首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung adenocarcinoma cells harboring epidermal growth factor receptor (EGFR) mutations are sensitive to EGFR tyrosine kinase inhibitors (TKIs), including gefitinib. Acquired resistance to EGFR-TKIs develops after prolonged treatments. The study was prompt to explore effective strategies against resistance to EGFR-TKIs. We established gefitinib resistant PC-9 cells which harbor EGFR exon 19 deletion. Known mechanisms for intrinsic or acquired EGFR-TKI resistance, including KRAS mutation, HER2 mutation, EGFR T790M mutation and MET gene amplification, were studied, and we did not observe any known mechanisms for intrinsic or acquired resistance to EGFR-TKIs in the resistant cells. In the parental PC-9 cells, labeled as PC-9/wt, gefitinib completely inhibited EGF-induced phosphorylation of EGFR, AKT and ERK. Gefitinib inhibited EGFR phosphorylation, but was unable to block EGF-induced phosphorylation of ERK in resistant cells, labeled as PC-9/gef cells, including PC-9/gefB4, PC-9/gefE3, and PC-9/gefE7 subclones. We detected NRAS Q61K mutation in the PC-9/gef cells but not the PC-9/wt cells. MEK inhibitors, either AZD6244 or CI1040, inhibited ERK phosphorylation and sensitized gefitinib-induced cytotoxicity in PC-9/gef cells. Whereas MEK inhibitors or gefitinib alone did not activate caspases in PC-9/gef cells, combination of gefitinib and AZD6244 or CI1040 induced apoptosis. Our in vivo studies showed that gefitinib inhibited growth of PC-9/wt xenografts but not PC-9/gef xenografts. Furthermore, combination of a MEK inhibitor and gefitinib inhibited growth of both PC-9/wt xenografts and PC-9/gefB4 xenografts. To conclude, persistent activation of ERK pathway contributes to the acquired gefitinib-resistance. Combined treatment of gefitinib and MEK inhibitors may be therapeutically useful for acquired gefitinib-resistance lung adenocarcinoma cells harboring EGFR mutations.  相似文献   

2.
Mutations in KRAS or BRAF frequently manifest in constitutive activation of the MEK1/2‐ERK1/2 signalling pathway. The MEK1/2‐selective inhibitor, AZD6244 (ARRY‐142886), blocks ERK1/2 activation and is currently undergoing clinical evaluation. Tumour cells can vary markedly in their response to MAPK or ERK kinase (MEK) inhibitors, and the presence of a BRAF mutation is thought to predict sensitivity, with the RAS mutations being associated with intrinsic resistance. We analysed cell proliferation in a panel of 19 colorectal cancer cell lines and found no simple correlation between BRAF or KRAS mutation and sensitivity to AZD6244, though cells that harbour neither mutation tended to be resistant. Cells that were sensitive arrested in G1 and/or underwent apoptosis and the presence of BRAF or KRAS mutation was not sufficient to predict either fate. Cell lines that were resistant to AZD6244 exhibited low or no ERK1/2 activation or exhibited coincident activation of ERK1/2 and protein kinase B (PKB), the latter indicative of activation of the PI3K pathway. In cell lines with coincident ERK1/2 and PKB activation, sensitivity to AZD6244 could be re‐imposed by any of the 3 distinct PI3K/mTOR inhibitors. We conclude that AZD6244 is effective in colorectal cancer cell lines with BRAF or KRAS mutations. Sensitivity to MEK1/2 inhibition correlates with a biochemical signature; those cells with high ERK1/2 activity (whether mutant for BRAF or KRAS) evolve a dependency upon that pathway and tend to be sensitive to AZD6244 but this can be offset by high PI3K‐dependent signalling. This may have implications for the use of MEK inhibitors in combination with PI3K inhibitors. © 2009 UICC  相似文献   

3.

Background:

Combined targeting of MAPK and PI3K signalling pathways may be necessary for optimal therapeutic activity in cancer. This study evaluated the MEK inhibitors AZD6244 and PD0325901, alone and in combination with the dual mTOR/PI3K inhibitor NVP-BEZ235 or the PI3K inhibitor GDC-0941, in three colorectal cancer cell lines.

