首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of transport of desciclovir (DCV)--a structural analogue and prodrug of acyclovir (ACV) which provides an improved oral bioavailability of ACV--was investigated in human erythrocytes with a "papaverine-stop" assay. DCV influx was nonconcentrative, linearly dependent on DCV concentration (0.9 microM to 15 mM), insensitive (less than or equal to 20% inhibition) to nucleobases, nucleosides, or potent inhibitors of nucleoside transport, and occurred without permeant metabolism. However, DCV was a weak competitive inhibitor of the influx of adenine (Ki = 1.3 mM) and of 5-iodo-2'-deoxyuridine (Ki = 2.9 mM). permeants of the erythrocyte nucleobase and nucleoside carriers, respectively. This indicates that DCV has an affinity for both of these transporters, even though it appears not to be an effective permeant. We conclude that, in contrast to ACV which enters human erythrocytes primarily via the nucleobase carrier, DCV permeates these cells chiefly (greater than or equal to 80%) by nonfacilitated diffusion. This mechanistic difference in transport between ACV and DCV is attributed to differences in their desolvation energies and suggests an explanation for the differences in the oral bioavailability of ACV which is observed after the administration of these two "acyclic nucleosides."  相似文献   

2.
The membrane permeation characteristics of 5'-deoxythymidine (5'-ddThd) and 5'-azido-5'-deoxythymidine (5'-N3-5'-ddThd) were investigated in human erythrocytes, with an inhibitor-stop assay, at 20 degrees. Uptake of both nucleoside analogs occurred without metabolism, was nonconcentrative, and was partially inhibited by nucleosides or inhibitors of nucleoside transport at micromolar permeant concentrations. At higher permeant concentrations (greater than 1.0 mM), the influx rate of each analog was linearly dependent on concentration and insensitive to inhibition by nucleosides, inhibitors of nucleoside transport, and nucleobases. Kinetic analyses using nonlinear regression revealed that a saturable component of 5'-ddThd influx (Km = 200 microM) was competitively inhibited by thymidine (dThd) (Ki = 86 microM) or 5-iodo-2'-deoxyuridine (Ki = 84 microM). Similarly, a saturable component of 5'-N3-5'-ddThd influx (Km = 220 microM) was competitively inhibited by 2-chloroadenosine (Ki = 18 microM). The Ki values for these nucleoside inhibitors were similar to their reported Km values as permeants of the nucleoside transporter. Both 5'-ddThd and 5'-N3-5'-ddThd competitively inhibited the influx of dThd (Km = 60 microM), with similar Ki values (150 and 200 microM, respectively). We conclude that these two 5'-modified dThd analogs enter human erythrocytes both by nonfacilitated diffusion and by the nucleoside transporter. The absence of the 5'-hydroxyl group of dThd (5'-ddThd) resulted in a large increase in the octanol/buffer partition coefficient, in an ability to permeate human erythrocytes by nonfacilitated diffusion, and in a 3-fold diminished binding to the nucleoside transporter. The 5'-azido group (5'-N3-5'-ddThd) resulted in an additional 1.4-fold increase in the octanol/buffer partition coefficient and in a 2-fold increase in the rate of nonfacilitated diffusion.  相似文献   

3.
Abacavir, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol, is a novel purine carbocyclic nucleoside analogue that has been approved by the FDA for the treatment of HIV (as Ziagen trade mark [abacavir sulfate]). Chemically, abacavir and (-)-carbovir (CBV) differ only at the 6-position of the purine ring; abacavir contains a cyclopropylamino moiety in place of the 6-lactam functionality of CBV. Intracellularly both are ultimately metabolized to CBV triphosphate. We compared the membrane permeation characteristics of these two compounds at 20 degrees C in human erythrocytes and in human T-lymphoblastoid CD4+ CEM cells, using a "papaverine-stop" assay. In erythrocytes, abacavir influx was rapid, nonsaturable (rate constant=200 pmol/s/mM/microl cell water), and unaffected by inhibitors of nucleoside or nucleobase transport. CBV influx was slow, saturable, strongly inhibited by adenine or hypoxanthine, and occurred via both the nucleobase carrier (Vmax=0.67 pmol/s/microl cell water; Km=50 microM) and the nucleoside carrier (Vmax=0.47 pmol/s/microl cell water; Km=440 microM). Similar qualitative results were obtained with CD4+ CEM cells, although CBV influx rates were somewhat higher and abacavir influx rates lower, compared to the corresponding rates in erythrocytes. Equilibrium studies further revealed that both compounds are concentrated intracellularly, but nonmetabolically, in both cell types, apparently due to cytosolic protein binding (absent in erythrocyte ghosts). We conclude that, in both cell types, while CBV influx is slow and carrier-dependent, abacavir influx occurs rapidly by nonfacilitated diffusion. The membrane permeation characteristics of abacavir are consistent with its superior oral bioavailability and its impressive ability to penetrate the central nervous system.  相似文献   

