首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of insulin in chondrogenesis   总被引:1,自引:0,他引:1  
The ATDC5 chondrogenic cell line is typically induced to differentiate by exposure to insulin at high concentration (10 microg/ml, approximately 1600 nM). Differentiation can also be induced by physiological concentrations of insulin-like growth factor-I (IGF-I). Unlike previous reports, we observed a stimulation of differentiation, as measured by collagen X expression and Alcian Blue staining for proteoglycan synthesis, upon exposure to insulin at concentrations (10-50 nM) consistent with signaling via the insulin receptor. Analysis of lysates from proliferating and hypertrophic ATDC5 cells demonstrated that exposure to 50 nM insulin induced tyrosine phosphorylation of insulin receptors but not IGF-I receptors or hybrid receptors. In contrast to the potent effects of IGF-I to stimulate both ATDC5 proliferation and differentiation, insulin was not as potent as IGF-I as a proliferating agent but more selectively a differentiating agent. Consistent with this result, insulin was less potent than IGF-I in inducing activation of the Erk1/Erk2 mitogenic signaling pathway. Furthermore, Erk pathway inhibition did not enhance the differentiating effects of insulin as it does in the case of IGF-I exposure. Extending our observations to fetal rat metatarsal explants, we observed significant stimulation of bone growth by 50 nM insulin. This could be accounted for by a disproportionate stimulatory effect on growth of the hypertrophic zone. The proliferative zone was not significantly affected. Based on our results in both ATDC5 cells and metatarsal explants, we conclude that the insulin functioning through insulin receptor has a dominant effect as an inducer of chondrocyte differentiation. These results support assignment of a physiological role for this hormone in linear bone growth.  相似文献   

2.
IGF-I regulates cell growth, differentiation, and survival in many cultured nerve cell lines. The present study was undertaken in the human neuroblastoma cell line, SH-SY5Y, to elucidate whether there are differences in the IGF-dependent signal transduction pathways that stimulate proliferation compared to those that induce differentiation. Quiescent SH-SY5Y cells were treated with IGF-I in the presence or absence of PD98059 (an inhibitor of MEK, a MAP kinase kinase) or LY294002 (an inhibitor of PI 3-kinase). Cell growth was assessed by measuring [3H]thymidine incorporation into DNA and cell number. Cell differentiation was assessed by measuring mRNA levels of NPY and neurite outgrowth. IGF-I both induced cell proliferation and differentiation. It stimulated tyrosine phosphorylation of the type I IGF receptor (IGF-IR) beta-subunit, IRS-I, IRS-2, and Shc, and these changes were associated with activation of Erk and Akt. PD98059 inhibited activation of Erk and LY294002 repressed activation of Akt in response to IGF-I, but did not affect tyrosine phosphorylation of the IGF-IR, IRS-1, IRS-2, or Shc. Each PD98059 and LY294002 inhibited IGF-I-dependent cell proliferation in a concentration-dependent manner. In contrast, each of these inhibitors only partially depressed NPY gene expression induced by IGF-I and slightly inhibited IGF-I-mediated neurite outgrowth; however, when both PD98059 and LY294002 were present, IGF-I-dependent NPY gene expression and neurite outgrowth were abolished completely. These results suggest that in these nerve cells, 1) the IGF-I signals through the MAP kinase pathway and PI-3 kinase pathway are independently essential to induce IGF-I-dependent growth, and 2) alternate activation of the MAP kinase pathway and PI 3-kinase pathway is sufficient for the cells to undergo IGF-I-dependent differentiation.  相似文献   

