首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
This experiment was designed to compare the effects of unilateral cortical ablation on limb preference in adult versus newborn rats. Postoperatively, all adult animals preferred the limb on the side ipsilateral to the lesion inspite of pre- and postoperative testing bias toward the contralateral limb. However, neonatal cortical lesions followed by similar testing at maturity resulted in a contralateral or ambilateral limb preference in half of the animals tested. These differences are discussed in terms of central nervous system plasticity.  相似文献   

2.
Experiments were performed on 48 albino rats. Part of the experimental animals were initially trained to a balancing instrumental conditioned reflex (ICR). Unilateral bulbar pyramidotomy performed in all rats caused contralateral hemiparesis. On the next day following the operation 24 rats were injected intramuscularly with bacterial melanin solution. 12 of these rats were initially trained to ICR. Recovery periods of ICR and paralyzed hindlimb movements were registered for melanin injected rats (n=24) and for operated rats, not treated with melanin (n=24). In rats injected with bacterial melanin the posttraumatic recovery is shorter than in animals not treated with melanin. The fastest and complete recovery was registered in rats initially trained to ICR and injected after the operation with bacterial melanin. Electrophysiological experiments were performed in transected animals treated with melanin, transected animals without melanin treatment and intact animals. Spiking activity of motoneurons was registered in lumbar motoneurons of rats in response to high frequency stimulation above the corticospinal tract transection. Spiking activity was very similar in motoneurons of melanin injected and intact or non operated animals. In animals, not dosed with bacterial melanin after the operation, areactivity or no change in firing rate was registered in response to stimulus. Stimulation of the corticospinal tract of melanin injected rats produced potentiation of the motoneuronal firing rate and is an evidence of regeneration in corticospinal tract. Similarity in spiking activity of intact and melanin injected rats shows the recovery of conductance in pyramidal tract. Morphohistochemical examination was carried out to confirm the results of behavioral and electrophysiological experiments. Medulla slices were prepared to trace the regeneration of nerve fibers. Examination of transection area revealed that bacterial melanin increases vascularization, dilates the capillaries in nervous tissue and stimulates the process of sprouting.  相似文献   

3.
Many previous reports have demonstrated the development of aberrant neural connections in response to neonatal brain lesions. This investigation was undertaken to study possible alterations, particularly axonal sprouting, in rodent rubrospinal projections after neonatal destruction of the corticospinal tract through frontal cortical ablation. The neonatal ablations were made by aspiration in 1 to 2-day-old rats under hypothermic anesthesia. At three to six months after neonatal surgery, the rubrospinal tracts were ablated bilaterally in these same animals as well as in controls, by stereotaxically transecting the ventral tegmental decussation. Animals were killed two to six days after adult surgery, and rubrospinal projections were demonstrated using the Fink-Heimer degeneration stain. No differences in the pattern of rubrospinal projections were observed between animals with neonatal cortical lesions and controls. In all animals rubrospinal projections were located primarily in Rexed's lamina VI with a slight distribution into lamina V and the dorsal portion of lamina VII. Various hypotheses explaining the lack of rubrospinal sprouting after neonatal cortical lesions are presented, along with possible experiments to test these hypotheses.  相似文献   

4.
Summary After unilateral ablation of the superior colliculus (SC) in neonatal or adult rats, the reorganization of the tectospinal tract (TST) was examined using the technique of anterograde transport of horseradish peroxidase to which wheat germ agglutinin had been conjugated (WGA-HRP). In neonatally lesioned rats, aberrant labeled terminals of TST axons were found on the ipsilateral side of the spinal cord. Postnatal development of the TST was then studied by retrograde transport of HRP to determine whether the aberrant tectospinal projections resulted from normally transient ipsilateral projections that persisted in operated rats or were due to collateral sprouting of projections to the contralateral projection field. The results failed to show an ipsilateral projection from the SC to spinal cord in normal neonatal rats. However, in neonatally lesioned rats, aberrant labeled fibers were observed recrossing the midline of the cervical spinal cord. Therefore, the increase in labeled terminals on the ipsilateral side following unilateral SC ablation appeared to originate from collateral sprouting at the spinal cord level of TST fibers from the intact pathway.  相似文献   