4.
2-Chloroadenosine, a permeant for the nucleoside transporter   总被引:5,自引:0,他引:5  
Human erythrocytes were shown to possess a saturable uptake mechanism for 2-chloroadenosine (apparent Km 23 microM, 22 degrees). Uptake by this route was inhibited by nitrobenzylthioinosine, uridine and adenosine, but adenine had no effect. In addition, uridine caused the countertransport of 2-chloroadenosine and vice versa. 2-Chloroadenosine was also shown to be an apparent competitive inhibitor of uridine influx (apparent Ki value of 33 microM) and high-affinity nitrobenzylthioinosine binding (apparent Ki 0.18 mM). The apparent Ki value for inhibition of uridine influx was close to the apparent Km value for 2-chloroadenosine uptake. Previous studies [Jarvis et al., Biochem. J. 208, 83 (1982)] have demonstrated that dog erythrocytes do not possess a saturable transport system for uridine and adenosine. Similarly, in the present study, the entry of 2-chloroadenosine into dog erythrocytes was slow and linear with concentration. Nitrobenzylthioinosine (NBMPR) had no effect on the uptake of 2-chloroadenosine into dog erythrocytes. These results demonstrate that 2-chloroadenosine enters human erythrocytes by the same nucleoside carrier as other nucleosides. It is suggested from these data that the previous explanation that the inability of nucleoside transport inhibitors to potentiate the pharmacological effects of 2-chloroadenosine was due to the failure of the nucleoside carrier to accept 2-chloroadenosine as a permeant may have to be reassessed.  相似文献   

5.
Dipyridamole-mediated inhibition of nucleoside transport by the nitrobenzylthioinosine (NBMPR)-sensitive facilitated diffusion system in mammalian erythrocytes was investigated. [3H]Dipyridamole was a competitive inhibitor of uridine equilibrium exchange influx into guinea pig erythrocytes (apparent Ki 1 nM). Analysis of the results using total inhibitor levels instead of cell-free inhibitor concentrations increased the apparent Ki value to 7 nM. Similarly, [3H]dipyridamole inhibition of zero-trans-[14C] uridine influx was consistent with simple competitive inhibition (apparent Ki 1.4 +/- 0.7 nM). In contrast, [3H]dipyridamole behaved as a noncompetitive inhibitor of zero-trans-[14C]uridine efflux (apparent Ki 0.7 +/- 0.2 nM). In a second series of experiments, [3H]dipyridamole was found to bind to a single class of high affinity sites on plasma membranes from human erythrocytes (apparent Kd 0.65 +/- 0.07 nM) with a maximum number of binding sites similar to that determined with the nucleoside transport inhibitor NBMPR. Binding of dipyridamole to these sites was blocked by the nucleoside transport inhibitors NBMPR, nitrobenzylthioguanosine, and dilazep and in a competitive manner by adenosine and uridine (apparent inhibition constants 0.1 and 0.9 mM, respectively). These inhibition constants are similar to the apparent Km for adenosine and uridine equilibrium exchange in human erythrocytes. These results are consistent with the notion that, in mammalian erythrocytes, dipyridamole interacts with the NBMPR-sensitive transporter at the same site as NBMPR, which is preferentially located on the outer surface of the cell membrane totally or partially within the permeation site.  相似文献   