Methods:

Growth inhibition, survival and signal transduction were measured using the Sulforhodamine B assay, clonogenicity and western blotting, respectively, in HCT116, HT29 and DLD1 cell lines.

Results:

All MEK/PI3K inhibitor combinations exhibited marked synergistic growth inhibition; however, GDC-0941 displayed greater synergy in combination with either MEK inhibitor. NVP-BEZ235 exhibited stronger inhibition of 4EBP1 phosphorylation, and similar inhibition of S6 and AKT phosphorylation, compared with GDC-0941. Both PD0325901 and AZD6244 inhibited ERK phosphorylation, and with MEK/PI3K inhibitor combinations inhibition of S6 phosphorylation was increased. The reduced synergy exhibited by NVP-BEZ235 in combination with MEK inhibitors, compared with GDC-0941, may be due to inhibition of mTOR, and the addition of the mTORC1/2 inhibitor KU0063794 compromised the synergy of GDC-0941:PD0325901 combinations.

Conclusion:

These studies confirm that dual targeting of PI3K and MEK can induce synergistic growth inhibition; however, the combination of specific PI3K inhibitors, rather than dual mTOR/PI3K inhibitors, with MEK inhibitors results in greater synergy.  相似文献   

4.
Hung Huynh PhD 《Cancer》2010,116(5):1315-1325

BACKGROUND:

The protein kinase B (AKT)/mammalian target of rapamycin (AKT/mTOR) and mitogen activated protein kinase/extracellular regulated kinase kinase/extracellular regulated kinase (MEK/ERK) signaling pathways have been shown to play an important role in hepatocellular carcinoma (HCC) growth and angiogenesis, suggesting that inhibition of these pathways may have therapeutic potential.

METHODS:

We treated patient‐derived HCC xenografts with 1) mTOR inhibitor rapamycin (RAPA); 2) MEK inhibitor AZD6244 (ARRY‐142886); and 3) AZD6244 plus RAPA (AZD6244/RAPA). Western blotting was used to determine pharmacodynamic changes in biomarkers relevant to angiogenesis, mTOR pathway, and MEK signaling. Apoptosis, microvessel density, and cell proliferation were analyzed by immunohistochemistry.

RESULTS:

We report here that pharmacological inhibition of the MEK/ERK pathway by AZD6244 enhanced the antitumor and antiangiogenic activities of mTOR inhibitor RAPA in both orthotopic and ectopic models of HCC. Such inhibition led to increased apoptosis, decreased angiogenesis and cell proliferation, reduced expression of positive cell cycle regulators, and increase in proapoptotic protein Bim.

CONCLUSIONS:

Our findings indicate that the AZD6244/RAPA combination had antitumor and antiangiogenic effects in preclinical models of human HCC. Given the urgent need for effective therapies in HCC, clinical evaluating AZD6244/RAPA combination seems warranted. Cancer 2010. © 2010 American Cancer Society.  相似文献   

5.
Yoon YK  Kim HP  Song SH  Han SW  Oh do Y  Im SA  Bang YJ  Kim TY 《Cancer letters》2012,316(1):77-84
Previously, we found that KRAS mutant cancer cells showed variable response to AZD6244, a MEK inhibitor through differential activation of EGFR/AKT. To investigate its mechanism, we performed cDNA microarray using four KRAS mutant cancer cells. We found that treatment with AZD6244 reduced the expression of mitogen-inducible gene 6 (MIG6), a negative feedback regulator for EGFR, in AZD6244-resistant cells, while activity of EGFR and AKT was increased in these cells. Reconstitution or knockdown of MIG6 expression affected cancer cell responses to AZD6244. Treatment with a combination of EGFR inhibitor and AZD6244 inhibited cell proliferation synergistically without activation of AKT in AZD6244-resistant cells. Our study provides a mechanism of differential response to MEK inhibition in KRAS mutant cancer.  相似文献   

6.
S Li  L Li  Y Zhu  C Huang  Y Qin  H Liu  L Ren-Heidenreich  B Shi  H Ren  X Chu  J Kang  W Wang  J Xu  K Tang  H Yang  Y Zheng  J He  G Yu  N Liang 《British journal of cancer》2014,110(11):2812-2820

Background:

Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study.

