首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: It is well known that nitric oxide synthase is induced by endotoxin or inflammatory cytokines, and consequently large amounts of nitric oxide cause vascular hyporeactivity to vasoconstrictor agents and myocardial dysfunction, hence hypotension. However, there is considerable controversy as to whether these pathologic cardiovascular features are mediated directly by nitric oxide or also through the formation of secondary reaction products such as peroxynitrite (ONOO-1). Our objective was to investigate inhibitory effects of ONOO-1 on alpha1-adrenoceptors. DESIGN: Prospective, controlled, in vitro, laboratory study. SETTING: Laboratory of a health sciences university. SUBJECTS: Chinese hamster ovary cells that expressed the human recombinant alpha1a-, alpha1b-, or alpha1d-adrenoceptors, rat aorta strips. INTERVENTIONS: Binding experiments of [3H]prazosin were done in the Chinese hamster ovary cell membranes pretreated with 100 microM to 3 mM ONOO-1. Displacement experiments with noradrenaline or 3-nitro-l-tyrosine also were conducted. Mobilization of intracellular Ca2+ evoked by 1 nM to 10 microM noradrenaline was monitored in a fluorescence spectrophotometer with dual excitation at 340 nm/380 nm and emission at 500 nm in fura-2/AM-loaded Chinese hamster ovary cells. Contractile force produced by noradrenaline was monitored in rat aorta strips that have alpha1a- and alpha1d-adrenoceptors, pretreated with 1 mM ONOO-1. Either 0.3 N NaOH or the decomposed ONOO-1 was used as the control. MEASUREMENTS AND MAIN RESULTS: The specific binding of [3H]prazosin to alpha1a- and alpha1d-adrenoceptor was inhibited by ONOO-1 in a concentration-dependent manner. We found that 3 mM ONOO-1 decreased maximum binding sites by 40% to 50% in alpha1a- and alpha1d-adrenoceptors. Binding affinities for prazosin and noradrenaline were not affected by 1 mM ONOO-1 in all subtypes. We found that 3-nitro-l-tyrosine did not affect the prazosin binding to three adrenoceptor subtypes. Noradrenaline increased intracellular Ca2+ concentration ([Ca2+]i) concentration-dependently, which was inhibited by ONOO-1 in alpha1a- and alpha1d-adrenoceptors. ONOO-1 had no effect on alpha1b-adrenoceptor. Contractile force produced by noradrenaline decreased significantly in aorta strips pretreated with ONOO-1. CONCLUSION: ONOO-1 reduces the binding capacity of alpha1a- and alpha1d- but not alpha1b-adrenoceptors without changing the affinities. Treatment with ONOO-1 attenuates noradrenaline-stimulated increase in [Ca2+]i in alpha1a- and alpha1d-adrenoceptors but not in alpha1b-adrenoceptor. ONOO-1 also weakens noradrenaline-induced contractions in rat aorta that has alpha1a- and alpha1d-adrenoceptors. Cardiovascular hyporeactivity to catecholamines in septic shock may be caused in part by the inactivation of alpha-adrenoceptors by ONOO-1.  相似文献   