6.
Kong W  Wang J 《Pharmaceutical research》2003,20(11):1804-1811
PURPOSE: Cancer cells may circumvent the cytotoxic effect of antimetabolite drugs that inhibit de novo nucleotide synthesis via the uptake of extracellular preformed nucleobases or nucleosides. The goal of this study was to investigate the nucleobase transport mechanism in human U-118 glioblastoma cells and to determine whether the purine nucleobase hypoxanthine affects cell susceptibility to methotrexate. METHODS: Uptake experiments were performed using 3H-labeled hypoxanthine. RT-PCR was used to determine the expression of nucleoside transporters. Methotrexate-induced apoptosis was analyzed using annexin V staining and FACScan analysis. RESULTS: Hypoxanthine transport in U-118 cells involved both carrier-mediated (Km = 10.5 +/- 6.3 microM, Vmax = 1.45 +/- 0.69 pmol/10(5) cells/60 s) and simple diffusion processes (Kd = 0.36 +/- 0.009 microm/10(5) cells/60 s). Uptake was sensitive to Na+ and inhibited by nucleobases but not nucleosides or nucleoside transport inhibitors. In contrast, uptake of a nucleoside, uridine, was inhibited by nucleosides but not nucleobases. RT-PCR analysis suggested the presence of hENT1, hENT2, and hCNTI nucleoside transporters in U-118 cells. In the absence of hypoxanthine, methotrexate inhibited U-118 cell proliferation and induced apoptosis. These toxic effects were diminished when hypoxanthine was present at physiologically relevant concentrations. CONCLUSIONS: Hypoxanthine transport in U-118 cells involves a Na+-dependent, high-affinity nucleobase transport system functionally distinct from nucleoside transporters. At physiologic concentrations, hypoxanthine protects glioblastoma cells from the cytotoxicity of methotrexate.  相似文献   

7.
Adenosine (Ado, 10 microM) was metabolized in whole blood within 1 min, primarily to hypoxanthine and ATP. The concentration of Ado, the activities of adenosine deaminase (ADA) and Ado kinase, the Km values for Ado with ADA and Ado kinase, and the substrate inhibition of Ado kinase are factors that govern the Ado metabolism between deamination and phosphorylation. If ADA activity was blocked by 2'-deoxycoformycin (dCF, 5 microM), a tight-binding inhibitor of ADA, most of the Ado (96%) was incorporated into adenine nucleotides, whereas if Ado kinase activity was blocked with 5-iodotubercidin (10 microM), Ado was mainly (95%) metabolized into hypoxanthine. A high phosphate concentration (25 mM) caused marked increases in the formation of IMP. The nucleoside transport inhibitors dilazep (1 microM), dipyridamole (10 microM) and nitrobenzylthioinosine (NBMPR, 1 microM) strongly blocked cellular Ado metabolism. In the presence of nucleoside transport inhibitors, Ado which slowly enters the cell was metabolized principally by Ado kinase rather than ADA. Dilazep, NBMPR and dipyridamole were more effective in blocking Ado uptake and metabolism by erythrocytes suspended in a protein-free medium than by cells suspended in plasma.  相似文献   

8.
The inhibition of renal ornithine decarboxylase (ODC) by aminoglycoside antibiotics was characterized in the postmitochondrial fraction of a kidney homogenate from adult pigmented guinea pigs. Enzymatic activity was defined as the rate of decarboxylation of [14C]ornithine sensitive to a specific ODC inhibitor, alpha-difluoromethylornithine (DFMO). The Km for ornithine was 61 +/- 32 microM. There were two forms of the enzyme with respect to their affinity for pyridoxal phosphate (PLP): (I) Km = 2.1 +/- 1.8 microM; (II) Km = 36.2 +/- 12.7 microM. Putrescine, a known ODC inhibitor, acted competitively on the renal enzyme with Ki = 1.7 +/- 1.4 mM. Aminoglycoside antibiotics inhibited ODC by an uncompetitive mechanism with inhibitor constants of comparable magnitude: neomycin, Ki = 1.3 +/- 0.1 mM; gentamicin, Ki = 1.6 +/- 0.1 mM; kanamycin, Ki = 1.9 +/- 0.2 mM; and netilmicin, Ki = 1.7 +/- 0.2 mM. Neomycin inhibited both forms of the enzyme (low and high affinity for PLP) uncompetitively with similar inhibitor constants (1.5 +/- 0.3 and 1.8 +/- 0.4 mM respectively), suggesting a single mechanism of action. Inhibition of ODC suggests that aminoglycoside-polyamine interactions may be an important component of the sequence of biochemical events associated with aminoglycoside toxicity.  相似文献   

