular calcium ([Ca(2+)]i) metabolism. However, the responsible molecular mechanisms are unclear. The present study aimed to investigate mRNAs expressed in the proteins which regulate heart [Ca(2+)]i metabolism in streptozotocin (STZ)-induced diabetic rats. Expression of sarcoplasmic reticulum Ca(2+)-adenosine triphosphatase (SR Ca(2+)-ATPase) mRNA was significantly less in the heart 3 weeks after STZ injection than that in the age-matched controls. Together with the down-regulation of SR Ca(2+)-ATPase, expression of ryanodine sensitive Ca(2+)channel (RYR) mRNA was also decreased 12 weeks after STZ injection. Insulin supplementation fully restored the decreased mRNAs expression of SR Ca(2+)-ATPase and RYR. The diminished expression and restoration with insulin supplementation of SR Ca(2+)-ATPase was further confirmed at the protein level. In contrast, expression of mRNAs coding the L-type Ca(2+)channel, Na(+)-Ca(2+)exchanger, or phospholamban were not affected 3 or 12 weeks after STZ injection. These results can be taken to indicate that the down-regulation of SR Ca(2+)-ATPase and RYR mRNAs is a possible underlying cause of cardiac dysfunction in STZ-induced diabetic rats.  相似文献   

14.
Confocal imaging was used to study the influence of cytosolic ATP on the properties of spontaneous Ca(2+) sparks in permeabilized ventricular myocytes. Cells were perfused with mock intracellular solutions containing fluo 3. Reducing [ATP] to <0.5 mmol/L decreased the frequency but increased the amplitude of spontaneous Ca(2+) sparks. In the presence of 20 micromol/L ATP, the amplitude increased by 48.7+/-10.9%, and the frequency decreased by 77.07+/-3.8%, relative to control responses obtained at 5 mmol/L ATP. After exposure to a solution containing zero ATP, the frequency of Ca(2+) sparks decreased progressively and approached zero within 90 seconds. As ATP washed out of the cell, the sarcoplasmic reticulum (SR) Ca(2+) content increased, until reaching a maximum after 3 minutes. Subsequent introduction of adenylyl imidodiphosphate precipitated a burst of large-amplitude Ca(2+) sparks. This was accompanied by a rapid decrease in SR Ca(2+) content to 80% to 90% of the steady-state value obtained in the presence of 5 mmol/L ATP. Thereafter, the SR Ca(2+) content declined much more slowly over 5 to 10 minutes. The effects of ATP withdrawal on Ca(2+) sparks may reflect reduced occupancy of the adenine nucleotide site on the SR Ca(2+) channel. These effects may contribute to previously reported changes in SR function during myocardial ischemia and reperfusion, in which ATP depletion and Ca(2+) overload occur.  相似文献   

15.
Dyssynchronous Ca(2+) sparks in myocytes from infarcted hearts   总被引:1,自引:0,他引:1  
The kinetics of contractions and Ca(2+) transients are slowed in myocytes from failing hearts. The mechanisms accounting for these abnormalities remain unclear. Myocardial infarction (MI) was produced by ligation of the circumflex artery in rabbits. We used confocal microscopy to record spatially resolved Ca(2+) transients during field stimulation in left ventricular (LV) myocytes from control and infarcted hearts (3 weeks). Compared with controls, Ca(2+) transients in myocytes adjacent to the infarct had lower peak amplitudes and prolonged time courses. Control myocytes showed relatively uniform changes in [Ca(2+)] throughout the cell after electrical stimulation. In contrast, in MI myocytes [Ca(2+)] increased inhomogeneously and localized increases in [Ca(2+)] occurred throughout the rising and falling phases of the Ca(2+) transient. Ca(2+) content of the sarcoplasmic reticulum did not differ between MI and control myocytes. Peak L-type Ca(2+) current density was reduced in MI myocytes. The macroscopic gain function was not different in control and MI myocytes when calculated as the amplitude of the Ca(2+) transient/peak I:(Ca). However, when calculated as the peak rate of rise of the Ca(2+) transient/peak I:(Ca), the gain function was modestly decreased in the MI myocytes. Application of isoproterenol (100 nmol/L) improved the synchronization of Ca(2+) release in MI myocytes at both 0.5 and 1 Hz. The poorly coordinated production of Ca(2+) sparks in myocytes from infarcted rabbit hearts likely contributes to the diminished and slowed macroscopic Ca(2+) transient. These abnormalities can be largely overcome when phosphorylation of Ca(2+) cycling proteins is enhanced by ss-adrenergic stimulation.  相似文献   

16.
OBJECTIVE: Several members of the PKD gene family (PKD2, PKDL and PKD2L2) are expressed in the heart. Polycystin-2 and its homologues, which are encoded by these genes, have recently been shown to form Ca(2+)-regulated nonselective cation channels in heterologous expression systems. Previously, large conductance nonselective cation channels (LCC) have been described in cardiomyocytes, however, their molecular identity remained obscure. We therefore examined whether LCCs may be formed by polycystins. METHODS: Myocytes isolated from the rat left ventricle were investigated by the whole-cell patch-clamp technique and single-cell RT-PCR. RESULTS: Application of 10 mM caffeine to the bath solution to increase the intracellular Ca(2+) concentration led to activation of LCC in 56% of the myocytes investigated (total n=651), in approximately 10%, more than three LCCs were detected. The single channel conductance was approximately 300 pS for monovalent cations and the channel was relatively nonselective for the monovalent cations Na(+), K(+), Li(+), and Cs(+) and also permeable for the divalent cations Ca(2+) and Ba(2+), but impermeable for NMDG(+) and Cl(-). Amiloride (IC(50)=131+/-1.1 microM) and millimolar concentrations of the trivalent cations Gd(3+) and La(3+) inhibited the LCC. Single-cell RT-PCR analysis revealed that mRNA of PKD2 and PKD2L2, but not PKDL or PKD1 are expressed in individual rat left ventricular myocytes. CONCLUSION: The characteristics of LCC shown in the present study are nearly identical to those observed for polycystin-2 and its homologues suggesting that polycystin-2 or polycystin-2L2 underlie LCC in ventricular myocytes.  相似文献   