3.
Childhood chronic inflammatory disease can be associated with transient and permanent growth retardation. This study examined the potential for spontaneous growth recovery following pro-inflammatory cytokine exposure. Murine ATDC5 chondrogenic cells and postnatal metatarsals were exposed to interleukin (IL)-1beta, IL-6 and tumour necrosis factor-alpha (TNFalpha), and their growth and proliferative capacity were determined following recovery. TNFalpha and IL-1beta reduced chondrocyte proliferation and aggrecan and collagen types II and X expression at minimum concentrations of 10 ng/ml and 0.1 ng/ml respectively. TNFalpha but not IL-1beta exposure led to increased caspase-3 activity and altered cellular morphology, consistent with reduced viability. Cytokine exposure particularly inhibited proteoglycan synthesis. This effect was dose and duration dependent. Compared with the control, IL-1beta and TNFalpha led to a 71% and 45% reduction in metatarsal growth after 8 days of exposure respectively (P < 0.05). An additive effect of IL-1beta combined with TNFalpha was observed (110% decrease; P < 0.05). Metatarsals exposed to IL-1beta or TNFalpha individually for a 2-day period, and allowed to recover spontaneously in the absence of cytokines for a further 6 days, showed normal growth trajectories. In combination, growth was 59% lower (P < 0.01) compared with control metatarsals at the end of the recovery period. Exposure to the combination for 4 days followed by a 4-day recovery period resulted in 87% decrement compared with controls (P < 0.05). IL-6 did not alter any parameter studied. IL-1beta and TNFalpha exert diverse inhibitory effects on ATDC5 chondrocyte dynamics and metatarsal growth. The extent of recovery following cytokine exposure depends on the duration of exposure, and may be incomplete following longer periods of exposure.  相似文献   

4.
Proinflammatory cytokines inhibit growth plate development. However, their underlying mechanisms of action are unclear. These effects may be mediated by ceramide, a sphingosine-based lipid second messenger, which is elevated in a number of chronic inflammatory diseases. To test this hypothesis, we determined the effects of C2-ceramide, a cell permeable ceramide analogue, on the growth of the ATDC5 chondrogenic cell line and on cultured fetal mice metatarsals. In ATDC5 cells, C2-ceramide significantly induced apoptosis at both 40 (82%; P < 0.05) and 25 microM (53%; P < 0.05). At 40 microM, C2-ceramide significantly reduced proliferation ([3H]-thymidine uptake/mg protein) (62%; P < 0.05). C2-ceramide did not markedly alter the differentiation state of the cells as judged by the expression of markers of chondrogenesis and differentiation (sox 9, collagen II and collagen X). The IGF-I signalling pathway is the major autocrine/paracrine regulator of bone growth. Both in the presence and absence of IGF-I, C2-ceramide (25 microM) induced an equivalent reduction in proliferation (60%; P < 0.001). Similarly, C2-ceramide (40 microM) induced a 31% reduction in fetal metatarsal growth both in the presence and absence of IGF-I (both P < 0.001). Furthermore, C2-ceramide reduced ADCT5 proliferation in the presence of AG1024, an IGF-I and insulin receptor blocker. Therefore, C2-ceramide-dependent inhibition appears to be independent of IGF-mediated stimulation of bone growth. Indeed, biochemical studies demonstrated that C2-ceramide (25 microM) pretreatment did not alter IGF-I-stimulated phosphorylation of insulin receptor substrate-1, Akt or P44/42 MAP kinase. In conclusion, C2-ceramide inhibits proliferation and induces apoptosis in growth plate chondrocytes through an IGF-I independent mechanism.  相似文献   

5.
Long-term use of glucocorticoids (GC) can cause growth retardation in children due to their actions on growth plate chondrocytes. AL-438, a non-steroidal anti-inflammatory agent that acts through the glucocorticoid receptor (GR) retains full anti-inflammatory efficacy but has reduced negative effects on osteoblasts compared to those elicited by prednisolone (Pred) or dexamethasone (Dex). We have used the murine chondrogenic ATDC5 cell line to compare the effects of AL-438 with those of Dex and Pred on chondrocyte dynamics. Dex and Pred caused a reduction in cell proliferation and proteoglycan synthesis, whereas exposure to AL-438 had no effect. LPS-induced IL-6 production in ATDC5 cells was reduced by Dex or AL-438, showing that AL-438 has similar anti-inflammatory efficacy to Dex in these cells. Fetal mouse metatarsals grown in the presence of Dex were shorter than control bones whereas AL-438 treated metatarsals paralleled control bone growth. These results indicate that the adverse effects Dex or Pred have on chondrocyte proliferation and bone growth were attenuated following AL-438 exposure, suggesting that AL-438 has a reduced side effect profile on chondrocytes compared to other GCs. This could prove important in the search for new anti-inflammatory treatments for children.  相似文献   