9.
The affinities of adenosine and 2-chloroadenosine for the nucleoside transport system of guinea pig myocytes were evaluated indirectly by studying the inhibition of the binding of [3H]nitrobenzylthioinosine and directly by measuring the influx of [3H]radiolabeled substrates. Maximal transport velocities of the two nucleosides were also obtained. [3H]Nitrobenzylthioinosine bound to a single class of high-affinity sites (KD of 0.8 nM) which possessed a maximal binding capacity (Bmax) of 870,000 sites/cell. Adenosine, 2-chloroadenosine or the nucleoside transport inhibitor, dipyridamole, competitively inhibited the site-specific binding of [3H]nitrobenzylthioinosine with Ki values of 318 microM, 22 microM and 75 nM respectively. Both [3H]adenosine and [3H]2-chloroadenosine entered myocytes in a saturable and inhibitible manner. Observed transport kinetic constants (Km and Vmax) were 146 microM and 24.2 pmoles/10(6) cells/sec, respectively, for adenosine and 36 microM and 11.7 pmoles/10(6) cells/sec, respectively for 2-chloroadenosine. Affinities of adenosine, 2-chloroadenosine, nitrobenzylthioinosine and dipyridamole for the nucleoside transport system derived from binding and influx methodologies were equivalent which confirms that [3H]nitrobenzylthioinosine binding sites are closely associated with the nucleoside transporter.  相似文献   

10.
Adenosine is produced intracellularly during conditions of metabolic stress and is an endogenous agonist for four subtypes of G-protein linked receptors. Nucleoside transporters are membrane-bound carrier proteins that transfer adenosine, and other nucleosides, across biological membranes. We investigated whether adenosine receptor activation could modulate transporter-mediated adenosine efflux from metabolically stressed cells. DDT1 MF-2 smooth muscle cells were incubated with 10 microM [3H]adenine to label adenine nucleotide pools. Metabolic stress with the glycolytic inhibitor iodoacetic acid (1AA, 5 mM) increased tritium release by 63% (P < 0.01), relative to cells treated with buffer alone. The IAA-induced increase was blocked by the nucleoside transport inhibitor nitrobenzylthioinosine (1 microM), indicating that the increased tritium release was primarily a purine nucleoside. HPLC verified this to be [3H]adenosine. The adenosine A1 receptor selective agonist N6-cyclohexyladenosine (CHA, 300 nM) increased the release of [3H]purine nucleoside induced by IAA treatment by 39% (P < 0.05). This increase was blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (10 microM). Treatment of cells with UTP (100 microM), histamine (100 microM), or phorbol-12-myristate-13-acetate (PMA, 10 microM) also increased [3H]purine nucleoside release. The protein kinase C inhibitor chelerythrine chloride (500 nM) inhibited the increase in [3H]purine nucleoside efflux induced by CHA or PMA treatment. The adenosine kinase activity of cells treated with CHA or PMA was found to be decreased significantly compared with buffer-treated cells. These data indicated that adenosine A1 receptor activation increased nucleoside efflux from metabolically stressed DDT1 MF-2 cells by a PKC-dependent inhibition of adenosine kinase activity.  相似文献   

11.
5'-Deoxy-5'-methylthioadenosine (MTA) phosphorylase was purified 13.4-fold from human peripheral lymphocytes. The enzyme demonstrated normal Michaelis-Menten kinetics with Km values of 26 microM and 7.5 mM for the two substrates, MTA and phosphate, respectively. The rate of MTA degradation was temperature dependent, 47 degrees being the optimum temperature. Five structural analogs served as alternative substrates with Km values ranging from 31 to 53 microM while two compounds, 5'-deoxy-5'-methylthiotubercidin (MTT) (Ki = 31 microM) and adenine (Ki = 172 microM), were inhibitory. These same analogs were examined as inhibitors of mitogen-induced human lymphocyte blastogenesis. MTT was found to be the most effective inhibitor of lymphocyte transformation with an I50 of 80 microM.  相似文献   