Methods:

Five thousand one hundred and twenty-five NSCLC patients'' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis.

Results:

EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments.

Conclusions:

EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations'', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment.  相似文献   

7.
Acquired resistance to epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR–TKIs), such as gefitinib and erlotinib, is a critical problem in the management of patients with EGFR mutant lung cancer. Several mechanisms have been reported involved in this acquired resistance, including hepatocyte growth factor (HGF) activation of an alternative pathway. PI3K and mTOR are downstream molecules of receptor tyrosine kinases, such as EGFR and Met, and are thought to be ideal targets for controlling various tumor types. We assessed whether BEZ235, a dual inhibitor of PI3K and mTOR, could overcome the EGFR–TKI resistance induced by HGF in an EGFR mutant lung cancer model. Exogenous and endogenous HGF triggered resistance to erlotinib in the PC‐9 and HCC827, EGFR mutant lung cancer cell lines. BEZ235 alone inhibited the viability of PC‐9 and HCC827 cells in vitro, irrespective of the presence or the absence of HGF. Using a xenograft model of severe combined immunodeficient mice with HGF‐gene‐transfected PC‐9 cells (PC‐9/HGF), we found that BEZ235 inhibited tumor growth, whereas erlotinib did not. BEZ235 monotherapy also inhibited the phosphorylation of Akt and p70S6K/S6RP, downstream molecules of PI3K and mTOR, respectively, as well as suppressing tumor‐cell proliferation and angiogenesis of PC‐9/HGF tumors. These results suggest that BEZ235, even as monotherapy, may be useful in managing HGF‐induced EGFR–TKI resistance in EGFR mutant lung cancer.  相似文献   

8.
The dual PI3K–mTOR inhibitor BEZ235 was evaluated in preclinical models of nasopharyngeal carcinoma (NPC). The IC50 value of BEZ235 for growth was in the nanomolar range in vitro, induce G1 cycle arrest and apoptosis, and inhibited AKT and mTOR signaling in most NPC cell lines. No synergistic effect was observed when BEZ235 was combined with chemotherapy. BEZ235 increased MAPK activation in vitro but not in vivo. A daily schedule was more effective than a weekly schedule on tumor growth and inhibition of downstream mTOR signaling in vivo. The activity of BEZ235 maybe independent of the PIK3CA amplification and mutation status.  相似文献   

9.
10.

Background

Carcinoma of unknown primary (CUP) accounts for 3–5% of all adult solid tumors. An extensive search for the anatomic site of origin is often undertaken in an attempt to tailor systemic treatment, but the latter often has limited efficacy – especially in the setting of an initial treatment failure. Molecularly targeted therapy is an emerging approach that may offer greater efficacy and less toxicity but is most likely to be effective when pairing a tumor harboring a sensitizing genomic alteration with an agent directed at the altered gene product. We report a patient with a CUP harboring a MET amplification with a complete metabolic response to crizotinib despite also harboring a KRAS mutation.

Methods

Ge-nomic profiling was performed using a clinical next-generation-sequencing-based assay, FoundationOne®, in a CAP-accredited laboratory certified by Clinical Laboratory Improvement Amendments (Foundation Medicine, Cambridge, Mass., USA).

Results

The CUP harbored both MET amplification (16 copies) and a KRAS G12V mutation. The patient was treated with crizotinib, a MET inhibitor, and has experienced a complete normalization of tumor metabolic activity for more than 19 months. Conclusions: Genomic profiling of CUP may reveal clinically meaningful genomic alterations that can guide targeted therapy decision-making. The use of this approach should be studied prospectively as a strategy for the effective treatment of CUP patients and for avoiding resource-intensive workups to identify the tumor site of origin.Key words: Carcinoma of unknown primary, MET amplification, KRAS mutation, Crizotinib, Next-generation sequencing  相似文献   

11.