6.
IGF binding protein (IGFBP)-3 is an important regulator of mammary epithelial cell (MEC) growth and can enhance the ability of both IGF-I and epidermal growth factor ligands such as TGFalpha to stimulate MEC proliferation. Here we investigate the role of the phosphatidylinositol-3 kinase (PI3K) and MAPK pathways in the regulation of IGFBP-3 expression by IGF-I and TGFalpha in bovine MECs. Both growth factors stimulated DNA synthesis, although IGF-I was the stronger mitogen. IGF-I and TGFalpha also stimulated IGFBP-3 mRNA and protein levels. TGFalpha stimulated rapid, transient activation of Akt that was maximal at 5 min and diminished by 15 min. In contrast, IGF-I-induced Akt activation was maximal between 15 and 90 min and was sustained for 6 h. Although ERK 1/2 was maximally stimulated by TGFalpha between 5 and 15 min, IGF-I did not stimulate discernible activation of ERK 1/2. In addition, TGFalpha but not IGF-I induced rapid phosphorylation of Shc, whereas only IGF-I activated insulin receptor substrate-1. Pretreatment with the PI3K inhibitor LY294002 or knockdown of p85 with small interfering RNA inhibited IGF-I or TGFalpha-stimulated IGFBP-3 expression. Similarly, MAPK kinase-1 inhibitors PD98059 and U0126 each abolished TGFalpha-stimulated increases in IGFBP-3 mRNA levels. In contrast to TGFalpha, IGF-I retained the ability to partially increase IGFBP-3 mRNA levels in the presence of MAPK kinase-1 inhibitors, indicating that IGF-I may activate alternative substrates of the PI3K pathway that are involved in IGFBP-3 regulation. In conclusion, stimulation of IGFBP-3 mRNA levels by mitogens is regulated through both the PI3K and MAPK pathways in bovine MECs.  相似文献   

7.
Y Imai  D R Clemmons 《Endocrinology》1999,140(9):4228-4235
Insulin-like growth factor-I (IGF-I) is a potent stimulator of vascular smooth muscle cell (SMC) migration, a process that contributes to the accumulation of SMC within atherosclerotic lesions. Our previous studies have shown that IGF-I increases the affinity of the alphaVbeta3 integrin toward ligands and that occupancy of this integrin is indispensable for IGF-I to stimulate cell migration. In this study, the role of phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase (MAPK) pathways in IGF-I induced cell motility and integrin activation was studied using porcine aortic smooth muscle cells (pSMC). Two structurally different inhibitors of PI 3-kinase decreased IGF-I-stimulated pSMC migration in a dose-dependent manner. The IC50 of wortmannin for inhibiting migration was 10 nM, and that of LY294002 was 0.3 microM. These inhibitors also suppressed IGF-I-induced phosphorylation of protein kinase B PKB/Akt at Ser437 using concentrations that also inhibited cell motility. PD98059, an inhibitor of the MAPK pathway, was somewhat less potent than PI 3-kinase inhibitors in blocking cell migration that had been stimulated by IGF-I. When IGF-I increased migration of pSMC 2.1-fold above control, 100 nM wortmannin inhibited this response by 79%, 1 microM LY294002 inhibited it by 58%, and 50 microM PD98059 caused a 34% reduction. In comparison, 100 nM wortmannin inhibited IGF-I stimulated DNA synthesis by 57%, 1 microM LY294002 inhibited it by 59%, whereas 50 microM PD98059 suppressed it completely. Thus, activation of PI 3-kinase plays the major role in IGF-I-stimulated migration and proliferation of pSMC. While the activation of the MAPK pathway seems to be necessary for stimulation of mitogenesis by IGF-I, the contribution of this pathway in IGF-I-induced cell migration is limited in pSMC. Interestingly, neither PI 3-kinase inhibitors nor PD98059 blocked the increase in alphaVbeta3 integrin affinity that followed IGF-I treatment. Therefore, although both the PI 3-kinase and MAPK pathways were used by IGF-I to increase migration of pSMC, alphaVbeta3 integrin activation did not depend on either PI 3-kinase or MAPK activation, suggesting the possible importance of some other signal transduction pathway to account for its full actions on pSMC.  相似文献   