12.
The purpose of this study was to investigate the expression of nucleoside/nucleobase transporters on the Statens Seruminstitut rabbit corneal (SIRC) epithelial cell line and to evaluate SIRC as an in vitro screening tool for delineating the mechanism of corneal permeation of nucleoside analogs. SIRC cells (passages 410–425) were used to study uptake of [3H]thymidine, [3H]adenine, and [3H]ganciclovir. Transport of [3H]adenine and [3H]ganciclovir was studied across isolated rabbit cornea. Uptake and transport studies were performed for 2 minutes and 120 minutes, respectively, at 34°C. Thymidine uptake by SIRC displayed saturable kinetics (K m=595.9±80.4μM, and V max=289.5±17.2 pmol/min/mg protein). Uptake was inhibited by both purine and pyrimidine nucleosides but not by nucleobases. [3H]thymidine uptake was sodium and energy independent but was inhibited by nitrobenzylthioinosine at nanomolar concentrations. Adenine uptake by SIRC consisted of a saturable component (K m=14.4±2.3μM, V max=0.4±0.04 nmol/min/mg protein) and a nonsaturable component. Uptake of adenine was inhibited by purine nucleobases but not by the nucleosides or pyrimidine nucleobases and was independent of sodium, energy, and nitrobenzylthioinosine. [3H]ganciclovir uptake involved a carrier-mediated component and was inhibited by the purine nucleobases but not by the nucleosides or pyrimidine nucleobases. However, transport of [3H]adenine across the isolated rabbit cornea was not inhibited by unlabeled adenine. Further, corneal permeability of ganciclovir across a 100-fold concentration range remained constant, indicating that ganciclovir permeates the cornea primarily by passive diffusion. Nucleoside and nucleobase transporters on rabbit cornea and corneal epithelial cell line, SIRC, are functionally different, undermining the utility of the SIRC cell line as an in vitro screening tool for elucidating the corneal permeation mechanism of nucleoside analogs.  相似文献   

13.
The transport of the cholestatic steroid glucuronide, 3H-estradiol-17 beta-(beta-D-glucuronide) (E2 17G), was examined in isolated female rat hepatocytes over a broad substrate concentration range (0.1-100 microM). Two different carrier systems were identified with the following kinetic parameters: Km1 = 4.54 microM; Vmax1 = 0.149 nmol/min/mg protein; Km2 = 149 microM; Vmax2 = 0.641 nmol/min/mg protein. Taurocholate and testosterone glucuronide selectively and competitively inhibited [3H]-E2 17G uptake at the high affinity site. Ki values calculated for taurocholate (43 microM) and testosterone glucuronide (28 microM) indicated that these two inhibitors were relatively weak competitors for this E2 17G transport site. Conversely, E2 17G inhibited [3H]taurocholate uptake into isolated hepatocytes (Ki = 43 microM). Bromosulfophthalein (10 microM) inhibited uptake of 0.5-50 microM [3H]-E2 17G by 55-85%, whereas morphine glucuronide (100 microM) had no significant effect on uptake of [3H]-E2 17G at these concentrations. The effects of taurocholate, testosterone glucuronide, bromosulfophthalein, and morphine glucuronide on [3H]-E2 17G uptake into isolated rat hepatocytes correlated with the ability of these agents to inhibit binding of [3H]-E2 17G to specific sites in rat liver plasma membranes. These data support the postulate that the two [3H]-E2 17G binding sites identified in female rat liver plasma membranes represent two distinct organic anion carriers and indicate that the high affinity site for [3H]-E2 17G represents a carrier that is shared by organic anions and bile acids.  相似文献   