2.
In order to compare postreceptor mechanisms of different alpha adrenoceptors, polyphosphoinositide hydrolysis and extracellular calcium entry stimulated by alpha-1 and alpha-2 adrenoceptor activation has been evaluated in the human digital artery, a tissue which contains both receptors. [3H]Inositol-I-PO4 accumulation during a 60-min exposure to an alpha-1 or alpha-2 agonist in the presence of 5 mM LiCl was used as an index of phosphatidylinositol-4,5-bisphosphate hydrolysis. Norepinephrine (1-30 microM) produced a concentration-related increase in [3H]inositol phosphate formation with an EC50 of 2.3 microM. Equieffective contractile concentrations of TL-99 (1 microM) and methoxamine (100 microM) produced similar increases in [3H]inositol-I-PO4 formation (1.41- and 1.70-fold increases over control, respectively). Norepinephrine EC50 values of 0.54, 1.7 and 1.0 microM were obtained for contractile responses in 1.25 mM Ca++, 0 mM Ca++ and 0 mM Ca++ + 0.1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, respectively. Calcium omission (no ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid) produced similar inhibition of alpha-2 and alpha-1 adrenoceptor-mediated responses, assessed as inhibition of the area under the concentration-effect curve. Calcium omission generally produced a slightly greater inhibition of TL-99- or methoxamine-induced contractile responses than did nifedipine (0.1 or 1 microM), but the combination of calcium-omission and nifedipine practically abolished the contractile responses. However, the combination of a calcium omission and nifedipine did not prevent the accumulation of inositol monophosphate stimulated by TL-99 or methoxamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present study was undertaken to examine the cellular interaction between a Na+/K(+)-ATPase inhibitor, ouabain, and arginine vasopressin (AVP) in rat vascular smooth muscle cells (VSMC) in culture. Preincubation with 10(-5) M ouabain for 60 min increased basal cytosolic free Ca2+ [( Ca2+]i) concentration and intracellular 45Ca2+ uptake. Ouabain, however, did not affect basal 45Ca2+ efflux or AVP-stimulated 45Ca2+ efflux. As assessed by cell shape change, preincubation with 10(-5) M ouabain for 60 min also enhanced the sustained cellular contractile effect of a submaximal (10(-8) M AVP, 21.5% vs. 30.5%, P less than 0.01) but not maximal dose of 10(-6) M AVP. Preincubation with 10(-5) M ouabain for 60 min did not change AVP-induced V1-specific surface receptor binding or AVP-induced inositol phosphate production but did however potentiate the mobilization of [Ca2+]i induced by a submaximal (10(-8) M AVP, 301 vs. 385 nM, P less than 0.01) but not a maximal dose of AVP. These effects of ouabain on the mobilization of [Ca2+]i were abolished by incubation in Ca2(+)-free buffer or 5 X 10(-5) M verapamil. Ouabain (10(-5) M) also enhanced the sustained cellular contractile effect of a direct protein kinase C activator, phorbol 12-myristate 13-acetate. The present results therefore indicate that the inhibition of Na+/K(+)-ATPase may enhance the vascular action of AVP, and perhaps other vasoconstrictors, by increasing the AVP-induced mobilization of [Ca2+]i and by potentiating the activity of protein kinase C stimulated by AVP through enhancing basal and AVP-stimulated cellular Ca2+ uptake.  相似文献   

4.
The level of cytosolic free calcium ([Ca2+]i) and the production rate of prostacyclin were simultaneously measured in perfused monolayers of cultured vascular smooth muscle (VSM) cells. After loading of fura-2 (a fluorescent calcium indicator), the monolayer of VSM cells (cultured on a cover glass) was fixed in the perfusion cuvette and the cuvette was placed in a fluorometer to monitor the change in [Ca2+]i. The monolayer was perfused and the fractionated perfusion solution was collected to determine 6-keto-PGF1 alpha (a metabolite of prostacyclin) production found in the solution. Afterwards, the time-dependent changes in [Ca2+]i and 6-keto-PGF1 alpha synthesis were compared. Bradykinin (BK, 10(-6) M), angiotensin (Ang) II (10(-7) M) as well as ionomycin (10(-6) M) induced simultaneous increases in [Ca2+]i and 6-keto-PGF1 alpha production. An inhibitor against prostaglandin synthesis, acetylsalicylic acid (ASA, 10(-6) M) abolished BK-induced 6-keto-PGF1 alpha synthesis, whereas ASA did not affect the increase in [Ca2+]i. BK-induced increases in [Ca2+]i and 6-keto-PGF1 alpha production occurred in a dose-dependent manner and the half-maximal response was observed at the same concentration of BK (10(-7) M). These results indicate that an increase in [Ca2+]i is closely associated with BK as well as AngII-induced prostacyclin synthesis. It is suggested that an increase in [Ca2+]i plays a prior role in prostacyclin synthesis. Thus, an interaction between phospholipase A2 (prostaglandin synthesis) and phospholipase C (inositol trisphosphate-Ca2+ mobilization) is suggested.  相似文献   