8.
The study aims were to improve our understanding of the mechanisms of glucocorticoid-induced growth retardation at the growth plate and determine whether IGF-I could ameliorate the effects. Fetal mouse metatarsals were cultured for up to 10 d with dexamethasone (Dex; 10(-6) m) and/or IGF-I and GH (both at 100 ng/ml). Both continuous and alternate-day Dex treatment inhibited bone growth to a similar degree, whereas IGF-I alone or together with Dex caused an increase in bone growth. GH had no effects. These observations may be explained at the cellular level; cell proliferation within the growing bone was decreased by Dex and increased by IGF-I and these effects were more marked in the cells of the perichondrium than those in the growth plate. However, the most prominent observation was noted in the hypertrophic zone where all treatments containing IGF-I significantly increased (3-fold) the length of this zone, whereas Dex alone had no significant effect. In conclusion, Dex impaired longitudinal growth by inhibiting chondrocyte proliferation, whereas IGF-I stimulated chondrocyte hypertrophy and reversed the growth-inhibitory Dex effects. However, the IGF-I-mediated improvement in growth was at the expense of altering the balance between proliferating and hypertrophic chondrocytes within the metatarsal.  相似文献   

9.
OBJECTIVE--To clarify the interaction of tissue destruction and repair of articular cartilage during inflammation, the effects of interleukin-1 beta (IL-1 beta) on the expression of insulin-like growth factor I (IGF-I), its receptor, and its binding proteins were examined. METHODS--Articular chondrocytes from five week rats were cultured in serum free medium treated with IL-1 beta (1-100 U/ml) for 24 hours. The concentration of IGF-1 in the conditioned medium was measured by RIA, and IGFBP were analysed by immunoligand blotting method. IGF-I receptors were also examined by [125I]IGF-I binding study. RESULTS--IL-1 beta induced the secretion of IGF-I and IGF-binding protein in chondrocytes; this was not inhibited by indomethacin (5 micrograms/ml). IL-1 beta also increased the number of IGF-I receptors but had no effect on receptor affinity. IL-1 beta inhibited chondrocyte proliferation, while exogenous IGF-I and growth hormone stimulated chondrocyte cell growth. IL-1 beta did not change IGF-I mRNA levels. CONCLUSION--IL-1 beta up-regulated the IGF-I autocrine/paracrine axis in cultured articular chondrocytes. These observations provide insight into the critical role played by IL-1 beta in tissue destruction and repair, and into the direct interaction between cytokines and growth factors associated with inflammatory arthropathy.  相似文献   

10.
Glucocorticoids (GC) are used extensively in children and may cause growth retardation, which is in part due to the direct effects of GC on the growth plate. We characterised the ATDC5 chondrocyte cell line, which mimics the in vivo process of longitudinal bone growth, to examine the effects of dexamethasone (Dex) and prednisolone (Pred) during two key time points in the chondrocyte life cycle - chondrogenesis and terminal differentiation. Additionally, we studied the potential for recovery following Dex exposure. During chondrogenesis, Dex and Pred exposure at 10(-8) M, 10(-7) M and 10(-6) M resulted in a significant mean reduction in cell number (28% vs 20%), cell proliferation (27% vs 24%) and proteoglycan synthesis (47% vs 43%) and increased alkaline phosphatase (ALP) activity (106% vs 62%), whereas the incidence of apoptosis was unaltered. Minimal effects were noted during terminal differentiation with both GC although all concentrations of Dex lowered apoptotic cell number. To assess catch-up growth the cells were incubated for a total of 14 days which included 1, 3, 7, 10 or 14 days exposure to 10(-6) M Dex, prior to the recovery period. Recovery of proteoglycan synthesis was irreversibly impaired following just one day exposure to Dex. Although cell number showed a similar pattern, significant impairment was only achieved following 14 days exposure. Irreversible changes in ALP activity were only noticed following 10 days exposure to Dex. In conclusion, GC have maximal effects during chondrogenesis; Dex is more potent than Pred and cells exposed to Dex recover but this may be restricted due to differential effects of GC on specific chondrocyte phenotypes.  相似文献   