Objectives

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) often provide dramatic responses in lung cancer patients with somatic EGFR mutation. However, acquired resistance to the drugs usually emerges within a few years. EGFR T790M secondary mutation, MET gene amplification, and transformation to small cell lung cancer are well-validated mechanisms that underlie acquisition of resistance to EGFR-TKIs. In addition, many molecular aberrations have been reported as candidates for mechanisms of acquired resistance to EGFR-TKIs. Amplification of the CRKL gene was reportedly observed in 1 of 11 lung cancer patients with EGFR mutations who acquired resistance to EGFR-TKI. This study is the first report, to our knowledge, that validated the role of CRKL gene amplification as a mechanism for acquisition of resistance to EGFR-TKIs.

Materials and methods

We analyzed CRKL gene copy numbers, using a quantitative real-time PCR method, in 2 in vitro acquired-resistance cell-line models: 11 clinical samples from patients who developed acquired resistance to EGFR-TKIs, and 39 tumor specimens obtained from 7 autopsy patients whose cancers acquired resistance to EGFR-TKIs. Mutational status of EGFR codon 790 and copy numbers for the MET gene were also determined.

Results and conclusion

In analysis for in vitro models, CRKL gene copy numbers were identical between EGFR-TKI-sensitive parental cells and their acquired resistant descendant cells. In addition, we found no clinical tumor specimens with acquired EGFR-TKI resistance to harbor amplified CRKL genes. These results indicate that CRKL gene amplification is rare in acquisition of resistance to EGFR-TKIs in lung cancer patients with EGFR mutations.  相似文献   

12.

Objective

To investigate PIK3CA mutation in Chinese patients with lung squamous cell carcinoma (LSCC) and explore their relationship with clinicopathological profiles.

Methods

Tumor samples from 123 cases of LSCC were included in this study. PIK3CA mutations in exon 9 and 20 were screened by pyrosequencing and confirmed by clone sequencing or amplification refractory mutation system (ARMS). Denaturing performance liquid chromatography (DHPLC) was employed for evaluation of EGFR mutation in exon 19, 21 and KRAS mutation.

Results

PIK3CA mutations were found in 3 (2.4%) patients. The mutation type included E545K, E452Q and H1047R. Of these three patients, one coupled with EGFR mutation, and the other two coupled with PIK3CA amplification. All the three patients shared the same clinicopathologic characteristics: male, less than 60 years old, had smoke history, stage III and carried wild-type KRAS.

Conclusions

The frequency of PIK3CA mutation is low in Chinese patients with LSCC. The mutational status of PIK3CA is not mutually exclusive to EGFR mutation.Key Words: Lung squamous cell carcinoma (LSCC), PIK3CA mutation, EGFR mutation, KRAS mutation  相似文献   

13.

Background

KRAS mutation is common in human cancer. We assessed the clinical factors, including type of KRAS mutation and treatment, of patients with advanced cancer and tumor KRAS mutations and their association with treatment outcomes.

Methods

Patients referred to the Phase I Clinic for treatment who underwent testing for KRAS mutations were analyzed.

Results

Of 1,781 patients, 365 (21%) had a KRAS mutation. The G12D mutation was the most common mutation (29%). PIK3CA mutations were found in 24% and 10% of patients with and without KRAS mutations (p<0.0001). Of 223 patients with a KRAS mutation who were evaluable for response, 56 were treated with a MEK inhibitor-containing therapy and 167 with other therapies. The clinical benefit (partial response and stable disease lasting ≥ 6 months) rates were 23% and 9%, respectively, for the MEK inhibitor versus other therapies (p=0.005). The median progression-free survival (PFS) was 3.3 and 2.2 months, respectively (p=0.09). The respective median overall survival was 8.4 and 7.0 months (p=0.38). Of 66 patients with a KRAS mutation and additional alterations, higher rates of clinical benefit (p=0.04), PFS (p=0.045), and overall survival (p=0.02) were noted in patients treated with MEK inhibitor-containing therapy (n=9) compared to those treated with targeted therapy matched to the additional alterations (n=24) or other therapy (n=33).