5.
Antibodies against the T3-antigen receptor complex can activate the human T cell line, Jurkat, to produce interleukin 2 (2-5). This activation is initiated by a receptor-mediated increase in the concentration of free cytoplasmic calcium ions [Ca2+]i (3, 4). In this communication, we investigate the mechanism by which the receptor complex increases [Ca2+ )i in Jurkat cells. The initial receptor-mediated change in [Ca2+]i can occur when extracellular Ca2+ is depleted by EGTA. Perturbation of the T cell antigen receptor, therefore, generates a signal which mobilizes Ca2+ from intracellular stores. As inositol trisphosphate appears to function as such a signal for certain hormone receptors, we measured the levels of inositol trisphosphate and of the other inositol phosphate compounds in Jurkat. Antibodies to either the antigen receptor heterodimer or T3 determinants result in marked elevations of all three inositol phosphates. These changes in inositol phosphates are not secondary to the receptor-mediated increases in [Ca2+]i as demonstrated by the inability of the Ca2+ ionophore, ionomycin, to affect the levels of any of these compounds. In concentrations between 0.1 and 1 microM, purified inositol trisphosphate releases Ca2+ from permeabilized Jurkat cells. Taken together, these data indicate that, during activation, perturbation of the T3-antigen receptor complex generates inositol trisphosphate. This compound functions as an intracellular signal to release Ca2+ from intracellular stores, leading to increases in [Ca2+]i.  相似文献   

6.
7.
Rat hepatocytes contain several types of Ca2+-linked receptors, all of which stimulate glycogen breakdown by increasing cytosolic free Ca2+ concentration [( Ca2+]c). In vivo desensitization of this Ca2+ messenger system was studied in hepatocytes isolated from either pheochromocytoma (PHEO)-harboring and chronically norepinephrine (NE)-infused rats. Homologous desensitization for alpha 1-adrenergic receptor-mediated phosphorylase activation developed in the early stage of PHEO rats (3-4 wk after implantation), whereas, in the later stage of tumor development or in the NE-infused rats, phosphorylase responses to all Ca2+-mobilizing stimulations were subsensitive (heterologous desensitization). In the homologous desensitization, the [Ca2+]c response to alpha 1-adrenergic stimulation was selectively reduced. We found, using the phenoxybenzamine inactivation method, that there was a linear relationship between alpha 1 receptor density and the [Ca2+]c response; consequently, the blunted [Ca2+]c response to alpha 1-adrenergic stimulation could not be explained by the 34% downregulation of alpha 1 receptors seen in these rats. These results indicated that uncoupling at a step proximal to alpha 1 receptor-stimulated [Ca2+]c increase is also of primary importance in homologous desensitization of phosphorylase activation. On the other hand, heterologous desensitization also involved alteration(s) at steps distal to the rise in [Ca2+]c. Our data demonstrate that prolonged exposure to catecholamines results in desensitization of the [Ca2+]c mobilization pathway and may involve multiple mechanisms.  相似文献   

8.
Addition of norepinephrine, angiotensin II, or histamine leads to a transient rise in the cytoplasmic Ca2+ concentration ([Ca2+]i), as measured with aequorin, in rabbit aortic strips. Each induces a [Ca2+]i transient which peaks in 2 min and then falls either back to baseline (angiotensin II) or to a plateau (norepinephrine and histamine). The [Ca2+]i transient is due to the mobilization of Ca2+ from a caffeine-sensitive, intracellular pool. An elevation of [K+] to 35 mM leads to a monotonic sustained rise in [Ca2+]i which depends entirely on extracellular Ca2+, but an increase to 100 mM leads to a [Ca2+]i transient from the mobilization of intracellular Ca2+. Atrial natriuretic peptide does not alter basal [Ca2+]i nor inhibit the [Ca2+]i transient induced by either histamine or angiotensin II, but blocks that induced by norepinephrine, and blocks the plateau phase induced by either histamine or norepinephrine. The peptide inhibits the contractile response to all three agonists and to K+.  相似文献   