5.
Anatomical plasticity and functional recovery after lesions of the rodent corticospinal tract (CST) decrease postnatally in parallel with myelin formation. Myelin-associated neurite growth inhibitory proteins prevent regenerative fiber growth, but whether they also prevent reactive sprouting of unlesioned fibers is less clear. Here we show that after unilateral CST lesion in the adult rat brainstem, both intact and lesioned tracts show topographically appropriate sprouting after treatment with a monoclonal antibody that neutralizes these inhibitory proteins. Antibody-treated animals showed full recovery in motor and sensory tests, whereas untreated lesioned rats exhibited persistent severe deficits. Neutralization of myelin-associated neurite growth inhibitors thus restores in adults the structural plasticity and functional recovery normally found only at perinatal ages.  相似文献   

6.
Hagg T  Baker KA  Emsley JG  Tetzlaff W 《Neuroscience》2005,130(4):875-887
The corticospinal tract is widely used to study regeneration and is essential for voluntary movements in humans. In young rats, corticospinal axons on the uninjured side sprout and grow into the denervated side. Neurotrophin-3 (NT-3) induces such crossed collateral sprouting in adults. We investigated whether local intraspinal NT-3 infusions would promote collateral sprouting of spared corticospinal terminals from within a partially denervated side, as this would be more appropriate for enhancing function of unilateral and specific movements. Adult rats received a partial bilateral transection of the pyramids, leaving approximately 40% of each tract intact. Vehicle or vehicle plus NT-3 (3 or 10 μg/day) was infused for 14 days into the left side of the cervical (C5/6) or lumbar (L2) cord. The corticospinal processes on the left side were anterogradely traced with cholera toxin B (CTB; which labeled gray matter processes more robustly than biotinylated dextran amine) injected into the front or hind limb area of the right sensorimotor cortex, respectively, 3 days before analysis. Unexpectedly, approximately 40% fewer CTB-labeled corticospinal processes were detectable in the cervical or lumbar gray matter of NT-3-treated rats than in vehicle-infused ones. Vehicle-infused injured rats had more corticospinal processes in the center of the cord than normal rats, evidence for lesion-induced collateral sprouting. NT-3 caused sprouting of local calcitonin gene-related peptide-positive fibers. These results suggest that NT-3 reduces collateral sprouting of spared corticospinal axons from within the denervated regions, possibly because of the injury environment or by increasing sprouting of local afferents. They identify an unexpected context-dependent outgrowth inhibitory effect of NT-3.  相似文献   

7.
8.
The cytoarchitectonic cortical areas containing the cells of origin of the pyramidal tract were unilaterally removed from kittens during the first postnatal month. After 5 months, the distal skills of these operated animals were analyzed using a food retrieving task. After an initial deficit, cats achieved the same performance in grasping and wrist movement with the limb contralateral to the lesion as with the opposite limb. The duration of the deficit was dependent on age at the time of lesion. Recovery of distal skills after neonatal lesion is discussed with regard to the low degree of maturity of the corticospinal tract in newborn cat.  相似文献   