Conclusions

MEK inhibitors in patients with KRAS-mutated advanced cancer were associated with higher clinical benefit rates compared to other therapies. Therapeutic strategies that include MEK inhibitors or novel agents combined with other targeted therapies or chemotherapy need further investigation.  相似文献   

14.
《Journal of thoracic oncology》2021,16(11):1859-1871
IntroductionEGFRT790M mostly exists subclonally and is acquired as the most common mechanism of resistance to EGFR tyrosine kinase inhibitors (TKIs). Nevertheless, because de novo EGFRT790M-mutant NSCLC is rare, little is known on acquired resistance mechanisms to third-generation EGFR TKIs.MethodsAcquired resistance mechanisms were analyzed using tumor and plasma samples before and after third-generation EGFR TKI treatment in four patients with de novo EGFRT790M-mutant NSCLC. Genetic alterations were analyzed by whole-exome sequencing, targeted sequencing, fluorescence in situ hybridization, and droplet digital PCR. MTORL1433S, confirmed for oncogenicity using the Ba/F3 system, was reproduced in H1975 cell lines using CRISPR/Cas9-RNP.ResultsOf seven patients with NSCLC with de novo EGFRT790M/L858R mutation, four (LC1–4) who received third-generation EGFR TKIs acquired resistance after achieving a partial response (median = 27 mo, range: 17–48 mo). Novel MTORL1433S and EGFRC797S/L798I mutations in cis, MET amplification, and EGFRC797S mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs. The MTORL1433S mutation was oncogenic in Ba/F3 models and revealed resistance to osimertinib through AKT signaling activation in NCI-H1975 cells harboring the MTORL1433S mutation edited by CRISPR/Cas9 (half-maximal inhibitory concentration, 800 ± 67 nM). Osimertinib in combination with mTOR inhibitors abrogated acquired resistance to osimertinib.ConclusionsActivation of bypass pathways and the EGFRC797S or EGFRC797S/L798I mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs in patients with NSCLC with de novo EGFRT790M mutation. In addition, MTORL1433S- and EGFRL858R/T790M-mutant NSCLC cells were sensitive to osimertinib plus mTOR inhibitors.  相似文献   

15.

Purpose.

The objective of this study was to evaluate the utility of analyzing cell-free plasma DNA (cfDNA) by picoliter-droplet digital polymerase chain reaction (ddPCR) to detect EGFR mutations that confer resistance to tyrosine-kinase inhibitors (TKIs) used for treatment of lung adenocarcinoma (LADC).

Experimental design.

Thirty-five LADC patients who received epidermal growth factor receptor (EGFR)-TKI therapy, including ten who received tumor rebiopsy after development of resistance, were subjected to picoliter-ddPCR-cfDNA analysis to determine the fraction of cfDNA with TKI-sensitive (L858R and inflame exon 19 deletions) and -resistant (i.e., T790M) mutations, as well as their concordance with mutation status in rebiopsied tumor tissues.

Results.

cfDNA samples from 15 (94%) of 16 patients who acquired resistance were positive for TKI-sensitive mutations. Also, 7 (44%) were positive for the T790M mutation, with fractions of T790M (+) cfDNA ranging from 7.4% to 97%. T790M positivity in cfDNA was consistent in eight of ten patients for whom rebiopsied tumor tissues were analyzed, whereas the remaining cases were negative in cfDNA and positive in rebiopsied tumors. Prior to EGFR-TKI therapy, cfDNAs from 9 (38%) and 0 of 24 patients were positive for TKI-sensitive and T790M mutations, respectively. Next-generation sequencing of cfDNA from one patient who exhibited innate resistance to TKI despite a high fraction of TKI-sensitive mutations and the absence of the T790M mutation in his cfDNA revealed the presence of the L747P mutation, a known driver of TKI resistance.

Conclusion.

Picoliter-ddPCR examination of cfDNA, supported by next-generation sequencing analysis, enables noninvasive assessment of EGFR mutations that confer resistance to TKIs.