9.
We have investigated the relative contributions of Ca++ influx and C-kinase activation to the sustained contraction of smooth muscle of rabbit aorta. In physiological salt solution (PSS), the alpha adrenergic agonist, phenylephrine (PhE), induced a rapid initial contraction followed by a maintained tonic contraction whereas the C-kinase activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused only a slow tonic contractile response. Both PhE- and TPA-induced contractions were accompanied by a significant increase in the unidirectional 45Ca influx. The tonic phase of PhE contraction and the slow contractile response of TPA also were reduced, but not abolished completely in Ca++-free solution containing 2 mM ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid. In addition, the relatively specific C-kinase inhibitor, H-7 [1-(5-isoquinolinesulfonyl)-2-methylpiperazine], reversibly inhibited the TPA-induced contraction in PSS and almost abolished the TPA response in Ca++-free solution. On the other hand, H-7 caused only partial inhibition (30.2% +/- 4.09, n = 5) of the PhE sustained contraction in PSS and abolished completely the residual PhE maintained response in Ca++-free solution. The H-7 inhibition of the PhE sustained contraction was reversible in both PSS and Ca++-free solution. Furthermore, TPA alone could not maintain the contractile response initiated by a high K+ depolarizing solution upon replacement of the high K+ solution by normal PSS. These findings emphasize the importance of Ca++ influx and suggest only a minor role of C-kinase in maintaining the tonic contraction of vascular smooth muscle.  相似文献   

10.
After depletion of intracellular calcium stores sensitive to noradrenaline, a spontaneous increase in the resting tone (IRT) when incubated in Ca(2+)-containing solution was observed in isolated rat aorta, but not in tail artery. This IRT does not depend on agonist activation of alpha(1)-adrenoceptors but it is inhibited by prazosin. A close relationship was found between the inhibitory potencies of prazosin (pIC(50) = 9.833), BMY 7378 (pIC(50) = 8.924), and 5-methylurapidil (pIC(50) = 7.883) against IRT and their affinities for cloned alpha(1D)-adrenoceptors. Chloroethylclonidine (100 micromol. l(-1)) did not inhibit the IRT. After depletion of internal calcium stores by noradrenaline in absence of the agonist, loading in Ca(2+)-containing solution also brings about an increase in the inositol phosphate (IP) levels in rat aorta (not seen in tail artery) that is inhibited by prazosin (1 micromol. l(-1)), BMY 7378 (10 micromol. l(-1)), and 5-methylurapidil (10 micromol. l(-1)), thus confirming the results obtained in contractile studies. Chloroethylclonidine (100 micromol. l(-1)) did not inhibit this IP accumulation. The fact that the IRT and the IP accumulation related to it can be selectively inhibited by different alpha(1)-adrenoceptor antagonists suggests the existence of a population of alpha(1D)-adrenoceptors that show constitutive activity in rat aorta, not in tail artery.  相似文献   

11.
BACKGROUND: Monensin, a Na+ ionophore, can increase cytosolic Ca2+ ([Ca2+]i) by reversing the Na+/Ca2+ exchange mechanism. This study provided additional insights into the mechanism of this Na+ ionophore-induced increase in [Ca2+]i, and emphasized the critical role of phospholipase C (PLC) in amplifying Na+/Ca2+ exchange-induced Ca2+ influx and subsequent arachidonic acid (AA) release in FRTL-5 thyroid cells. The possible involvement of protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and GTP-binding (G) protein in mediating monensin-induced AA release was also explored. METHODS: FRTL-5 thyroid cells were maintained in Coon's modified Ham's F-12 medium supplemented with a 6-hormone (6H) mixture. Cytosolic Ca2+ was measured by using indo-1 AM and a dual-wave-length spectrofluorometer. Release of 3H-labeled inositol trisphosphates and arachidonic acid were determined by a scintillation counter. RESULTS: In Hank's balanced salt solution with Ca2+ (HBSS+), monensin (100 mumol/L) induced a 2.3-fold sustained Ca2+ increase associated with IP3 generation and a 6-fold increase in AA release. Deletion of extracellular Ca2+, or replacement of Na+ by choline chloride in the medium, reduced the [Ca2+]i increase by 77% and completely prevented the monensin-induced rise in AA release. Similar inhibitory effects were observed in cells pretreated with a Na+ channel blocker, or Na+/Ca2+ exchange inhibitors. In HBSS without Ca2+ (HBSS-), monensin induced a 1-fold transient [Ca2+]i increase but did not increase the AA. This Ca2+ increase was not suppressed by U-73122, a PLC inhibitor. In HBSS+, U-73122 did not affect the monensin-induced initial transient peak increase of [Ca2+]i, but reduced the sustained second phase of [Ca2+]i from 400 nmol/L to 250 nmol/L, and completely blocked AA release. A phospholipase A2 (PLA2) inhibitor blocked the monensin-induced AA release without affecting the [Ca2+]i increase. Inhibition of PKC prevented 87% to 94% of the monesin-stimulated AA release. The monensin-induced AA release was also inhibited 94% by pertussis and 51% by a MAP kinase cascade inhibitor. CONCLUSIONS: The results suggest that monensin initiates an increase in [Ca2+]i via a Na+/Ca2+ exchange mechanism that triggers more pronounced and sustained [Ca2+]i increase via activation of PLC and Ca2+ influx. The PLC activation, followed by sustained Ca2+ influx and PKC activation, is a prerequisite for PLA2-mediated processes in monensin-challenged FRTL-5 thyroid cells.  相似文献   