11.
12.
AIM: To address the possibility that insulin-like growth factor (IGF)-II is a growth factor and its signaling pathway so as to develop a molecular therapy for hepatoblastoma. METHODS: Huh-6 and HepG2, human hepatoblastoma cell lines, were used. IGF-II was added to the medium deprived of serum. Western blot analysis was performed to clarify the expression of IGF-I receptor (IGF-IR). Inhibitors of IGF-IR (piclopodophyllin, PPP), phosphatidyl-inositol (PI) 3-kinase (LY294002 and Wortmannin), or mitogen-activated protein (MAP) kinase (PD98059) were added to unveil the signaling pathway of IGF-II. Cells were analyzed morphologically with hematoxylin-eosin staining to reveal the mechanism of suppression of cell proliferation. RESULTS: IGF-II stimulated cells proliferated to 2.7 (269%+/-76%) (mean+/-SD) (Huh-6) and 2.1 (211%+/-85%) times (HepG2). IGF-IR was expressed in Huh-6 and HepG2. PPP suppressed the cell number to 44%+/-11% (Huh-6) and 39%+/-5% (HepG2). LY294002 and Wortmannin suppressed the cell number to 30%+/-5% (Huh-6), 44%+/-0.4% (HepG2), 49%+/-1.0% (Huh-6) and 46%+/-1.1% (HepG2), respectively. PD98059 suppressed the cell number to 33%+/-11% for HepG2 but not for Huh-6. When cell proliferation was prohibited, many Huh-6 and HepG2 cells were dead with pyknotic or fragmented nuclei, suggesting apoptosis. CONCLUSION: IGF-II was shown to be a growth factor of hepatoblastoma via IGF-I receptor and PI3 kinase which were good candidates for target of molecular therapy.  相似文献   

13.
14.
OBJECTIVE: Phosphatidylinositol 3'-kinase (PI3-kinase) is implicated in cell migration and focal adhesion kinase (FAK) phosphorylation. In contrast, it has been proposed that mitogen-activated protein (MAP) kinases are essential for proliferation but may be dissociated from chemotactic signalling. We investigated the roles of PI3-kinase and p42/p44 MAP kinases in cell migration and FAK tyrosine phosphorylation induced by platelet-derived growth factor-BB (PDGF-BB) in rabbit aortic vascular smooth muscle cells (VSMCs). The roles of PI3-kinase and MAP kinase pathways in the chemotactic response to insulin-like growth factor-I (IGF-I) were also examined. METHODS: The roles of PI3-kinase and p42/p44 MAP kinases were assessed using the PI3-kinase inhibitors, wortmannin and LY294002, and an inhibitor of MAP kinase kinase, PD98059. PI3-kinase activity was measured by phosphatidylinositol phosphorylation in anti-phosphotyrosine immunoprecipitates and by thin layer chromatography of phosphorylated products. Phosphorylation was assessed by immunoprecipitation with anti-phosphotyrosine antibodies and Western blotting with FAK-specific antibody. Migration was evaluated in a chemotaxis chamber using polycarbonate filters with an 8-mm pore size. RESULTS: Neither wortmannin nor LY294002 significantly reduced PDGF-BB stimulation of FAK tyrosine phosphorylation, chemotaxis or immunofluorescent staining of focal adhesions in VSMCs. PD98059, a specific inhibitor of MAP kinase activation, did not inhibit FAK tyrosine phosphorylation but markedly inhibited the migratory response of VSMCs to PDGF-BB. IGF-I also stimulated migration of VSMCs, and, relative to the effect of PDGF-BB, induced smaller increases in PI3-kinase and MAP kinase activities. Both wortmannin and PD98059 partially inhibited the migratory response to IGF-I. CONCLUSIONS: PDGF-BB stimulation of both FAK tyrosine phosphorylation and migration in VSMCs are not dependent on activation of PI3-kinase. While PDGF-BB stimulation of FAK tyrosine phosphorylation is not dependent on p42/p44 MAP kinase activation, PDGF-BB and IGF-I both stimulate p42/p44 MAP kinase activity and the chemotactic response to these factors is partially dependent on MAP kinase activation.  相似文献   