Implications for Practice:

Noninvasive monitoring of the predominance of tumors harboring the secondary T790M mutation in the activating mutation in EGFR gene is necessary for precise and effective treatment of lung adenocarcinoma. Because cells harboring the T790M mutation are resistant to epidermal growth factor receptor-tyrosine-kinase inhibitors (TKIs), the predominance of tumor cells harboring the T790M mutations influences the choice of whether to use conventional or next-generation TKIs. Digital polymerase chain reaction-based examination of cfDNA is a promising method; however, its feasibility, including its consistency with examination of rebiopsied tumor tissue, has not been fully proven. Here, picoliter-droplet digital polymerase chain reaction technology is presented as a candidate method for testing cfDNA and assessing the predominance of T790M-mutant tumors.  相似文献   

16.
Mutant selective epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs), such as rociletinib and AZD9291, are effective for tumors with T790M secondary mutation that become refractory to first‐generation EGFR‐TKI. However, acquired resistance to these prospective drugs is anticipated considering the high adaptability of cancer cells and the mechanisms remain largely obscure. Here, CNX‐2006 (tool compound of rociletinib) resistant sublines were established by chronic exposure of HCC827EPR cells harboring exon 19 deletion and T790M to CNX‐2006. Through the analyses of these resistant subclones, we identified two resistant mechanisms accompanied by MET amplification. One was bypass signaling by MET amplification in addition to T790M, which was inhibited by the combination of CNX‐2006 and MET‐TKI. Another was loss of amplified EGFR mutant allele including T790M while acquiring MET amplification. Interestingly, MET‐TKI alone was able to overcome this resistance, suggesting that oncogenic dependence completely shifted from EGFR to MET. We propose describing this phenomenon as an “oncogene swap.” Furthermore, we analyzed multiple lesions from a patient who died of acquired resistance to gefitinib, then found a clinical example of an oncogene swap in which the EGFR mutation was lost and a MET gene copy was gained. In conclusion, an “oncogene swap” from EGFR to MET is a novel resistant mechanism to the EGFR‐TKI. This novel mechanism should be considered in order to avoid futile inhibition of the original oncogene.  相似文献   

17.

Background:

Only 40–70% of metastatic colorectal cancers (mCRCs) with wild-type (WT) KRAS oncogene respond to anti-epidermal growth factor receptor (anti-EGFR) antibody treatment. EGFR amplification has been suggested as an additional marker to predict the response. However, improved methods for bringing the EGFR analysis into routine laboratory are needed.

Methods:

The material consisted of 80 patients with mCRC, 54 of them receiving anti-EGFR therapy. EGFR gene copy number (GCN) was analysed by automated silver in situ hybridisation (SISH). Immunohistochemical EGFR protein analysis was used to guide SISH assessment.

Results:

Clinical benefit was seen in 73% of high (⩾4.0) EGFR GCN patients, in comparison with 59% of KRAS WT patients. Only 20% of low EGFR GCN patients responded to therapy. A high EGFR GCN number associated with longer progression-free survival (P<0.0001) and overall survival (P=0.004). Together with KRAS analysis, EGFR GCN identified the responsive patients to anti-EGFR therapy more accurately than either test alone. The clinical benefit rate of KRAS WT/high EGFR GCN tumours was 82%.

Conclusion:

Our results show that automated EGFR SISH, in combination with KRAS mutation analysis, can be a useful and easily applicable technique in routine diagnostic practise for selecting patients for anti-EGFR therapy.  相似文献   

18.

Purpose

AZD6244 (ARRY-142886) (AstraZeneca, Macclesfield, UK) is a novel small molecule MEK1/2 inhibitor that is currently being tested in Phase II trials. With the recent publication of human pharmacokinetic data from clinical studies, we now know the achievable levels and range of AZD6244 exposure in humans. This study aimed to describe the pharmacokinetic profile of AZD6244 in mice in order to design preclinical studies that recapitulate exposure levels in humans.

Methods

Male athymic, nude mice received subcutaneous inoculation of A375 human melanoma cells. Once tumors reached 400?C700?mm3, mice were given a single dose of either 5 or 10?mg/kg AZD6244 via oral gavage. Additionally, a subset of mice was dosed once daily for 1?week (10?mg/kg). Mice were killed and plasma and tissues were collected at various time points after the last dose. Samples were analyzed by LC/MS/MS for AZD6244 concentration. Additionally, pharmacodynamic endpoints such as tumor proliferation and ERK phosphorylation were analyzed at various time points after the last dose.