12.
Endothelin (ET), a peptide that is released from cultured endothelial cells, is a potent vasoconstrictor that induces characteristically long-lasting contractions. We used the A10 vascular smooth muscle cell (VSMC) line to probe mechanisms underlying ET-induced contractions. Intracellular Ca2+ ([Ca2+]i) and pH were monitored in A10 monolayers using the fluorescent dyes Fura-2 and 2,7-bis-carboxyethyl-5,6-carboxyfluorescein, respectively. Synthetic porcine ET induced rapid and transient increases in [Ca2+]i (EC50 value, 0.75 nM; maximum, approximately 6-fold above basal). External Ca2+ removal did not block the ability of ET (0.5 or 50 nM) to increase initial [Ca2+]i, although [Ca2+]i returned to prestimulus levels faster as compared with that seen in the presence of external Ca2+. Total cell 45Ca2+ content decreased within 30 sec and remained below prestimulus values for at least 20 min (34 +/- 2% decrease after 5 min, n = 3) in ET-stimulated VSMC. ET stimulated a transient rise in inositol trisphosphate formation in [3H]myo-inositol labeled VSMC, peaking in 30 sec (62 +/- 20% increase, n = 3). In contrast, ET-stimulated diacylglycerol formation in [3H]arachidonic acid-labeled VSMC was sustained and biphasic, exhibiting two peaks at 15 sec (41 +/- 16% increase) and at 5 min (75 +/- 7% increase, n = 3). ET (50 nM) also induced an intracellular alkalinization of 0.17 +/- 0.02 (n = 10) pH units above basal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of arginine vasopressin (AVP) on the cytosolic free calcium concentration ([Ca2+]f) were examined in freshly immunodissected rabbit cortical collecting tubule cells using fluorescent Ca2+ indicators fura-2 and indo-1. The addition of AVP to a cell suspension resulted in a rapid and transient increase in the [Ca2+]f. The 1-deamino-8-D-AVP (dDVP), a V2 receptor agonist of AVP that stimulated adenosine 3',5' cAMP production in these cells, had no effect on [Ca2+]f and did not affect AVP-induced increase in [Ca2+]f. The AVP-induced increase in [Ca2+]f but not cAMP production was blocked by the V1 receptor antagonist, [1-(beta-mercapto-beta-beta-cyclopentamethylene propionic acid), 2-(O-methyl)tyrosine] Arg8-vasopressin. The AVP-stimulated increase in [Ca2+]f appeared to be largely due to Ca2+ release from intracellular stores as reduction of extracellular Ca2+ with EGTA had little if any effect on the AVP-induced increase in [Ca2+]f. This AVP-induced increase in [Ca2+]f was associated with an increase in inositol-1,4,5-trisphosphate production and appeared to involve a guanine nucleotide-binding protein (G), since the pretreatment of cells with pertussis toxin for 4-6 h inhibited this effect. Finally, measurements of [Ca2+]f in single cells suggest that only the principal cells of the collecting tubules respond to AVP with an increase in [Ca2+]f. In summary, these results demonstrate that the principal cells of the cortical collecting tubule possess two distinct receptor systems for vasopressin, the well-known V2 receptor coupled to adenylate cyclase, and a V1 receptor system that leads to the mobilization of cytosolic calcium, coupled through a pertussis toxin substrate (G protein) to a production of inositol phosphates.  相似文献   