15.
Insulin-like growth factor-1 (IGF-1) is an important differentiation and survival factor for granulosa cells. The purpose of this study was to test the hypothesis that IGF-1 promotes survival of porcine granulosa cells by signaling though the phosphatidylinositol (PI) 3-kinase/Akt signal transduction pathway. Treatment with IGF-1 (100 ng/ml) for 10 min stimulated PI 3-kinase and Akt protein kinase activity. IGF-I stimulated the phosphorylation and activation of Akt in a time- and concentration-dependent manner. The PI 3-kinase inhibitors wortmannin and LY294002 blocked IGF-1 induced increases in PI 3-kinase activity and phosphorylation of Akt. Additionally, IGF-1 treatment prevented apoptosis. The survival response to IGF-I was blocked by treatment with either wortmannin or LY294002. These data suggest that IGF-I-induced phosphorylation of Akt is mediated through PI 3-kinase and that inactivation of this pathway results in granulosa cell apoptosis. We conclude that the P1 3-kinase/Akt signaling serves as a functional survival pathway in the ovary.  相似文献   

16.
Insulin-like growth factor-I (IGF-I) is a critical regulator of skeletal growth. While IGF-I has been shown to be a potent chondrocyte mitogen in vitro, its role in chondrocyte differentiation is less well characterized. We chose to study the action of IGF-I on an accepted model of chondrocyte differentiation, the ATDC5 cell line. Insulin concentrations sufficiently high to interact with the IGF-I receptor are routinely used to induce ATDC5 cells to differentiate. Therefore, we first examined the ability of IGF-I to promote chondrocyte differentiation at physiological concentrations. IGF-I could induce differentiation of these cells at concentrations below 10 nM. However, increasing IGF-I concentrations were less potent at inducing differentiation. We hypothesized that mitogenic effects of IGF-I might inhibit its differentiating effects. Indeed, the extracellular-signal-regulated kinase (ERK)-pathway inhibitor PD98059 inhibited ATDC5 cell DNA synthesis while enhancing differentiation. This suggested that the ability of IGF-I to promote both proliferation and differentiation might require that its signaling be modulated through the differentiation process. We therefore compared IGF-I-mediated ERK activation in proliferating and hypertrophic chondrocytes. IGF-I potently induced ERK activation in proliferating cells, but minimal ERK response was seen in hypertrophic cells. In contrast, IGF-I-mediated Akt activation was unchanged by differentiation, indicating intact upstream IGF-I receptor signaling. Similar findings were observed in the RCJ3.1C5.18 chondrogenic cell line and in primary chick chondrocytes. We conclude that IGF-I promotes both proliferation and differentiation of chondrocytes and that the differentiation effects of IGF-I may require uncoupling of signaling to the ERK pathway.  相似文献   