17.
18.
To elucidate microscopic mechanisms underlying the modulation of cardiac excitation-contraction (EC) coupling by beta-adrenergic receptor (beta-AR) stimulation, we examined local Ca(2+) release function, ie, Ca(2+) spikes at individual transverse tubule-sarcoplasmic reticulum (T-SR) junctions, using confocal microscopy and our recently developed technique for release flux measurement. beta-AR stimulation by norepinephrine plus an alpha(1)-adrenergic blocker, prazosin, increased the amplitude of SR Ca(2+) release flux (J(SR)), its running integral (integralJ(SR)), and L-type Ca(2+) channel current (I(Ca)), and it shifted their bell-shaped voltage dependence leftward by approximately 10 mV, with the relative effects ranking I(Ca)> J(SR)>integralJ(SR). Confocal imaging revealed that the bell-shaped voltage dependence of SR Ca(2+) release is attributable to a graded recruitment of T-SR junctions as well as to changes in Ca(2+) spike amplitudes. beta-AR stimulation increased the fractional T-SR junctions that fired Ca(2+) spikes and augmented Ca(2+) spike amplitudes, without altering the SR Ca(2+) load, suggesting that more release units were activated synchronously among and within T-SR junctions. Moreover, beta-AR stimulation decreased the latency and temporal dispersion of Ca(2+) spike occurrence at a given voltage, delivering most of the Ca(2+) at the onset of depolarization rather than spreading it out throughout depolarization. Because the synchrony of Ca(2+) spikes affects Ca(2+) delivery per unit of time to contractile myofilaments, and because the myofilaments display a steep Ca(2+) dependence, our data suggest that synchronization of SR Ca(2+) release represents a heretofore unappreciated mechanism of beta-AR modulation of cardiac inotropy.  相似文献   

19.
The purpose of the present study was to determine whether age-related changes in the expression and function of the cardiac isoform of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) play a role in SR Ca(2+)release and cell contraction. SERCA2a protein levels and subcellular localization were compared between fetal, neonatal, juvenile and adult New Zealand White rabbits. Studies of SERCA function in isolated myocytes were performed in situ by examining the rate of reloading of the SR Ca(2+)stores following caffeine-induced depletion. We found that significant quantities of SERCA2a were present early in immature heart and that SERCA2a expression reached adult levels within 15-30 days after birth. Furthermore, SERCA2a protein is present as a series of transverse striations within the cell as early as 1 day of age. In contrast to previous studies of SERCA in vitro, the SERCA protein function in situ was found to be comparable between neonatal and adult myocytes in maintaining SR Ca(2+)stores. These results indicate that the paucity of SR Ca(2+)release in immature ventricular cardiac myocytes is not the result of immaturity in SERCA2a expression.  相似文献   

20.
OBJECTIVE: Catecholamines that accompany acute physiological stress are also involved in mediating the development of hypertrophy and failure. However, the cellular mechanisms involved in catecholamine-induced cardiac hypertrophy, particularly Ca2+ handling, are largely unknown. We therefore investigated the effects of cardiac hypertrophy, produced by isoprenaline, on I(Na/Ca) and sarcoplasmic reticulum (SR) function in isolated myocytes. METHODS: I(Na/Ca) was studied in myocytes from Wistar rats, using descending (+80 to -110 mV) voltage ramps under steady state conditions. Myocytes were also loaded with fura-2 and either field stimulated or voltage clamped to assess [Ca2+]i and SR Ca2+ content. RESULTS: Ca2+-dependent, steady state I(Na/Ca) density was increased in hypertrophied myocytes (P<0.05). Ca2+ release from the SR was also increased, whereas resting [Ca2+]i and the rate of decline of [Ca2+]i to control levels were unchanged. SR Ca2+ content, estimated by using 10.0 mmol/l caffeine, was also significantly increased in hypertrophied myocytes, but only when myocytes were held and stimulated from their normal resting potential (-80 mV) but not from -40 mV. However, the rate of decline of caffeine-induced Ca2+ transients or I(Na/Ca) was not significantly different between control and hypertrophied myocytes. Ca2+-dependence of I(Na/Ca), examined by comparing the slope of the descending phase of the hysteresis plots of I(Na/Ca) vs. [Ca2+]i, was also similar in the two groups of cells. CONCLUSION: Data show that SR Ca2+ release and SR Ca2+ content were increased in hypertrophied myocytes, despite an increase in the steady state I(Na/Ca) density. The observation that increased SR function occurred only when myocytes were stimulated from -80 mV suggests that Na+ influx may play a role in altering Ca2+ homeostasis in hypertrophied cardiac muscle, possibly through increased reverse Na+/Ca2+ exchange, particularly at low stimulation frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号