14.
Several lines of evidence indicate that calcium deficiency is associated with cellular defects in many tissues and organs. Owing to the large in vivo gradient between ionized extra- and intracellular Ca2+ concentrations ([Ca2+]i), it is generally recognized that the prevailing circulating Ca2+ does not significantly affect resting cytosolic Ca2+. To probe the consequences of hypocalcemia on [Ca2+]i, a model of chronic hypocalcemia secondary to vitamin D (D) deficiency was used. Hepatocytes were isolated from livers of hypocalcemic D-deficient, of normocalcemic D3-repleted, or of normal control rats presenting serum Ca2+ of 0.78 +/- 0.02, 1.24 +/- 0.03, or 1.25 +/- 0.01 mM, respectively (P < 0.0001). [Ca2+]i was measured in cell couplets using the fluorescent probe Fura-2. Hepatocytes of normocalcemic D3-repleted and of normal controls exhibited similar [Ca2+]i of 227 +/- 10 and 242 +/- 9 nM, respectively (NS), whereas those of hypocalcemic rats had significantly lower resting [Ca2+]i (172 +/- 10 nM; P < 0.0003). Stimulation of hepatocytes with the alpha 1-adrenoreceptor agonist phenylephrine illicited increases in cytosolic Ca2+ leading to similar [Ca2+]i and phosphorylase a (a Ca(2+)-dependent enzyme) activity in all groups but in contrast to normocalcemia, low extracellular Ca2+ was often accompanied by a rapid decay in the sustained phase of the [Ca2+]i response. When stimulated with the powerful hepatic mitogen epidermal growth factor (EGF), hepatocytes isolated from hypocalcemic rat livers responded with a blunted maximal [Ca2+]i of 237.6 +/- 18.7 compared with 605.2 +/- 89.9 nM (P < 0.0001) for their normal counterparts, while the EGF-mediated DNA synthesis response was reduced by 50% by the hypocalcemic condition (P < 0.03). Further studies on the possible mechanisms involved in the perturbed [Ca2+]i homeostasis associated with chronic hypocalcemia revealed the presence of an unchanged plasma membrane Ca2+ ATPase but of a significant decrease in agonist-stimulated Ca2+ entry as indicated using Mn2+ as surrogate ion (P < 0.03). Our data, thus indicate that, in rat hepatocytes, the in vivo calcium status significantly affects resting [Ca2+]i, and from this we raise the hypothesis that this lower than normal [Ca2+]i may be linked, in calcium disorders, to inappropriate cell responses mediated through the calcium signaling pathway as illustrated by the response to phenylephrine and EGF.  相似文献   

15.
Eicosanoids, mesangial contraction, and intracellular signal transduction.   总被引:2,自引:0,他引:2  
The glomerular mesangial cell is a specialized pericyte with multiple functional capabilities including contraction. Mesangial contraction may reduce the glomerular filtration surface area and hence the ultrafiltration coefficient, Kf. Cultured mesangial cells convert arachidonic acid into biologically active eicosanoids which are either contractile (thromboxane A2 [TxA2], prostaglandin F2 alpha [PGE2 alpha]) or relaxant (PGE2, PGI2). The addition of TxA2 analogues, PGE2 or sulfidopeptide leukotrienes (LTC4 and LTD4) stimulated contraction of cultured mesangial cells with threshold responses at approximately 1 nM and maximum responses at 1 microM. PGE2 and PGI2 antagonized mesangial contraction induced by TxA2 analogues. Contraction was enhanced by inhibiting mesangial cyclooxygenase with nonsteroidal antiinflammatory drugs (NSAID). Contractile eicosanoids stimulated phospholipase C thereby elevating intracellular inositol trisphosphate and cytosolic free Ca2+ concentration ([Ca2+]i). Vasorelaxant prostanoids stimulated adenylate cyclase, increasing intracellular cyclic AMP. We conclude that eicosanoids control mesangial contractility by regulating [Ca2+]i and cAMP. NSAID increase mesangial reactivity by blocking the inhibitory effects of endogenous vasodilator eicosanoids, with potential consequences on glomerular hemodynamics.  相似文献   