14.
An adenine nucleoside phosphorylase has been partially purified from extracts of epimastigotes of the Peru strain of Trypanosoma cruzi, the causative agent of Chagas' disease. The purification procedure separated this enzyme from the three other nucleoside-cleaving enzymes found in extracts. The adenine nucleoside phosphorylase, which efficiently cleaved 5'-deoxy-5'-methylthioadenosine (MTA), had a particle weight of 68,000 and exhibited a broad pH optimum between pH 6 and 8. In addition to MTA, the purified enzyme cleaved and synthesized adenosine and 2'-deoxyadenosine with high efficiency. This contrasts to the enzyme from S-180 cells which has been reported to cleave adenosine poorly and not to cleave 2'-deoxyadenosine. Several observations suggested that the three substrates, MTA, adenosine and 2'-deoxyadenosine, use a common catalytic site: (a) all served as alternate-substrate inhibitors exhibiting mutually competitive inhibition with Ki values equivalent to their respective Km values, (b) 5'-chloroformycin A exhibited a competitive Ki value of 4 microM with each nucleoside substrate, and (c) the Km value of phosphate derived from initial velocity studies (180 +/- 20 microM) was independent of the nucleoside substrate. Substrate specificity studies in both the synthesis and cleavage direction indicated that the enzyme had a broad specificity for bases and nucleosides. For the synthesis of nucleosides, the enzyme demonstrated a preference for an amino group in the position equivalent to the 6 position of purine. Compounds containing a hydroxyl group in this position were not substrates. Although a hydrogen or methyl group could substitute for a 6-amino group, a marked decrease in substrate efficiency was observed with these compounds. Alterations in the purine ring led to decreases in the maximal velocity values as evidenced by the substrate or nonsubstrate properties of 1-, 3-, and 7-deazaadenine and 4-aminopyrazolo[3,4-d]pyrimidine. The Km values for 5-methylthioribose 1-phosphate, ribose 1-phosphate and 2'-deoxyribose 1-phosphate with adenine serving as acceptor were 21, 150 and 370 microM. For nucleoside cleavage, the T. cruzi enzyme catalyzed the phosphorolysis of a variety of 5'-substituted adenine-containing nucleosides including those possessing 5'-hydrogen-, hydroxyl-, halogeno-, alkylthio-, amino- and azido-moieties. Inclusion of an ionized group in the 5'-position, such as 5'-carboxy-5'-deoxyadenosine or AMP, precluded substrate activity. 3'-Deoxyadenosine, arabinosyladenine and alpha-adenosine did not serve as substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The transport of 500 microM uridine by human erythrocytes and S49, P388 and L1210 mouse leukemia cells, Chinese hamster ovary (CHO) cells and Novikoff rat hepatoma cells was inhibited strongly by dilazep and hexobendine with similar concentration dependence, but the sensitivity of transport in the various cell types varied greatly; IC50 values ranged from 5-30 nM for human erythrocytes and S49 and P388 cells to greater than 1 microM for CHO and Novikoff cells. The binding of nitrobenzylthioinosine (NBTI) to high-affinity sites on these cells (Kd approximately equal to 0.5 nM) was inhibited by hexobendine and dilazep in a similar pattern. Furthermore, these drugs, just as dipyridamole and papaverine, inhibited the dissociation of NBTI from high-affinity binding sites but only at concentrations 10-100 times higher than those inhibiting uridine transport. In contrast, high uridine concentrations (greater than 2 mM) accelerated the dissociation of NBTI. Dilazep also inhibited the transport of hypoxanthine, but only in those cell lines whose transporter is sensitive to inhibition by uridine and dipyridamole. Adenine transport was not inhibited significantly by dilazep in any of the cell lines tested, except for a slight inhibition in Novikoff cells. [14C]Hexobendine equilibrated across the plasma membrane in human erythrocytes within 2 sec of incubation at 25 degrees, but accumulated to 6-10 times the extracellular concentration in cells of the various cultured lines. Uptake was not affected by high concentrations of uridine, NBTI or dipyridamole. Hexobendine inhibited the growth of various cell lines to a lesser extent (IC50 = greater than or equal to 100 microM) than dipyridamole (IC50 = 15-40 microM). At 40 microM, however, it completely inhibited the growth of S49 cells that had been made nucleoside dependent by treatment with methotrexate or pyrazofurin.  相似文献   

16.
17.
Five nonnatural beta-C-nucleoside 5'-triphosphates bearing a 3,4-dihydroxyphenyl (1TP), a 2-hydroxyphenyl (2TP), a 3-hydroxyphenyl (3TP), a 4-hydroxyphenyl (4TP), or a phenyl (5TP) group were synthesized, and their structure-activity relationships were examined for a series of DNA polymerase reactions in vitro under typical polymerase chain reaction conditions. We found that the 5'-triphosphates (1TP-5TP) are not incorporated into DNA strands but inhibit the DNA polymerase reactions in the presence of natural nucleoside 5'-triphosphates (dNTPs). 1TP having two phenolic hydroxy groups at the nucleobase moiety showed the most potent inhibitory effect against DNA synthesis by Ex Taq polymerase (IC(50) = 30 microM). The competition assay indicated that 1TP and dNTPs are most likely to affect DNA polymerase reactions competitively. This finding may raise the appealing possibility that artificial nucleoside 5'-triphosphates having phenolic hydroxy groups could exhibit potent inhibitory activity against DNA-directed enzymatic reactions.  相似文献   