Results

After either a single dose or at steady state, at clinically equivalent exposures, AZD6244 effectively inhibits ERK phosphorylation and suppresses proliferation. Furthermore, we describe a hysteretic relationship between the pharmacokinetics and the pharmacodynamics of AZD6244 and both target and pharmacologic responses.

Conclusions

The information presented herein will drive the rational design of pre-clinical studies that are not only relevant to the clinical setting, but also pave the way to understand the biological response to AZD6244 treatment.  相似文献   

19.
PURPOSE: Disseminated melanoma is highly therapy resistant. The finding that 66% of melanomas harbor the activating BRAF(V600E) mutation has raised expectations for targeting the Ras/RAF/mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway in melanoma. This study addresses the anti-melanoma activity of the MEK inhibitor AZD6244 (ARRY-142886). EXPERIMENTAL DESIGN: We recently have shown that growing melanoma cells as three-dimensional collagen-implanted spheroids enhances resistance to the MEK inhibitor U0126. Here, we investigated the anti-melanoma activity of AZD6244 in two-dimensional cell culture, the three-dimensional spheroid model, and an in vivo model. RESULTS: In two-dimensional cell culture, AZD6244 was cytostatic and reduced the growth of melanoma cells in a concentration-dependent fashion through the induction of G(1)-phase cell cycle arrest. In our three-dimensional spheroid model, the effects of AZD6244 were largely cytostatic and reversible, with drug washout leading to spheroid regrowth. Finally, 1205Lu cells were grown as tumor xenografts in severe combined immunodeficient mice. After tumor establishment, mice were dosed twice daily with 0, 10, or 30 mg/kg AZD6244 p.o. AZD6244 treatment decreased phospho-ERK in the tumors and significantly suppressed tumor growth. The original tumors remained viable, suggesting that AZD6244 monotherapy was largely cytostatic, and not proapoptotic in this model. Further studies showed that co-administration of AZD6244 (30 mg/kg) with docetaxel (15 mg/kg) led to tumor regression, indicating the potential for MEK inhibitor/chemotherapy drug combinations. CONCLUSIONS: Inhibition of MEK is cytostatic as a monotherapy in melanoma, but cytotoxic when combined with docetaxel.  相似文献   

20.
IntroductionIncreasing evidence has demonstrated that exon 19 deletions (Del19) and L858R mutation in EGFR have different prognostic and predictive roles in NSCLC. We aimed to investigate whether these two mutations produced differences in mechanisms of resistance to EGFR tyrosine kinase inhibitors.MethodsConsecutive patients with advanced EGFR-mutant NSCLC who acquired resistance to EGFR tyrosine kinase inhibitors and underwent postprogression biopsy were enrolled. Mechanisms including T790M mutation, mesenchymal-epithelial transition proto-oncogene (MET) amplification, and histological transformation, as well as KRAS, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA) mutation, and anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion, were analyzed.ResultsThe prevalence of T790M mutation was significantly higher in the Del19 subgroup than that in L858R subgroup (50.4% versus 36.5%, p = 0.043). Apart from this, there was no difference in other mechanisms including MET amplification and histological transformation. The median overall survival (OS) of patients with T790M mutation was 36.0 months (95% confidence interval [CI]: 30.9–41.2), which was significantly longer than the 26.5 months (95% CI: 24.0–29.0) in MET-positive patients, 19.7 months (95% CI: 18.2–21.2) in patients with histological transformation, and 23.0 months (95% CI: 17.4–28.6) in the KRAS/PIK3CA/ALK-altered population (p = 0.021). The hazard ratios of the MET-amplification subgroup and subgroup with histological transformation were 1.809-fold and 2.370-fold higher than that in T790M-positive subgroup. The median OS times were months 33.3 (95% CI: 28.9–37.7) in the Del19 subgroup and 26.4 months (95% CI: 23.2–29.6) in the L858R subgroup (p = 0.028). However, in multivariable analysis adjusted for T790M genotype, the EGFR mutation subtype was no longer found to be significant.ConclusionsSignificant OS benefit was observed in patients with T790M mutation, suggesting that a larger proportion of T790M mutation might contribute to the better survival of patients with Del19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号