16.
The interaction of prostaglandins with changes in cytosolic Ca2+ concentration ([Ca2+]) and aggregation of human platelets induced by adenosine diphosphate (ADP) were investigated. Cytosolic [Ca2+] was measured with the fluorescent dye Quin2. Addition of ADP (0.25-2.5 mumol l-1) to platelet suspensions produced a dose dependent increase in cytosolic [Ca2+] from a basal level of 51 +/- 1 nmol l-1 to maximum levels exceeding 1 mumol l-1 and induced platelet aggregation. Chelation of extracellular calcium with 100 mumol l-1 EGTA markedly reduced the increase in cytosolic [Ca2+] induced by 0.25 mumol l-1 ADP, while pretreatment with the calcium entry blocker verapamil was without effect. Stimulation of cyclic AMP with prostaglandins (PGD2, PGE1, PGE2, PGI2, but not PGF2 alpha) and forskolin, or incubation with dibutyryl-cAMP, inhibited the rise in cytosolic [Ca2+] and platelet aggregation following ADP. We conclude that prostaglandins inhibit the increase in cytosolic [Ca2+] and aggregation of human platelets induced by ADP, probably by stimulation of cyclic AMP generation, thereby opposing the mechanism by which ADP increases cytosolic [Ca2+] and subsequently induces platelet aggregation.  相似文献   

17.
The neuroleptic phenothiazine derivative chlorpromazine (CPZ) at high concentration (1 x 10(-5) M) decreased either the phasic or tonic contraction in response to carbachol and the carbachol-induced increase in [Ca2+]i in both phases in ileal muscle. In contrast, CPZ at low concentrations (8 x 10(-7) - 5 x 10(-6) M) decreased only the phasic contraction and potentiated the tonic contraction induced by carbachol. However, CPZ at these concentrations dose-dependently decreased the carbachol-induced increase in [Ca2+]i in both phases. These results suggested that CPZ dose-dependently decreased the initial phasic contraction in response to carbachol by inhibition of Ca2+ release from the intracellular storage sites. CPZ at low concentrations appears to increase Ca2+ sensitivity to contractile proteins in the carbachol-induced tonic phase. CPZ dose-dependently reduced the 60 mM K(+)-induced phasic and tonic responses and a concomitant decrease in [Ca2+]i in ileal muscle.  相似文献   

18.
The marine toxin maitotoxin (MTX) and the chemotactic peptide fMet-Leu-Phe (fMLP) induce the formation of inositol phosphates in HL-60 cells differentiated with dibutyryl cyclic AMP. The increase in [3H]inositol(1,4,5)-trisphosphate is rapid but transient after fMLP stimulation, whereas MTX-induced increase in [3H]inositol(1,4,5)-trisphosphate occurs at a slower rate and is sustained over time. In both cases increases in [Ca++]i, measured with fura-2, parallel the formation of inositol trisphosphate. MTX-mediated stimulation of inositol phosphate formation is inhibited in the absence of calcium, whereas the response to fMLP is not. The calcium ionophore ionomycin stimulates the formation of inositol phosphates in differentiated HL-60 cells. The magnitude of the response is smaller than that obtained with MTX. Ionomycin also induces a rapid but sustained increase of [Ca++]i. In undifferentiated HL-60 cells, neither fMLP nor ionomycin induce significant inositol phosphate formation, and the increase in [Ca++]i elicited by ionomycin is transient. In contrast, the effects of MTX on phosphoinositide breakdown and on [Ca++]i in undifferentiated cells are nearly identical to those elicited by MTX in differentiated cells. In the presence of the intracellular calcium chelator BAPTA, fMLP, ionomycin and MTX still stimulate the generation of inositol phosphates. Guanyl nucleotides and calcium stimulate phospholipase C activity in membrane preparations from differentiated HL-60 cells. fMLP stimulates the enzyme only in the presence of GTP. MTX has no effect on membrane phospholipase C activity.  相似文献   