18.
1. The metabolic interaction of phenytoin and tolbutamide in human liver microsomes was investigated. 2. Phenytoin 4-hydroxylation (mean Km 29.6 microM, n = 3) was competitively inhibited by tolbutamide (mean Ki 106.2 microM, n = 3) and tolbutamide methylhydroxylation (mean Km 85.6 microM, n = 3) was competitively inhibited by phenytoin (mean Ki 22.6 microM, n = 3). 3. A significant correlation was obtained between phenytoin and tolbutamide hydroxylations in microsomes from 18 human livers (rs = 0.82, P less than 0.001). 4. Sulphaphenazole was a potent inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values of 0.4 microM and 0.6 microM, respectively. 5. Mephenytoin was a poor inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values greater than 400 microM for both reactions. 6. Anti-rabbit P450IIC3 IgG inhibited both phenytoin and tolbutamide hydroxylations in human liver microsomes by 62 and 68%, respectively. 7. These in vitro studies are consistent with phenytoin 4-hydroxylation and tolbutamide methylhydroxylation being catalysed by the same cytochrome P450 isozyme(s) in human liver microsomes.  相似文献   

19.
L-652,469, 14-acetoxy-7 beta-(3'-ethylcrotonoyloxy)-notonipetranone, isolated from the methylene chloride extracts of the buds of Tussilago farfara L, was found to inhibit both platelet activating factor (PAF) and Ca2+ entry blocker binding to membrane vesicles. It inhibits the [3H]PAF specific binding to rabbit platelet membranes with equilibrium inhibition constants (Ki) of 3.2 and 4.0 microM in the presence of 150 mM NaCl and 10 mM MgCl2 respectively. It is a competitive PAF receptor antagonist with an equilibrium dissociation constant (KB) of 5.16 microM. It also competitively inhibits the specific binding of Ca2+ channel blockers (e.g. [3H]nitrendipine; Ki = 1.2 microM) in cardiac sarcolemmal vesicles. At 10(-5) M, L-652,469 causes a 60% relaxation of Ca2+-induced contraction of rat thoracic aorta strips. Due to its dual antagonistic activities, L-652,469 potently inhibits the gel-filtered rabbit platelet aggregation with a pA2 of 5.79. It was also found to be orally active with a beneficial effect to inhibit the PAF-induced rat foot edema and the first phase of carrageenan-induced rat hindpaw edema.  相似文献   

20.
Adenosine (Ado, 10 microM) did not inhibit ADP-induced human platelet aggregation in whole blood. However, if the blood was preincubated with dipyridamole (10 microM), a potent inhibitor of the erythrocytic nucleoside transport system (NTS), Ado acted as a strong inhibitor of platelet aggregation. Similarly, Ado inhibited platelet aggregation in whole blood in the presence of other potent NTS inhibitors, dilazep (1 microM) and p-nitrobenzylthioinosine (NBMPR, 1 microM). RA 233 (10 microM), an analog of dipyridamole which is a potent inhibitor of platelet cAMP phosphodiesterase (PDE), did not evoke the Ado effect in whole blood. However, in platelet-rich plasma (PRP), RA 233 potentiated strongly Ado-mediated inhibition, whereas dipyridamole, dilazep and NBMPR were without activity. 5'-Methylthioadenosine (MTA), an Ado receptor antagonist, reversed the inhibition produced by a nucleoside transport system inhibitor plus Ado in whole blood. Dipyridamole (10 microM), dilazep (1 microM) or NBMPR (1 microM) blocked [14C]Ado (10 microM) uptake by blood cells in whole blood, whereas RA 233 (10 microM) was not effective. The combination of 2'-deoxycoformycin (dCF, 5 microM), a tight-binding inhibitor of adenosine deaminase (ADA), plus 5-iodotubercidin (ITu, 10 microM), a potent inhibitor of adenosine kinase (Ado kinase), gave comparable Ado-mediated inhibition of platelet aggregation in whole blood as was obtained when the blood was pretreated with dilazep. These studies suggest that the in vivo antiplatelet actions of drugs such as dipyridamole and dilazep result from their abilities to block erythrocytic Ado uptake and subsequent metabolism, thus elevating the extracellular steady-state concentration of the physiologically occurring, antiplatelet agent, Ado.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号