9.
Although it has been shown that unilateral neonatal cortical ablation induces bilateral corticospinal projections, the explanation for the pathways responsible for this bilateral innervation remains controversial. We hypothesized that such reinnervation may be supplied from newly formed fibers sprouting at the level rostral to, or at, or caudal to the pyramidal decussation. In order to test our hypothesis, we examined the brain and spinal cord of young hamsters which had a unilateral ablation of the right motor cortex at six days postnatally, and then received an injection of an anterograde neuronal lectin tracer, Phaseolus vulgaris-leucoagglutinin, into the hindlimb area of the left motor cortex at 21 days postnatally. For the identification of motoneurons in the lumbar spinal cord, some of these animals also received an injection of cholera toxin subunit B, a retrograde tracer, into the gastrocnemius muscle. A quantitative analysis in the left gray matter of the lumbar spinal cord indicated that the lectin labeling was two to eight times higher in cortically ablated animals than in intact animals. Immunohistochemical detection of the lectin revealed that innervation of the left spinal cord occurred close to targets at lower levels in the spinal cord. Two modes of reinnervation (types I and II) by the intact corticospinal tract were recognized. The type I fibers consisted of recrossing axon collaterals sprouted from the intact dorsal funiculus near their targets, while the type II fibers were recrossing parent axons which entered the intact, right gray matter several levels rostral to their targets, and then changed direction toward the targets. The recrossing at lower spinal levels yielded a large number of ipsilaterally labeled axons and their terminals in the gray matter of the denervated lumbar cord, with a distribution pattern similar to that seen on the intact side. The present results indicate that such ipsilateral innervation may play an important role in the sparing and recovery of function following neonatal hemicortical injury.  相似文献   

10.
Forelimb movements and motor skills were studied in adult cats in order to determine the effect of brain damage inflicted at different postnatal ages. The unilateral lesion included the cortical areas from which the pyramidal tract originates in cat: areas 4 and 6 corresponding to the motor cortex; areas 3, 2 and 1 corresponding to the primary somatosensory cortex; and part of area 2 prae-insularis corresponding to the secondary somatosensory cortex. Forelimb performance of a food-retrieving task requiring proximal as well as distal muscles was assessed by comparing the limb contralateral to the damaged hemisphere (affected limb) with the limb contralateral to the intact hemisphere (non-affected limb) that appeared to perform the task as well as both limbs of control animals. In simple task-related movements, all operated animals were rapidly able to achieve the goal with the affected limb, whatever the age at lesion. In complex tasks, the ability to achieve the goal with the affected limb decreased with increasing age at lesion. Recovery of distal skills, i.e. grasping and wrist rotation, did not occur in animals operated on after the 23rd postnatal day (PND), and recovery of proximal skills, i.e. amplitude and precision of the reaching movement, did not occur in animals operated on after the 45th PND. The critical time for the recovery of distal skills lies somewhere between the 23rd and 30th PND, whereas for the recovery of proximal skills it lies somewhere between the 45th and 60th PND. These critical dates for the recovery of motor skills support the Kennard doctrine. Different critical times for proximal and distal skills may be explained in terms of different stages of sensorimotor development in kitten. It is hypothesised that recovery only occurs if brain damage is inflicted before maturation of the nervous system underlying a given motor skill.  相似文献   

11.
Complete transection of the pyramid just rostral to the crossing gave defects in forelimb target-reaching and food-taking tested with retrieval of food from a cylinder. The most marked symptoms were dysmetria, dyscoordination of movement and almost total loss of the food-taking movement. Gradual recovery occurred, but even after 3-4 months the food-taking movement was deficient. The symptoms were less severe than those previously found after a high pyramidotomy but much more pronounced than those observed after complete transection of the corticospinal tract in the spinal cord. The motor defects after a low pyramidotomy closely resemble those found after a high dorsal column transection. It is tentatively proposed that the motor defects after low pyramidotomy are largely due to transection of corticocuneate fibers which regulate the feedback pathway from forelimb afferents to the motor cortex.  相似文献   

12.
Unilateral neonatal cortical ablation induces the development of a bilateral corticorubral projection from the remaining sensorimotor cortex. The retrograde fluorescent tracers Fast blue (FB) and Nuclear yellow (NY) were used to determine if the aberrant contralateral projection arises from axon collaterals of the normal uncrossed projection. Six to 8 weeks after unilateral cortical ablation in neonatal rats, the red nuclei were injected with FB on one side and NY on the other to study the source of the normal and aberrant afferents from the cerebral cortex. In control animals, many neurons in layer V of the sensorimotor cortex were retrogradely labeled with the tracer that had been injected into the ipsilateral red nucleus. In animals with unilateral ablations, many neurons throughout the remaining sensorimotor cortex were retrogradely labeled with FB or NY. No cortical neurons were doubly labeled. In addition to demonstrating the bilaterality of the corticorubral projection in animals which had received neonatal lesions, these results indicate that the aberrant contralateral corticorubral projection does not consist of axon collaterals of the normal ipsilateral fibers.  相似文献   