19.
To study the mediation of Ca2+ influx by second messengers in myeloid cells, we have combined the whole-cell patch clamp technique with microfluorimetric measurements of [Ca2+]i. Me2SO-differentiated HL-60 cells were loaded with the fluorescent Ca2+ indicator Indo-1, allowed to adhere to glass slides, and patch-clamped. Receptor agonists and Ca(2+)-ATPase inhibitors were applied by superfusion and inositol phosphates by microperfusion through the patch pipette. In voltage-clamped cells, [Ca2+]i elevations with a sustained phase could be induced by (a) the chemoattractant receptor agonist FMLP, (b) the Ca(2+)-releasing second messenger myo-inositol(1,4,5)trisphosphate [Ins(1,4,5)P3], as well as its nonmetabolizable analogues, and (c) the Ca(2+)-ATPase inhibitor cyclopiazonic acid, which depletes intracellular Ca2+ stores. In the absence of extracellular Ca2+, responses to all stimuli were short-lasting, monophasic transients; however, subsequent addition of Ca2+ to the extracellular medium led to an immediate [Ca2+]i increase. In all cases, the sustained phase of the [Ca2+]i elevations could be inhibited by millimolar concentrations of extracellular Ni2+, and its amplitude could be decreased by depolarization of the plasma membrane. Thus, the sustained phase of the Ca2+ elevations was due to Ca2+ influx through a pathway sensitive to the electrical driving force and to Ni2+. No Ca2+ influx could be observed after (a) plasma membrane depolarization in resting cells, (b) an imposed [Ca2+]i transient independent of receptor activation, or (c) microperfusion of myo-inositol(1,3,4,5)tetrahisphosphate (Ins(1,3,4,5)P4). Also, Ins(1,3,4,5)P4 did not have additive effects when co-perfused with a submaximal concentration of Ins(1,4,5)P3. Our results suggest that, in myeloid cells, activation of chemoattractant receptors induces an electrogenic, Ni(2+)-sensitive Ca2+ influx via generation of Ins(1,4,5)P3. Ins(1,4,5)P3 might activate Ca2+ influx directly, or by depletion of intracellular Ca2+ stores, but not via [Ca2+]i increase or Ins(1,3,4,5)P4 generation.  相似文献   

20.
The newly isolated peptide, endothelin-1 (ET-1), is a potent pressor agent that reduces GFR and the glomerular ultrafiltration coefficient. Recent evidence demonstrates that ET-1 mobilizes intracellular Ca2+ [( Ca2+]i) in glomerular mesangial cells by activating the phosphoinositide cascade. The present experiments were designed to examine whether ET-1 stimulates mesangial cell contraction and regulates the synthesis of PGE2 and cAMP, which dampen vasoconstrictor-induced mesangial contraction. ET-1 (greater than or equal to 1 nM) reduced the cross-sectional area of rat mesangial cells cultured on three-dimensional gels of collagen type I. ET-1 also caused complex rearrangements of F-actin microfilaments consistent with a motile response. Contraction in response to ET-1 occurred only at concentrations that activate phospholipase C, and contraction was unaffected by blockade of dihydropyridine-sensitive Ca2+ channels. Elevation of [Ca2+]i with ionomycin, to equivalent concentrations of [Ca2+]i achieved with ET-1, also reduced mesangial cell cross-sectional area. ET-1 (0.1 microM) also evoked [3H]arachidonate release and a fivefold increase in PGE2 synthesis as well as increased synthesis of PGF2 alpha and small changes of TXB2. ET-1 caused a minor increase in intracellular cAMP accumulation only in the presence of 3-isobutyl-1-methylxanthine. ET-1 also amplified cAMP production in response to isoproterenol. TPA and ionomycin, alone and in combination, failed to mimic the potentiating effect of ET-1; however, indomethacin blocked ET-1-induced potentiation of isoproterenol-stimulated cAMP, which was restored by addition of exogenous 10 nM PGE2. Thus the present data demonstrate that ET-1 stimulates mesangial cell contraction via pharmacomechanical coupling and activates phospholipase A2 to produce PGE2, PGF2 alpha, and TXB2. ET-1 also amplified beta adrenergic-stimulated cAMP accumulation by a PGE2-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号