17.
Insulin and IGF-I participate in the regulation of ovulation, steroidogenesis, and IGF-binding protein (IGFBP) production in the ovary. Insulin and IGF-I actions in the ovary are closely related. For example, insulin may amplify IGF-I action in the ovary by up-regulating type I IGF receptors and inhibiting IGFBP-1 production, thus increasing the bioavailability of IGF-I. It is hypothesized that ovarian effects of insulin in insulin-resistant states are mediated via an insulin action pathway(s) distinct from those involved in glucose transport. We previously reported that insulin-induced stimulation of progesterone and inhibition of IGFBP-1 production in the human ovary are mediated by signaling pathways that are independent of phosphatidylinositol 3-kinase, the enzyme whose activation is crucial for glucose transport. We now examined whether activation of MAPK is necessary to mediate insulin-induced or IGF-I-induced stimulation of progesterone or inhibition of IGFBP-1 production in human granulosa cells. Human granulosa cells were obtained during in vitro fertilization. Cells (0.5-1 x 10(5)) were incubated for 24 h in the presence of 0, 10, 10(2), or 10(3) ng/ml insulin or 0, 0.5, 1, 2.5, or 5 ng/ml IGF-I and in the presence or absence of 1 micro M PD98059, a specific inhibitor of ERK1/2 MAPK. The progesterone concentration in the tissue culture medium was measured by RIA (Pantex, Santa Monica, CA), and the IGFBP-1 concentration was measured by immunoradiometric assay (DSL-7800, Diagnostic Systems Laboratories, Inc., Webster, TX). MAPK activity was assessed using the MAPK IP-Kinase assay kit (Upstate Biotechnology, Inc., Lake Placid, NY). ANOVA was used to compare mean values of progesterone or IGFBP-1 concentrations. MAPK was stimulated by insulin up to 350% of the baseline value. Progesterone production in human granulosa cells was stimulated by insulin in a dose-related manner to 123% of the control value (P < 0.001), and IGFBP-1 production was inhibited to 25% of the baseline value (P < 0.001). Despite inhibiting MAPK activity by 99%, PD98059 (1 micro M) did not interfere with insulin-induced stimulation of progesterone or inhibition of IGFBP-1 production. MAPK was stimulated by IGF-I to 730% of the baseline value, with maximal stimulation achieved at 0.5 ng/ml IGF-I. Progesterone production in granulosa cells was stimulated by IGF-I to 130% of the control value (P < 0.001), whereas IGFBP-1 production was inhibited to 44% of the control value (P < 0.001). PD98059 (1 micro M) inhibited IGF-I-induced MAPK activity by 94%. In the presence of 1 micro M PD98059, IGF-I-induced stimulation of progesterone production was inhibited by 96% (P < 0.001). The inhibitory effect of IGF-I on IGFBP-1 production was reduced in the presence of 1 micro M PD98059 by 45% at 5 ng/ml IGF-I and was completely abolished in the presence of 1 micro M PD98059 at concentrations of IGF-I ranging from 0.5-2.5 ng/ml (P < 0.001). We conclude that, under conditions of our experiments, insulin-induced stimulation of progesterone or inhibition of IGFBP-1 production in human granulosa cells does not require MAPK activation, whereas similar effects of IGF-I are largely MAPK dependent.  相似文献   

18.
The importance of estrogens for the regulation of longitudinal bone growth is unequivocal. However, any local effect of estrogens in growth plate cartilage has been debated. Recently, several enzymes essential for estrogen synthesis were shown to be expressed in rat growth plate chondrocytes. Local production of 17beta-estradiol (E2) has also been demonstrated in rat costal chondrocytes. We aimed to determine the functional role of locally produced estrogen in growth plate cartilage. The human chondrocyte-like cell line HCS-2/8 was used to study estrogen effects on cell proliferation (3H-labeled thymidine uptake) and apoptosis (cell death detection ELISA kit). Chondrocyte production of E2 was measured by RIA and organ cultures of fetal rat metatarsal bones were used to study the effects of estrogen on longitudinal growth rate. We found that significant amounts of E2 were produced by HCS-2/8 chondrocytes (64.1 +/- 5.3 fmol/3 days/10(6) cells). The aromatase inhibitor letrozole (1 microM) and the pure estrogen receptor antagonist ICI 182,780 (10 microM) inhibited proliferation of HCS-2/8 chondrocytes by 20% (P < 0.01) and almost 50% (P < 0.001), respectively. Treatment with ICI 182,780 (10 microM) increased apoptosis by 228% (P < 0.05). Co-treatment with either caspase-3 or pan-caspase inhibitors completely blocked ICI 182,780-induced apoptosis (P < 0.001 vs ICI 182,780 only). Moreover, both ICI 182,780 (10 microM) and letrozole (1 microM) decreased longitudinal growth of fetal rat metatarsal bones after 7 days of culture (P < 0.01). In conclusion, our data clearly show that chondrocytes endogenously produce E2 and that locally produced estrogen stimulates chondrocyte proliferation and protects from spontaneous apoptosis. In addition, longitudinal growth is promoted by estrogens locally produced within the epiphyseal growth plate.  相似文献   