13.
Middle cerebral artery (MCA) stroke in the rat produces impairments in skilled movements. The lesion damages lateral neocortex but spares primary motor cortex (M1), raising the question of the origin of skilled movement deficits. Here, the behavioral deficits of MCA stroke were identified and then M1 was examined neurophysiologically and neuroanatomically. Rats were trained on a food skilled reaching task then the lateral frontal cortex was damaged by unilateral MCA electrocoagulation contralateral to the reaching forelimb. Reach testing and training on two tasks was conducted over 30 post-surgical days. Later, M1 and the corticospinal tract were investigated using intracortical microstimulation (ICMS), anterograde and retrograde axon tracing. A skilled reaching impairment was observed post-surgery, which partly recovered with time and training. ICMS revealed a diminished forelimb movement representation in MCA rats, but a face representation comparable in size to sham rats. Anterograde and retrograde tract tracing suggest that M1 efferents were intact. Although M1 appears to be in the main anatomically spared after MCA stroke its function as assessed electrophysiologically and behaviorally is disrupted.  相似文献   

14.
Although we understand that activity- and use-dependent processes are important in determining corticospinal axon terminal development in the spinal cord, little is known about the role of these processes in development of skilled control of limb movements. In the present study we determined the effects of unilateral motor cortex activity blockade produced by muscimol infusion during the corticospinal axon terminal refinement period, between postnatal weeks 5-7, on visually guided locomotion. We examined stepping and forepaw placement on the rungs of a horizontal ladder and gait modifications as animals stepped over obstacles during treadmill walking. When cats traversed the horizontal ladder, the limb contralateral to inactivation was placed significantly farther forward on the rungs than the ipsilateral limb, indicating defective endpoint control. Similarly, when animals stepped over obstacles on a treadmill, the contralateral limb was placed farther in front of the obstacle, but only when it was the first (i.e., leading) limb to step over the obstacle, not when it was the second (i.e., trailing) limb. This is also indicative of an endpoint control deficit. In contrast, neither during ladder walking, nor when stepping over obstacles on the treadmill, was there any consistent evidence for a major impairment in limb trajectory. These results point to distinct and possibility independent corticospinal mechanisms for movement trajectory control and endpoint control. Although corticospinal activity during early postnatal development is needed to refine circuits for accurate endpoint control, this activity-dependent refinement is not needed for movement trajectory control.  相似文献   

15.
An increase in corticofugal plasticity was demonstrated in adult rats after unilateral ablation of the sensorimotor cortex accompanied by intramuscular administration of low concentrations of BT-melanin solution. The result was acceleration of the process of compensatory recovery in the central nervous system, this being supported by the rapid recovery of a previously acquired operant conditioned reflex and movement of the paralyzed limb as compared with control animals. It is suggested that compensation of the motor deficit arising after ablation of the sensorimotor cortex is mediated by the ability of the two major motor systems of the brain — the corticospinal and the corticorubrospinal — to exhibit mutual substitution of their functions. This phenomenon of the functional switching of descending influences also occurred in rats of the control group not exposed to BT-melanin. However, the difference between the recovery times of the operant conditioned reflex and limb movement in the control and experimental groups provided evidence of an apparent acceleration in these processes as a result of BT-melanin. These results suggest that low concentrations of BT-melanin may have applied uses. __________ Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 56, No. 3, pp. 384–391, May–June, 2006.  相似文献   