19.
Tumor necrosis factor-alpha (TNF alpha) can decrease adipose tissue mass, but in obesity, adipose tissue hypertrophy persists despite increased TNF alpha expression. The hormonal milieu of obesity may antagonize the adipostat effects of TNF alpha. We examined the effects of insulin and the synthetic glucocorticoid, dexamethasone (Dex), on TNF alpha-induced apoptosis and gene expression in human adipocytes and preadipocytes. Using RT multiplex PCR, the expression of the proapoptotic genes interleukin-1 beta (IL-1 beta)-converting enzyme (ICE) and TNF alpha and the antiapoptotic genes bcl-2, nuclear factor-kappa B (NF kappa B), and NF kappa B inhibitory subunit, I kappa B, were examined. The expression and release of IL-1 beta, a postulated downstream effector of ICE-mediated apoptosis, were also determined. TNF alpha increased the messenger ribonucleic acid levels of ICE, TNF alpha, IL-1 beta, bcl-2, and NF kappa B in preadipocytes and adipocytes (P < 0.01). Dex inhibited TNFalpha-induced messenger ribonucleic acid expression of ICE, TNF alpha, and IL-1 beta (P < 0.01), but not that of bcl-2 and NF kappa B. TNF alpha stimulated IL-1 beta release from preadipocytes and adipocytes up to 20-fold, but the effect was abrogated by Dex. Apoptosis induced by TNF alpha was reduced to control levels (P < 0.01) by Dex. Insulin had no significant effect on TNF alpha-induced apoptosis and gene expression. In obesity, glucocorticoids may reduce TNF alpha actions in adipose tissue by inhibiting TNF alpha-induced apoptosis, IL-1 beta release, and TNF alpha expression.  相似文献   

20.
From the MtTF4 tumor of rat pituitary origin we established the F4Z2 cell line whose growth is stimulated by 17 beta-estradiol (E2). Taking E2 actions as references we investigated actions of other effectors on the proliferation, protein, and insulin growth factor-I (IGF-I) secretions of F4F2 cells. Dexamethasone (Dex) and L-T3 were chosen because they have also intracellular receptors and they act in pituitary cells. Cells were cultured in 96-well plates in RPMI 1640 medium supplemented either with charcoal-treated fetal calf serum (CT-FCS) or with BSA and transferrin. Hormones were added at the time of seeding and cells were counted 2-10 days later without renewing the culture medium. The accumulation of immunoreactive IGF-I in conditioned medium was used as an index of IGF-I secretion. For studies on protein secretion, cells were incubated for 24 h with [35S]methionine and labeled proteins were separated by polyacrylamide gel electrophoresis. We found that: 1) L-T3, like E2, stimulated in a dose-dependent and specific manner the proliferation of F4Z2 cells cultured in the presence of 5% CT-FCS; EC50 was: 1 X 10(-11) M and 0.2 X 10(-11) M for L-T3 and E2, respectively. In contrast, L-T3 but not E2 remained active in serum-free medium; 2) Dex was a strong inhibitor of cell proliferation in serum-free medium and in medium supplemented with 5% CT-FCS (EC50: 5 X 10(-9) M). The antiglucocorticoid RU 38 486 prevented this inhibitory effect; 3) when a stimulator (E2 or L-T3) was simultaneously incubated with the inhibitor (Dex) the number of cells depended on the ratio of hormone concentrations. When there was no large excess of one effector this number was intermediary between those counted in the presence of each hormone separately and L-T3 was more potent than E2 in preventing Dex inhibition; 4) Dex, E2, and L-T3 modified the electrophoretic patterns of secreted proteins but there was no evidence for a correlation between these modifications and the inhibition or the stimulation of cell proliferation, and 5) the accumulation of immunoreactive IGF-I was insensitive to E2, increased by L-T3, and markedly decreased by Dex. L-T3 but not E2 prevented the effect of Dex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号