16.
Forelimb target-reaching and food-taking in cats depend on different interneuronal circuitry in the spinal cord. On the basis of previous findings regarding the effect of transection of the corticospinal tract in the spinal cord, of high dorsal column (DC) transection, of low pyramidotomy and of pyramidotomy after previous DC transection, it is proposed that the food-taking movement is temporally linked to target-reaching as follows: During target-reaching, the position of the paw is signalled by the pathway from forelimb proprioceptors (mainly Ia) to the motor cortex with a relay in the main cuneate nucleus. The command for food-taking is issued by the motor cortex only when the pathway from the forelimb signals that the paw approaches the target correctly, as may be determined by a comparison of the information from the forelimb with an efference copy of the motor program for target-reaching. The hypothesis is based on previous results regarding the organization of the pathway from the forelimb to area 3a and the motor cortex, and regarding the cortico-cuneate pathway with selective projection from area 3a and motor cortex to the basal caudal part of the cuneate nucleus, where the proprioceptive information from the forelimb is relayed. Results relevant to the present hypothesis regarding responses of precentral neurones during active and passive movements in awake animals are briefly discussed.  相似文献   

17.
It is generally accepted that the precision grip and independent finger movements (IFMs) in monkey and man are controlled by the direct (monosynaptic) corticomotoneuronal (CM) pathway. This view is based on previous observations that pyramidotomy causes near permanent deficits of IFMs. However, in addition to the direct CM pathway, pyramidotomy interrupts several corticofugal connections to the brain stem and upper cervical segments. Indirect (oligosynaptic) CM pathways, which are phylogenetically older, have been considered to be of little or no importance in prehension. In three adult macaque monkeys, complete transection of the direct CM pathway was made in C4/C5, which is rostral to the forelimb segments (C6-Th1). Electrophysiological recordings revealed lack of the direct lateral corticospinal tract (LCST) volley, monosynaptic extracellular field potentials in the motor nuclei, and monosynaptic CM excitation. However, a disynaptic volley, disynaptic field potentials and disynaptic CM excitation mediated via C3-C4 propriospinal neurons remained after the lesion. Thus the lesion interrupted the monosynaptic CM pathway and oligosynaptic LCST pathways mediated by interneurons in the forelimb segments. Precision grip and IFMs were observed already after 1-28 days postoperatively. Weakness in force and deficits in preshaping remained for an observation period of 3 mo. Indirect CM pathways may be important for neuro-rehabilitation.  相似文献   

18.
This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.  相似文献   

19.
蛋白激酶Cγ在成年大鼠延髓和脊髓白质中的分布   总被引:1,自引:0,他引:1  
目的 观察蛋白激酶Cγ亚型(PKCγ)在成年大鼠延髓和脊髓白质内的分布.方法 免疫组织化学ABC法显示PKCγ免疫阳性物质在延髓和脊髓颈、胸、腰、骶段白质内的表达和分布.结果 PKCγ免疫阳性物质分布于锥体、锥体交叉及脊髓颈、胸、腰、骶段后索腹侧中;延髓和脊髓背角神经元中也有PKCγ免疫阳性物质存在.结论 PKCγ免疫阳性反应产物广泛分布于成年大鼠延髓和脊髓白质内的皮质脊髓束中.PKCγ免疫阳性反应产物在延髓锥体和脊髓后索内的定位与大鼠皮质脊髓束的位置和走行一致,提示其在运动神经传导通路中可能起着重要作用.  相似文献   

20.
Rats (n = 11) with bilateral kainate lesions of the caudate nucleus and subsequent unilateral transplantation of embryonic striatal tissue into the damaged area preferred 4 months later to reach for food with the forepaw contralateral to the graft. No such asymmetry was observed in lesioned, nontransplanted (n = 8) or unoperated (n = 5) control rats. Good integration of the graft with the host brain was indicated by the finding that cortical spreading depression did not enter the lesioned caudate nucleus but did penetrate into the lesioned caudate with the graft almost as regularly as in intact rats. Behavioral asymmetry produced by unilateral grafts in bilaterally lesioned animals reveals the effects of transplantation with more sensitivity than the graft-induced compensation of the asymmetries caused by unilateral lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号